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Probabilistic Models for Occurrences

Modelling probabilistic dependencies (causalities) and independencies
between discrete events of a scene

Xi random variable models uncertain propositions about a scene

Xi = a hypothesis

Decomposition of joint probabilities:

P(X1, X2, X3, ... , Xn) = P(X1 | X2, X3, ... , Xn) • P(X2 | X3, X4, ... , Xn) • ... • P(Xn-1 | Xn) • P(Xn)

Simplification in the case of statistical independence:

X independent of Xi

P(X | X1, ... Xi-1 ,Xi, Xi+1 , ... , Xn) =  P(X | X1, ... Xi-1 ,Xi+1 , ... , Xn)

Joint probability of N variables may be simplified by ordering the
variables according to their direct dependence (causality)
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Causality Graph

Conditional dependencies (causality relations) of random variables
define partial order.

Representation as a directed graph:

X7

X8

X6

X4

X5 X3

X1

X2

P(X1, X2, X3, ... , X8) = 
P(X1 | X2, X3, X4) • P(X2) • P(X3 | X4, X5) • P(X4 | X6) • P(X5 | X6) • P(X6 | X7X8) • P(X7) • P(X8)
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 Constructing a Bayes Net

By domain analysis:

1. Select discrete variables Xi relevant for domain

2. Establish partial order of variables according to causality

3. In the order of decreasing causality:
(i) Generate node Xi in net
(ii) As predecessors of Xi choose the smallest subset of nodes which are 

already in the net and from which Xi is causally dependent
(iii) determine a table of conditional probabilities for Xi

By data analysis:

Use a learning method to establish a Bayes Net approximating the empirical
joint probablity distribution.
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Computing Inferences

We want to use a Bayes Net for probabilistic inferences of the following kind:

Given a joint probability P(X1, ... , XN) represented by a Bayes Net,
and evidence Xm1

=am1
, ... , XmK

=amK
 for some of the variables, what is

the probability P(Xn= ai | Xm1
=am1

, ... , XmK
=amK

) of an unobserved
variable to take on a value ai ?

P(Xn= ai, Xm1
=am1

, ... , XmK
=amK

)
P(Xn= ai | Xm1

=am1
, ... , XmK

=amK
) =

 P(Xm1
=am1

, ... , XmK
=amK

)

In general this requires

- expressing a conditional probability by a quotient of joint probabilities

- determining partial joint probabilities from the given total joint probability
by summing out unwanted variables

P(Xm1
=am1

, ... , XmK
=amK

) =      ΣΣΣΣ      P(Xm1
=am1

, ... , XmK
=amK

, Xn1
, ... , XnK

)
Xn1

, ... , XnK
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Example: Traffic Behaviour of Pedestrians

X4:
pedestrian
inattentive

X3:
 car comes

X2:
pedestrian
light red

X5:
pedestrian looks

on street

X1:
pedestrian

enters street

X6: 
traffic light red

Conditional probability table for each node must be known

Examples:    P(X1 | X2, X3, X4, X5) P(X2 | X6)

X1 X2 X3 X4 X5 P
T T T T T 0.3
F T T T T 0.7
T F T T T 0.9
F F T T T 0.1
• • • • • •
• • • • • •
• • • • • •

X2 X6 P
T T 0.2
F T 0.8
T F 1.0
F F 0.0
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Estimating Probabilities from a Database

Given a sufficiently large database with tupels a(1) ... a(N) of an unknown
distribution P(X), we can compute maximum likelihood estimates of all
partial joint probabilities and hence of all conditional probabilities.

Xm1
, ... , XmK

 = subset of X1, ... XL with K ≤≤≤≤ L

wa = number of tuples in database with Xm1
=am1

, ... , XmK
=amK

N   = total number of tuples

If a priori information is available, it may be introduced via a bias ma : 

      P´(Xm1
=am1

, ... , XmK
=amK

) = (wa + ma) / N

Often ma = 1 is chosen for all tupels a to express equal likelihoods in the
case of an empty database.

Maximum likelihood estimate of P(Xm1
=am1

, ... , XmK
=amK

) is

      P´(Xm1
=am1

, ... , XmK
=amK

) = wa / N
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Expectation Maximization (1)

Often databases are neither complete (insufficient samples, missing
attributes) nor precise (ambiguous or uncertain values). In this case
Expectation Maximation (EM) provides an iterative procedure to
estimate probabilities.

Recommended reading: Borgelt & Kruse, Graphical Models, Wiley 2002

1. Imprecise data

Given a tuple with ambiguous attributes

aT = [ {a11, a12, ...}, {a21, a22, ...}, ... , {aK1, aK2, ...} ]

and number of occurrence wa, redistribute wa equally among all
combinations of attribute values.

2. Incomplete database

Execute iterative 2-step procedure:

A Compute sample frequencies from estimated probabilities

B Estimate probabilities from samples, maximizing likelihood of data
(see previous slide)
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Expectation Maximization (2)

Expectation step of EM:

Use current (initial) probability estimates to compute probability P(a) for
all attribute combinations a.

For Bayes Nets, this requires computing P(a) from the conditional
probabilities assigned to the nodes.

At the initial step, absolute frequencies of missing attribute tuples a* are
completed:

a* = [ * , X2=am2, X3=am3, ... ]  wa*

a1 = [X1=a1 , X2=am2, X3=am3, ... ]    wa* • P(a1)

•
•
•

 missing attribute       absolute frequency        completed database

a2 = [X1=a2 , X2=am2, X3=am3, ... ]    wa* • P(a2)

aM = [X1=aM , X2=am2, X3=am3, ... ]    wa* • P(aM)
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Example for Expectation Maximization (1)
(adapted from Borgelt & Kruse, Graphical Models, Wiley 2002)

Given 4 binary probabilistic variables A, B, C, H with known dependency
structure:

A B C

H

Given also a database with tuples [ * A B C]  where H is a missing attribute.

H A B C w
 * T T T 14
 * T T F 11
 * T F T 20
 * T F F 20
 * F T T 5
 * F T F 5
 * F F T 11
 * F F F 14

absolute frequencies
of occurrence

Estimate of the conditional probabilities of the Bayes Net nodes !
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Example for Expectation Maximization (2)

Initial (random) probability assignments:

H P(H) A H P(A|H) B H P(B|H) C H P(C|H)

T 0.3 T T 0.4 T T 0.7 T T 0.8
F 0.7 T F 0.6 T F 0.8 T F 0.5

F T 0.6 F T 0.3 F T 0.2
F F 0.4 F F 0.2 F F 0.5

With P H A B C
P A H P B H P C H P H

P A H P B H P C H P H
H

( | , , )
( | )• ( | )• ( | )• ( )

( | )• ( | )• ( | )• ( )
==
∑∑

one can complete the database:

H A B C w
T T T T 1.27
T T T F 3.14
T T F T 2.93
T T F F 8.14
T F T T 0.92
T F T F 2.37
T F F T 3.06
T F F F 8.49

H A B C w
F T T T 12.73
F T T F 7.86
F T F T 17.07
F T F F 11.86
F F T T 4.08
F F T F 2.63
F F F T 7.94
F F F F 5.51
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Example for Expectation Maximization (3)
Based on the modified complete database, one computes the maximum
likelihood estimates of the conditional probabilities of the Bayes Net.

Example: P A T H T( | )
. • . • . • .

. • . • . • . • , • . • . • .
.== == ≈≈ ≈≈

1 27 3 14 2 93 8 14
1 27 3 14 2 93 8 14 0 92 2 73 3 06 8 49

0 51

This way one gets new probability assignments:

H P(H) A H P(A|H) B H P(B|H) C H P(C|H)

T 0.3 T T 0.51 T T 0.25 T T 0.27
F 0.7 T F 0.71 T F 0.39 T F 0.60

F T 0.49 F T 0.75 F T 0.73
F F 0.29 F F 0.61 F F 0.40

This completes the first iteration. After ca. 700 iterations the modifications
of the probabilities are less than 10-4. The resulting values are

H P(H) A H P(A|H) B H P(B|H) C H P(C|H)

T 0.5 T T 0.5 T T 0.2 T T 0.4
F 0.5 T F 0.8 T F 0.5 T F 0.6

F T 0.5 F T 0.8 F T 0.6
F F 0.2 F F 0.2 F F 0.4
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Hidden Markov Models

A sequence of observations may be governed by underlying probabilistic
state transitions.

Example: A person laying a table may plan to first place the plates, then the cups,
then the cutlery in a cyclic order (with a chance to deviate from this order).

As usual in vision, observations may be disturbed and may provide
uncertain evidence about the current state.

Such phenomena may be modelled by a Hidden Markov Model (HMM).

A (discrete) HMM is defined by

- a finite number of states a1, a2, ... , aK

- a sequence of state transition events t0, t1, ..., tn (not necessarily times)

- probabilities of state transitions pij from state i to state j depending only
on the past states

- observations b1, b2, ... , bM probabilistically related to each state

- probabilities qkm which map states into observations
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Notation for HMM
• sequence of random variables X(1), ... , X(n) (state variables) with values from

{a1, ... , aK}

• Markov Chain property of X(1), ... , X(n):   P(X(n)|X(n-1) ... X(1)) = P(X(n)|X(n-1))

-   if P(X(n)|X(n-1)) is independent of n, the Markov Chain is homogeneous
-   transition probabilities P(X(n=ai|X(n-1)=aj) are represented by the state transition matrix

         W(n) = p11  ... p1K
...
PK1  ... pKK

• random variables Y(1), ... , Y(n) (observations) with values from {b1, ... , bM}

• observation probabilities P(Y(n)|X(n)) are represented by the matrix

Q = q11  ... q1M
...
qK1  ... qKM

• initial probabilities ππππT = [ P(X(1)=a1)  P(X(1)=a2) ... P(X(1)=aK) ]
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Properties of a Homogeneous HMM
Probability vector for state X(2): ππππ(2) = WT ππππ 

Probability vector for state X(n): ππππ(n) = (WT)n-1 ππππ 

There is always a stationary distribution ππππs such that  ππππs = WT ππππs

Graphical representation:         Trellis ("Spalier") representation:

a1 a2

a3

p12

p21

p23

p32
p13

p31

p22
p11

p33

a1

a2

a3

a1

a2

a3

a1

a2

a3

a1

a2

a3

•••

• each (directed) path corresponds to a legal
sequence of states

• the probability of a path is equal to the product of
the transition probabilities
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Paths through a HMM

Extension of trellis representation

• arc weights leading into states X(n): transition probabilities pij

• node weights of states X(n):   observation likelihoods qjm for 
given observations Y(n) = bmn

• product of initial probability and P(Y(1)=bm1
, ... , Y(N)=bmN

, X(1)=ak1
, ... , X(N)=akN

)
node and arc probabilities along path: probability of observations and states

Example:

W = 0.3  0.2  0.5 Q = 0.8  0.2 ππππ = 0.6
0.1  0.0  0.9 0.4  0.6 0.3
0.4  0.6  0.0 0.2  0.8 0.1

observations
b2, b1, b1, b2

a1

a2

a3

a1

a2

a3

0.6

0.3

0.1

0.2

0.6

0.8

a1

a2

a3

0.8

0.4

0.2

a1

a2

a3

0.8

0.4

0.2

0.2

0.6

0.8

Given a sequence of N observations, we want to find the most probable
sequence of states which may have led to the observations.

probability of observations along
path are

P(Y(1)=b2,Y(2)=b1,Y(3)=b1,Y(4)=b2,
states of path) =

0.6•0.2•0.2•0.4•0.1•0.8•0.5•0.8
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Finding Most Probable Paths

Hence the maximizing sequence of states can be found by exhaustive
search of all path probabilities in the trellis.  However, complexity is
O(KN) with K = number of different states and N = length of sequence.

The Viterbi Algorithm does the job in O(KN)!

Overall maximization may be decomposed into a backward sequence of
maximizations:

Step N             Step N-1                   Step 1

The most probable sequence of states is found by maximizing

max P(X(1)=ak1
, ... , X(N)=akN

 | Y(1)=bm1
, ... , Y(N)=bmN

) =  max P(a | b)
k1 ... kN

a

Equivalently, the most probable sequence of states follows from

max P(a b) = max P(a | b) P(b)
a a

= max ππππk1
 qk1m1

 (max  pk1k2
 qi2m2

 ( ... (max pkN-1kN
 qkN-1mN 

)...))
k1 k2 kN

max P(a b) = max ππππk1
 qk1m1

    ΠΠΠΠ   pkn-1kn
 qkn-1mnn=2...Na k1 ... kN
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Example for Viterbi Algorithm

a1

a2

a3

a1

a2

a3

0.2

0.6

0.8

Step 1

0.4

0.72

0.36

a1

a2

a3

a1

a2

a3

0.8•0.4

0.4•0.72

0.2•0.36

Step 2

0.096

0.065

0.173

a1

a2

a3

a1

a2

a3

0.8•0.096

0.4•0.065

0.2•0.173

Step 3

0.023

0.031

0.031

Step 4

a1

a2

a3

0.6

0.3

0.1

0.2•0.023

0.6•0.031

0.8•0.031

0.00276

0.00558

0.00248
n=1         n=1              n=2                     n=2               n=3                 n=3               n= 4 

W = 0.3  0.2  0.5 Q = 0.8  0.2 ππππ = 0.6
0.1  0.0  0.9 0.4  0.6 0.3
0.4  0.6  0.0 0.2  0.8 0.1

observations
b2, b1, b1, b2

Example as earlier:

Typical maximization step of  Viterbi algorithm: 

max { pkn-1kn
 • qkn-1mn 

• <result of previous maximization step> }
kn

0.8

red numbers show maximization results, red arrows maximizing transitions
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Model Evaluation for Given Observations

What is the likelihood that a particular HMM (out of several possible models)
has generated the observations?

Likelihood of observations given model:

P(Y(1)=bm1
, ... , Y(N)=bmN

 | model )  =  P(b) =  ΣΣΣΣ P(a b)

Instead of summing over all a, one can use a forward algorithm based
on the recursive formula:

P(aj
(n+1), bm1

, ... , bmn
, bmn+1

)

     = P(aj
(n+1), bm1

, ... , bmn
)•P(bmn+1

 | aj
(n+1))

     = ΣΣΣΣ  [ P(aj
(n+1), P(ai

(n), bm1
, ... , bmn

)] • P(bmn+1
 | aj

(n+1))

     = ΣΣΣΣ  [ P(aj
(n+1)| P(ai

(n), bm1
, ... , bmn

)P(ai
(n), bm1

, ... , bmn
)] • P(bmn+1

 | aj
(n+1))

     = ΣΣΣΣ  [ P(aj
(n+1) | P(ai

(n)) • P(ai
(n), bm1

, ... , bmn
)] • P(bmn+1

 | aj
(n+1))

     = ΣΣΣΣ  [ pij • P(ai
(n), bm1

, ... , bmn
)] • qj mn+1

 

i

i

i

i

a

Finally: P(bm1
, ... , bmN

) =  ΣΣΣΣ  P(ai
(n+1), bm1

, ... , bmN
)

i
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Example for Model Evaluation (1)

W = 0.3  0.2  0.5 Q = 0.8  0.2 ππππ = 0.6
0.1  0.0  0.9 0.4  0.6 0.3
0.4  0.6  0.0 0.2  0.8 0.1

observations
b2, b1, b1, b2

Example as earlier:

P(aj
(1), bm1

) = ππππj • qj m1
 

P(a1
(1), b2) = 0.6•0.2 = 0.12

P(a2
(1), b2) = 0.3•0.6 = 0.18

P(a3
(1), b2) = 0.1•0.8 = 0.08

P(aj
(2), bm1

, bm2
) = ΣΣΣΣ  [ pij • P(ai

(1), bm1
)] • qj m2

 

P(a1
(2), b2, b1) = [ 0.3•0.12 + 0.1•0.18 + 0.4•0.08 ]•0.8 = 0.0314

P(a2
(2), b2, b1) = [ 0.2•0.12 +                  0.6•0.08 ]•0.4 = 0.0288

P(a3
(2), b2, b1) = [ 0.5•0.12 + 0.9•0.18                  ]•0.2 = 0.0072

Step 1

Step 2

Computing the probability of observations stepwise as they come in. 

Note that P(bm1
, ... , bmn

) can be
computed after each step by summing
out the dependency on the state X(n).
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Example for Model Evaluation (2)

W = 0.3  0.2  0.5 Q = 0.8  0.2 ππππ = 0.6
0.1  0.0  0.9 0.4  0.6 0.3
0.4  0.6  0.0 0.2  0.8 0.1

observations
b2, b1, b1, b2

Example continued:

P(aj
(3), bm1

, bm2
, bm3

) = ΣΣΣΣ  [ pij • P(aj
(2), bm1

, bm2
)] • qj m3

 

P(a1
(3), b2, b1, b1) = [ 0.3•0.0314 + 0.1•0.0288  + 0.4•0.0072 ]•0.8 = 0.01214

P(a2
(3), b2, b1, b1) = [ 0.2•0.0314 +                       0.6•0.0072 ]•0.4 = 0.00424

P(a3
(3), b2, b1, b1) = [ 0.5•0.0314 + 0.9•0.0288                       ]•0.2 = 0.00832

P(aj
(4), bm1

, bm2
, bm3

, bm4
) = ΣΣΣΣ  [ pij • P(aj

(2), bm1
, bm2

, bm3
)] • qj m4

 

P(a1
(4), b2, b1, b1, b2) = [ 0.3•0.01214 + 0.1•0.00424  + 0.4•0.00832 ]•0.2 = 0.001479

P(a2
(4), b2, b1, b1, b2) = [ 0.2•0.01214 +                         0.6•0.00832 ]•0.6 = 0.004452

P(a3
(4), b2, b1, b1, b2) = [ 0.5•0.01214 + 0.9•0.00424                         ]•0.4 = 0.003954

P(bm1
, bm2

, bm3
, bm4

) = ΣΣΣΣ  P(aj
(4), bm1

, bm2
, bm3

, bm4
) =    0.009885

Step 3

Step 4

Final step
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Learning Models for
High-level Image Interpretation

What parts of a scene constitute "meaningful occurrences" and should
be recognized?

Basic engineering applications:

Fixed recognition tasks, determined by the application context.

=>  handcrafted models

Advanced engineering applications:

Flexible recognition tasks, determined by user.

=>  models result from supervised learning

Biological vision:

Recognition should support expectation generation and hence survival.

=>  models result from unsupervised learning
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Learning in Support of
High-level Scene Interpretation

geometrical
scene description (GSD)

image sequences of dynamic scenes

high-level 
scene interpretations

scene models

vision memory

memory
templates
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Basic Structure of Vision Memory

pour-tea1place-cover1

transport1 transport2

cup1 plate1 pot1

move1 move2 move3

scene1

scene record

scene record 1
scene record 1

scene record 1
scene record 1

scene record 1
scene record 1

scene record 1
scene record 1

vision memory

It is an open research question, how much imagery should (can) be
preserved in a vision memory.
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Case-based Expectation Generation
from Memory Records

Memory records are "cases" which may provide missing information for
an ongoing scene:

-  identify memory records which partially match current scene
-  adapt memory information to current scene
-  provide expectations about current scene

plateagent transport

transport2

plate2agent2

transport3

plate3agent3

place-cover2

transport1

plate1agent1

memory record
current scene

concepts
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Basic Learning Tasks

Michalski 86:  Learning is the construction or modification of
representations of experiences.

Unsupervised learning

determine reoccuring patterns in scene records

=> conceptual clustering

Supervised learning

determine description covering several examples

=> inductive generalization 
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Example of Supervised Learning

1.  "This is how you lay a table"

2.  "This is how you lay a table"

•
•
•

42.  "This is how you lay a table"

determine
covering
description
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Unsupervised Learning:
The Baby Scenario

Given memory records and primitive occurrence models, discover
higher-level occurrence models

Example:  
Discover "transport" = simultaneous motion of hand touching object 

Discover commonalities of memory records in terms of
• parts of joint occurrence (e.g. obj1, obj2, motion1, motion2)
• type constraints  (e.g. obj1 instance hand)
• temporal constraints (e.g. tb1 = tb2, te1 = te2)
• spatial constraints (e.g. obj1 dc obj2)  

Active research area!
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Review of Image Understanding as a
Knowledge-based Process

object configurations,
situations, occurrences

objects, trajectories

scene elements:
volumes, 3D-surfaces,

3D-contours

image elements:
regions, edges, texture,

optical flow

raw images

high-level vision,
scene understanding

object
recognition

low-level vision,
early vision

segmentation,
image preprocessing

common sense
knowledge

situation models,
occurrence models

object models

projective
geometry

photometry

physics

basic real-world
properties

events, episodes
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Review Week 1
Computer Vision
Contents
Literature
Website
Exercises
Why study image processing, image

analysis and machine vision?
What is "Image Processing"?
What is "Image Analysis"?
What is "Image Understanding"?
Image Understanding is

Silent Movie Understanding
What is "Pattern Recognition"?
What is "Computer Vision"?
Computer Vision vs. Biological Vision
Geometry in human vision
Human object perception
Human character recognition
Human face recognition

Complexity of natural scenes
The computer perspective on images
Greyvalues of the section
Street scene containing the section
Computer Vision as an 
academic discipline
Important conferences
Important Journals
Important application areas
Example-based image retrieval
Example: Medical image analysis
Example: Driver assistance
History of Computer Vision (1)
History of Computer Vision (2)
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Review Week 2
Definition of Image Understanding
Illustration of Image Understanding
Image Understanding as a

Knowledge-based Process
Abstraction Levels for the Description

of Computer Vision Systems
Example for Knowledge-level Analysis
Image Formation
Formation of Natural Images
Intensity of Sensor Signals
Multispectral Images
Spectral Sensitivity of Human Eyes
Dimensions of Colour
RGB Images of a Natural Scene
Discretization of Images
Spatial Quantization
Reconstruction from Samples
Sampling Theorem
Aliasing
Reconstructing the Image Function

from Samples
Sampling TV Signals

Quantization of Greyvalues
Uniform Quantization
Nonlinear Quantization Curves
Optimal Quantization (1)
Optimal Quantization (2)
Binarization
Threshold Selection by Trial and Error
Distribution-based Threshold Selection 
Threshold Selection Based on Reference P
Image Capturing for Thresholding
Perspective Projection Transformation
Perspective Projection in Independent Coo
3D Coordinate Transformation (1)
3D Coordinate Transformation (2)
Perspective Projection Geometry
Perspective and Orthographic Projection
From Camera Coordinates to 
Image Coordinates
Complete Perspective Projection Equation
Homogeneous Coordinates (1)
Homogeneous Coordinates (2)
Homogeneous Coordinates (3)
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Review Week 2 (continued)
Inverse Perspective Equations
Binocular Stereo (1)
Binocular Stereo (2)
Distance in Digital Images
Connectivity in Digital Images
Closed Curve Paradoxon
Geometric Transformations
Polynomial Coordinate Transformations
Translation, Rotation, Scaling, Skewing
Example of Geometry Correction

by Scaling
Minimizing the MSE
Principle of Greyvalue Interpolation
Nearest Neighbour

Greyvalue Interpolation
Bilinear Greyvalue Interpolation
Bicubic Interpolation
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Review Week 3
Global Image Properties
Empirical Mean and Variance
Greyvalue Histograms
Example of Greyvalue Histogram
Histogram Modification
Projections
Cross-sections
Noise
Noise Removal by Averaging
Example of Averaging
Simple Smoothing Operations
Bimodal Averaging
Averaging with Rotating Mask
Median Filter
Local Neighbourhood Operations
Example of Sharpening
Spectral Image Properties
Illustration of

1-D Fourier Series Expansion
Discrete Fourier Transform (DFT)
Basic Properties of DFT

Illustrative Example of 
Fourier Transform

Examples of Fourier Transform Pairs
Fast Fourier Transform (FFT)
Convolution
Filtering in the Frequency Domain
Filtering in the Spatial Domain
Low-pass Filters
Discrete Filters
Matrix Notation for Discrete Filters
Avoiding Wrap-around Errors
Convolution Using the FFT
Convolution and Correlation
Correlation and Matching
Principle of Image Restoration
Image Restoration by Minimizing 

the MSE
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Review Week 4
Image Data Compression
Run Length Coding
Probabilistic Data Compression
Huffman Coding
Statistical Dependence
Karhunen-Loève Transform
Illustration of Minimum-loss

Dimension Reduction
Compression and Reconstruction with

the Karhunen-Loève Transform
Example for Karhunen-Loève

Compression
Predictive Compression
Example of Linear Predictor
Discrete Cosine Transform (DCT)
Principle of Baseline JPEG
YUV Color Model for JPEG
Illustrations for Baseline JPEG
JPEG-compressed Image
Problems with Block Structure of JPEG

Progressive Encoding
MPEG Compression
Quadtree Image Representation
Quadtree Image Compression
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Review Week 5
Segmentation
Problems with Segmentation
Primary Goal of Segmentation
Secondary Goals of Segmentation
Thresholding
Representing Regions
Component Labelling
Boundaries
Chain Code
Chain Code Derivatives
k-Slope and k-Curvature
Digital Straight Lines
Uniformity Assumption
Region Growing
Segmentation into Regions

Using Histograms
Region Segmentation by

Split-and-merge
Maximum-likelihood Edge Finding
Greyvalue Discontinuities

Are Edges Object Boundaries?
Robert´s Cross Operator
Sobel Operator
Example for Sobel Operator
Kirsch Operator
Laplacian Operator
Marr-Hildreth Operator
Difference of Gaussians (DoG)
Canny Edge Detector (1)
Canny Edge Detector (2)
Examples for Canny Edge Detector
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Review Week 6
Grouping
Cognitive Grouping
Fitting Straight Lines
Straight Line Fitting by

Iterative Refinement
Straight Line Fitting by

Eigenvector Analysis (1)
Straight Line Fitting by

Eigenvector Analysis (2)
Straight Line Fitting by

Eigenvector Analysis (3)
Example for Straight Line Fitting by

Eigenvector Analysis
Grouping by Search
Dynamic Programming (1)
Dynamic Programming (2)
Grouping by Relaxation
Contexts for Edge Relaxation
Modification Rule for Edge Relaxation
Example of Edge-finding by Relaxation

Histogram-based Segmentation 
with Relaxation (1)

Histogram-based Labelling 
with Relaxation (2)

Relaxation with a Neural Network
Hough Transform (1)
Hough Transform (2)
Hough Transform (3)
Generalized Hough Transform
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Review Week 7
Region Description for Recognition
Simple 2D shape features
Euler number
Area
Boxing rectangle
Boundary length
Compactness
Center of gravity
Second-order moments
Axis of minimal inertia
Polar signature
Object recognition using

the polar signature
Convex hull
Skeletons
Thinning algorithm
B-splines (1)
B-splines (2)
Shape Description by

Fourier Expansion (1)
Shape Description by

Fourier Expansion (2)

Templates
Cross-correlation
Artificial neural nets
Multilayer feed-forward nets
Character recognition with a neural net
Learning by backpropagation
Perceptrons (1)
Perceptrons (2)
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Review Week 8
What is "Pattern Recognition"?
Basic Terminology for

Pattern Recognition
Example: Animal Footprints
A Feature Space for Footprints
Discriminant Functions for Footprints
Existence of Discriminant Functions
Linear Discriminant Functions
Class Average

Minimal Distance Classification
Nearest Neighbour Classification
Generalized Linear

Discriminant Functions
Linear Discriminant Functions for

2-Class Problems
Perceptron Learning Rule
Minimizing the Discriminant Criterion
Quadratic Criterion Function
Relaxation Rule
Minimum Squared Error
Ho-Kashyap Procedure

Discrimination with 
Potential Functions

Construction of Discriminant Functions
Based on Potential Functions

Statistical Decision Theory
Example: Medical Screening (1)
Example: Medical Screening (2)
Example: Medical Screening (3)
General Framework for 

Bayes Classification
Bayes 2-class Decisions
Normal Distributions
Discriminant Function for 

Normal Distributions
Univariate distribution
Statistically Independent, 

Equal Variance Variables
Equal Covariance Matrices
Estimating Probability Densities
Estimating the Mean in a 

Univariate Normal Density
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Review Week 9
Motion Analysis
Case Distinctions for Motion Analysis
Motion in Video Images
Difference Images
Counting Differences
Corresponding Interest Points
Moravec Interest Operator
Corner Models
Correspondence problem
Correspondence by Iterative Relaxation
Kalman Filters (1)
Kalman Filters (2)
Kalman Filter Example
Diagrams for Kalman Filter Example (1)
Diagrams for Kalman Filter Example (2)

Optical Flow Constraint Equation
Aperture Effect
Optical Flow Smoothness Constraint
Optical Flow Algorithm
Optical Flow Improvements
Optical Flow and Segmentation
Optical Flow Patterns
Optical Flow and 3D Motion (1)
Optical Flow and 3D Motion (2)
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Review Week 10
3D Motion Analysis Based on

2D Point Displacements
Structure from Motion (1)
Structure from Motion (2)
Structure from Motion (3)
Perspective 3D Analysis of

Point Displacements
Essential Matrix
Solving for the Essential Matrix
Singular Value Decomposition of E
Nagel-Neumann Constraint
Homogeneous Coordinates
From Homogeneous World Coordinates

to Homogeneous Image
Coordinates

Camera Calibration
Calibration of One Camera

from a Known Scene
Fundamental Matrix
Epipolar Plane

Correspondence Problem Revisited
Correspondence Between Two 

Mars Images
Constraining Search for Correspondence
Neural Stereo Computation
Obtaining 3D Shape from 

Shading Information
Principle of Shape from Shading
Photometric Surface Properties 
Lambertian Surfaces
Surface Gradients
Simplified Image Irradiance Equation
Reflectance Maps
Characteristic Strip Method
Shape from Shading 

by Global Optimization 
Principle of Photometric Stereo
Analytical Solution for 

Photometric Stereo
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Review Week 11
General Principles of

3D Image Analysis
Single Image 3D Analysis
Generality Assumption
Texture Gradient
Shape from Texture
Surface Shape from Contour
3D Line Shape from 2D Projections
3D Shape from Multiple Lines
3D Junction Interpretation
3D Line Orientation from

Vanishing Points
Object Recognition
The Chair Room
About Model-based Recognition
Model-based Object Recognition
3D Models vs. 2D Models
Holistic Models vs. Component Models
3D Shape Models
3D Space Occupancy Model
Oct-trees

Extended Gaussian Image (EGI)
Recognition with EGI Models
Illustration of 

EGI Recognition Procedure
Representing Axial Bodies
Generalized Cylinders
Conditions for 3D Reconstruction 

from Contours
Relational Models
Relations between Components
Object Recognition by 

Relational Matching
Compatibility of Relational Structures
Example of a Relational Model (1)
Example of a Relational Model (2)
Example of a Relational Model (3)
Relational Match Using a 

Compatibility Graph
Finding Maximal Cliques
Relational Matching with 

Heuristic Search
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Review Week 11 (continued)
Optimization Techniques
Simulated Annealing (1)
Simulated Annealing (2)
Case study:  Drawing Interpretation
Partonomy of Object Parts
Specification of an Arrow
Processing Cycle
Property Spaces
Blackboard Architecture
Analysis of a Machine Drawing
Analysis of an Electrical Circuit
Qualitative Relations
Qualitative spatial relations
Combining Fuzzy Propositions

Recognition of Views by 
Qualitative 2D-Spatial Relations

Views of the Same Location 
from Different Perspectives

Views of the Same Location 
under Different Illumination

Relational Description of Views
Location Relation between Edges
Compatibility Test for 

Location Relation
Determining Offset Regions
Offset Regions for Different 

Uncertainty Intervals
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Review Week 12
High-level Vision
Topics of High-Level Vision
Basic Building Blocks for

High-level Scene Interpretation
Basic Representational Units
Temporal Decomposition of Scenes
Temporal Relations
Interval Relations in

Allen´s Algebra
Convex Time-point Algebra
Perceptual Primitives
Qualitative Predicates for Modelling

and Recognizing Occurrences
Example: Criminal Act Recognition
Qualitative Predicates for Occurrences

in Traffic Scenes
Occurrence Models
Occurrence Model for Overtaking

in Street Traffic
Occurrence Model for

Transport Vehicle Behaviour

Occurrence Model for Placing a Cover
Parts Structure
Concept Hierarchy
Relational Structure for Placing-a-cover
Model-based Interpretation
Temporal Constraint Net for 

Convex Time-Point Algebra
Occurrence Recognition by 

Constraint Propagation (1)
Occurrence Recognition by 

Constraint Propagation (2)
Occurrence Recognition by 

Constraint Propagation (3)
Convergence and Complexity
Generalization of Temporal Relations
Recognizing Intentions and Plans
Definition of Planning
Plan Recognition
Models for Intention Recognition
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Review Week 12 (continued)
From Scene Data to a

Natural-language Scene Description
Geometrical Scene Description (GSD)
Typical data of a GSD
 Hierachy for object motions in

street traffic
Generating a

natural-language description
Standard plan for generating natural-

language scene descriptions
Example of an automatically generated

traffic scene description
Selecting prepositions for

trajectory location information
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Review Week 13
Probabilistic Models for Occurrences
Causality Graph
 Constructing a Bayes Net
Computing Inferences
Example: Traffic Behaviour of Pedestrians
Estimating Probabilities from a Database
Expectation Maximization (1)
Expectation Maximization (2)
Example for Expectation Maximization (1)
Example for Expectation Maximization (2)
Example for Expectation Maximization (3)
Hidden Markov Models
Notation for HMM
Properties of a Homogeneous HMM
Paths through a HMM
Finding Most Probable Paths
Example for Viterbi Algorithm
Model Evaluation for Given Observations
Example for Model Evaluation (1)
Example for Model Evaluation (2)

Learning Models for
High-level Image Interpretation

Learning in Support of
High-level Scene Interpretation

Basic Structure of Vision Memory
Case-based Expectation Generation

from Memory Records
Basic Learning Tasks
Example of Supervised Learning
Unsupervised Learning:

The Baby Scenario
Review of Image Understanding as

a  Knowledge-based Process


