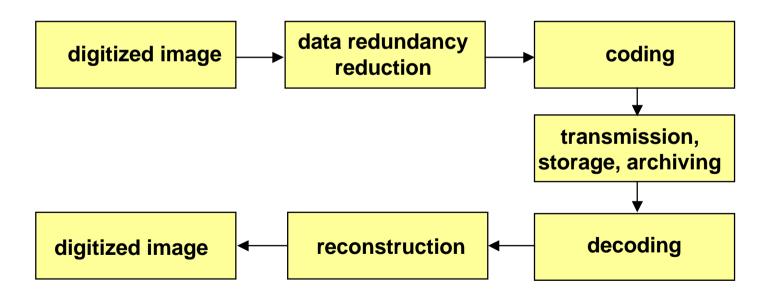
Image Data Compression

Image data compression is important for

- image archiving e.g. satellite data
- image transmission e.g. web data
- multimedia applications e.g. desk-top editing

Image data compression exploits redundancy for more efficient coding:

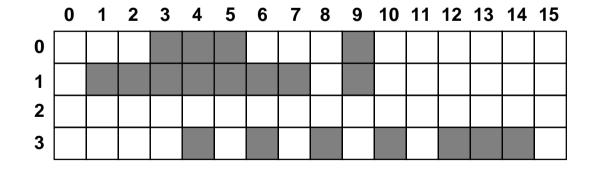


Run Length Coding

Images with repeating greyvalues along rows (or columns) can be compressed by storing "runs" of identical greyvalues in the format:

greyvalue1 repetition1 greyvalue2 repetition2 ...

For B/W images (e.g. fax data) another run length code is used:



run length coding:

(0 3 5 9 9) (1 1 7 9 9) (3 4 4 6 6 8 8 10 10 12 14)

Probabilistic Data Compression

A discrete image encodes information redundantly if

- 1. the greyvalues of individual pixels are not equally probable
- 2. the greyvalues of neighbouring pixels are correlated

Information Theory provides limits for minimal encoding of probabilistic information sources.

Redundancy of the encoding of individual pixels with G greylevels each:

$$r = b - H$$

$$H = \sum_{g=0}^{G-1} P(g) \log_2 \frac{1}{P(g)}$$

b = number of bits used for each pixel

$$= \lceil \log_2 G \rceil$$

H = entropy of pixel source

= mean number of bits required to encode information of this source

The entropy of a pixel source with equally probable greyvalues is equal to the number of bits required for coding.

Huffman Coding

The Huffman coding scheme provides a <u>variable-length code</u> with minimal average code-word length, i.e. <u>least possible redundancy</u>, for a discrete message source. (Here messages are greyvalues)

- 1. Sort messages along increasing probabilities such that $g^{(1)}$ and $g^{(2)}$ are the least probable messages
- 2. Assign 1 to code word of $g^{(1)}$ and 0 to codeword of $g^{(2)}$
- 3. Merge $g^{(1)}$ and $g^{(2)}$ by adding their probabilities
- 4. Repeat steps 1 4 until a single message is left.

Example:

message	probability	code word coding tree	Entropy: H = 2.185
g1	0.3	000	Average code word length of Huffman
g2	0.25	01	code: 2.2
g3	0.25	10	
g4	0.10	1100	
g5	0.10	111 0.20 1	

Statistical Dependence

An image may be modelled as a set of <u>statistically dependent</u> random variables with a multivariate distribution $p(x_1, x_2, ..., x_N) = p(x)$.

Often the exact distribution is unknown and only <u>correlations</u> can be (approximately) determined.

Correlation of two variables: <u>Covariance</u> of two variables:

$$E[x_i x_j] = c_{ij}$$
 $E[(x_i - m_i)(x_j - m_j)] = v_{ij}$ with $m_k = \text{mean of } x_k$

Correlation matrix: Covariance matrix:

Uncorrelated variables need not be statistically independent:

$$E[x_ix_j] = 0 \qquad p(x_ix_j) = p(x_i) p(x_j)$$

For Gaussian random variables, uncorrelatedness implies statistical independence.

Karhunen-Loève Transform

(also known as Hotelling Transform or Principal Components Transform)

Determine uncorrelated variables y from correlated variables x by a linear transformation.

$$y = A (x - m)$$

$$E[\underline{y} \underline{y}^T] = A E[(\underline{x} - \underline{m}) (\underline{x} - \underline{m})^T] A^T = A V A^T = D$$
 D is a diagonal matrix

- An <u>orthonormal</u> matrix A which diagonalizes the real symmetric covariance matrix V always exists.
- A is the matrix of eigenvectors of V, D is the matrix of corresponding eigenvalues.

$$\underline{x} = A^T \underline{y} + \underline{m}$$
 reconstruction of \underline{x} from \underline{y}

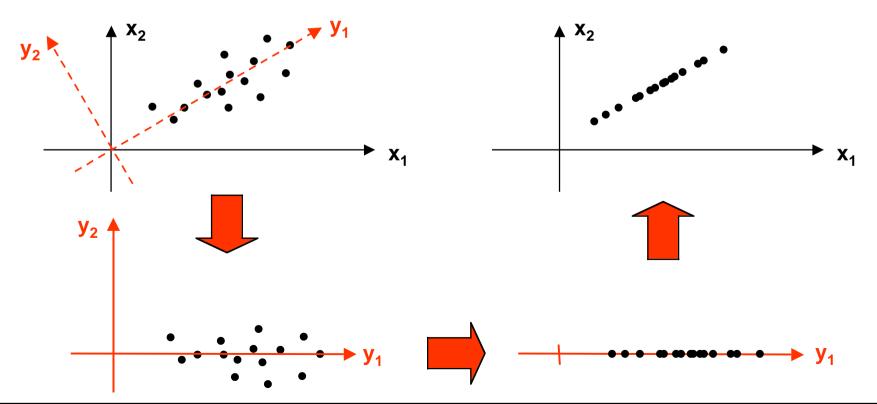
If x is viewed as a point in n-dimensional Euclidean space, then A defines a rotated coordinate system.

Illustration of Minimum-loss Dimension Reduction

Using the Karhunen-Loève transform data compression is achieved by

- changing (rotating) the coordinate system
- omitting the least informative dimension(s) in the new coodinate system

Example:



Compression and Reconstruction with the Karhunen-Loève Transform

Assume that the eigenvalues λ_n and the corresponding eigenvectors in A are sorted in decreasing order $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_N$

$$D = \begin{bmatrix} \lambda_1 & 0 & 0 & \dots \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \\ \dots \end{bmatrix}$$

Eigenvectors \underline{a} and eigenvalues λ are defined by $V \underline{a} = \lambda \underline{a}$ and can be determined by solving det $[V - \lambda I] = 0$.

There exist special procedures for determining eigenvalues of real symmetric matrices V.

Then \underline{x} can be transformed into a K-dimensional vector \underline{y}_K , K < N, with a transformation matrix A_K containing only the first K eigenvectors of A corresponding to the largest K eigenvalues.

$$\underline{y}_K = A_K (\underline{x} - \underline{m})$$

The approximate reconstruction $\underline{\mathbf{x}}'$ minimizing the MSE is

$$\underline{\mathbf{x}'} = \mathbf{A}_{\mathbf{K}}^{\mathsf{T}} \, \underline{\mathbf{y}}_{\mathbf{K}} + \underline{\mathbf{m}}$$

Hence \underline{y}_{K} can be used for data compression!

Example for Karhunen-Loève Compression

$$\mathbf{N} = \mathbf{3}$$
$$\underline{\mathbf{x}}^{\mathsf{T}} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3]$$

N = 3

$$\underline{\mathbf{x}}^{\mathsf{T}} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3]$$

$$V = \begin{bmatrix} 2 & -0.866 & -0.5 \\ -0.866 & 2 & 0 \\ -0.5 & 0 & 2 \end{bmatrix}$$

$$\underline{\mathbf{m}} = \underline{\mathbf{0}}$$

$$\underline{\mathbf{m}} = \underline{\mathbf{0}}$$

$$\det (V - \lambda I) = 0 \qquad \longrightarrow \qquad \lambda_1 = 3 \qquad \lambda_2 = 2 \qquad \lambda_3 = 1$$

$$\lambda_1 = 3$$

$$\lambda_2 = 2$$

$$\lambda_3 = 1$$

$$A^{T} = \begin{bmatrix} 0,707 & 0 & 0,707 \\ -0,612 & 0,5 & 0,612 \\ -0,354 & -0,866 & 0,354 \end{bmatrix} \qquad D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Compression into K=2 dimensions:

$$\underline{y}_2 = A_2 \underline{x} = \begin{bmatrix} 0.707 & -0.612 & -0.354 \\ 0 & 0.5 & -0.866 \end{bmatrix} \underline{x}$$

Reconstruction from compressed values:

$$\underline{\mathbf{x}} = \mathbf{A}_{2}^{\mathsf{T}} \underline{\mathbf{y}} = \begin{bmatrix} 0.707 & 0 \\ -0.612 & 0.5 \\ -0.354 & 0.354 \end{bmatrix} \underline{\mathbf{y}}$$

Note the discrepancies between the original and the approximated values:

$$x_1' = 0.5 x_1 - 0.43 x_2 - 0.25 x_3$$

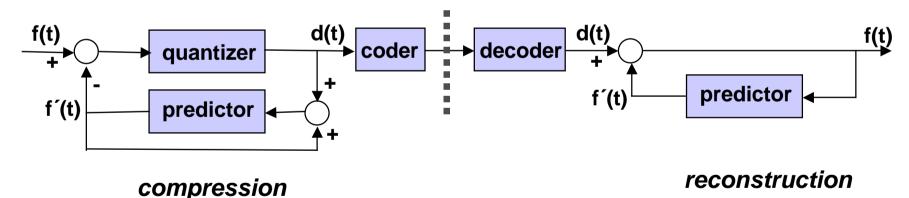
 $x_2' = -0.085 x_1 - 0.625 x_2 + 0.39 x_3$
 $x_3' = 0.273 x_1 + 0.39 x_2 + 0.25 x_3$

Predictive Compression

Principle:

- estimate g_{mn} from greyvalues in the neighbourhood of (mn)
- encode difference d_{mn} = g_{mn} g_{mn}
- transmit difference data + predictor

For a 1D signal this is known as Differential Pulse Code Modulation (DPCM):



Linear predictor for a neighbourhood of K pixels:

$$g_{mn} = a_1g_1 + a_2g_2 + ... + a_Kg_K$$

Computation of a₁ ... a_K by minimizing the expected reconstruction error

Example of Linear Predictor

For images, a linear predictor based on 3 pixels (3rd order) is often sufficient:

$$g_{mn}' = a_1 g_{m,n-1} + a_2 g_{m-1,n-1} + a_3 g_{m-1,n}$$

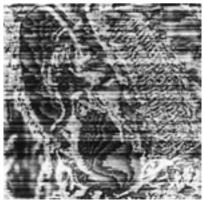
If g_{mn} is a zero mean stationary random process with autocorrelation C, then minimizing the expected error gives

$$a_1c_{00} + a_2c_{01} + a_3c_{11} = c_{10}$$

 $a_1c_{01} + a_2c_{00} + a_3c_{10} = c_{11}$
 $a_1c_{11} + a_2c_{10} + a_3c_{00} = c_{01}$

This can be solved for a_1 , a_2 , a_3 using Cramer's Rule.

n	01	11
	00	10



Example:

Predictive compression with 2nd order predictor and Huffman coding, ratio 6.2

Left: Reconstructed image

Right: Difference image (right) with

maximal difference of 140 greylevels

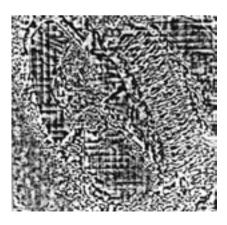
Discrete Cosine Transform (DCT)

Discrete Cosine Transform is commonly used in image compression, e.g. in JPEG (Joint Photographic Expert Group) Baseline System standard.

$$\begin{aligned} \text{Definition of DCT:} \qquad & G_{00} = \frac{1}{N} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} g_{mn} \\ & G_{uv} = \frac{1}{2N^3} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} g_{mn} \cos[(2m+1)u\pi] \ \cos[(2n+1)v\pi] \end{aligned}$$

Inverse DCT:
$$g_{mn} = \frac{1}{N}G_{00} + \frac{1}{2N^3}\sum_{u=0}^{N-1}\sum_{v=0}^{N-1}G_{uv}\cos[(2m+1)u\pi] \cos[(2n+1)v\pi]$$

Compression is accomplished by blockwise DCT + Huffman coding



Example:

DCT compression with ratio 5.6

Left: Reconstructed image

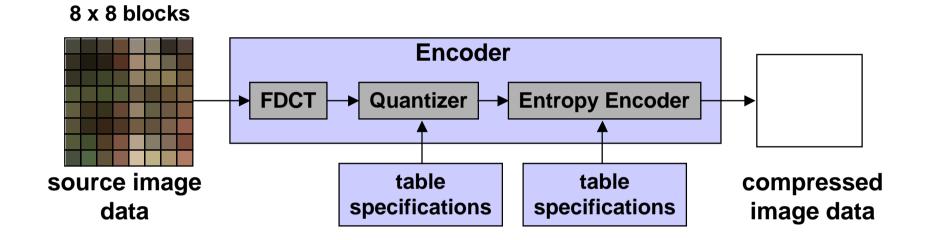
Right: Difference image (right)

with maximal difference of

125 greylevels

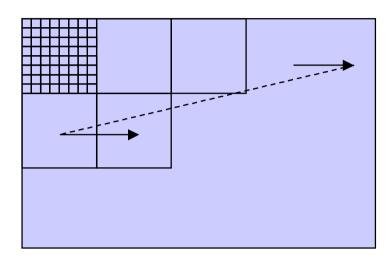
Principle of Baseline JPEG

(Source: Gibson et al., Digital Compression for Multimedia, Morgan Kaufmann 98)

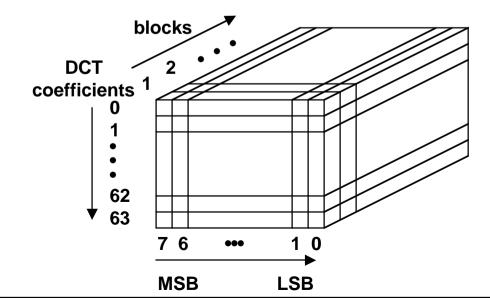


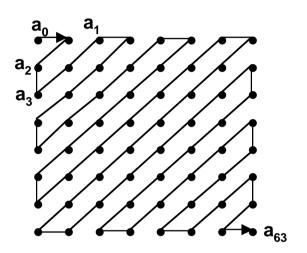
- partition image into 8 x 8 blocks, left-to-right, top-to-bottom
- compute Discrete Cosine Transform (DCT) of each block
- quantize coefficients according to psychovisual quantization tables
- order DCT coefficients in zigzag order
- perform runlength coding of bitstream of all coefficients of a block
- perform Huffman coding for symbols formed by bit patterns of a block

Illustrations for Baseline JPEG



partitioning the image into blocks





DCT coefficient ordering for efficient runlength coding

transmission sequence for blocks of image

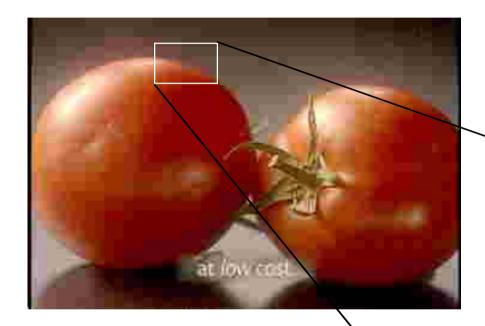
JPEG-compressed Image

original 5.8 MB

JPEG-compressed 450 KB

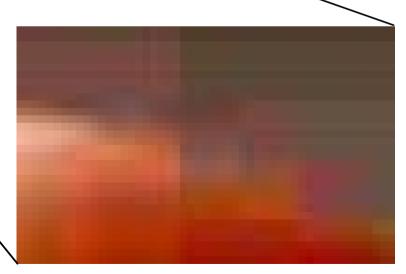
difference image standard deviation of luminance differences: 1,44

Problems with Block Structure of JPEG



JPEC encoding with compression ratio 1:70

block boundaries are visible



Progressive Encoding

Progressive encoding allows to first transmit a coarse version of the image which is then progressively refined (convenient for browsing applications).

Spectral selection

- 1. transmission: DCT coefficients a₀ ... a_{k1}
- 2. transmission: DCT coefficients $a_{k1} \dots a_{k2}$

•

low frequency coefficients first

Successive approximation

- 1. transmission: bits 7 ... n₁
- 2. transmission: bits $n_1+1 \dots n_2$

•

most significant bits first

MPEG Compression

Original goal:

Compress a 120 Mbps video stream to be handled by a CD with 1 Mbps.

Basic procedure:

- temporal prediction to exploit redundancy between image frames
- frequency domain decomposition using the DCT
- selective reduction of precision by quantization
- variable length coding to exploit statistical redundancy
- additional special techniques to maximize efficiency

Motion compensation:

16 x 16 blocks luminance with 8 x 8 blocks chromaticity of the current image frame are transmitted in terms of

- an offset to the best-fitting block in a reference frame (motion vector)
- the compressed differences between the current and the reference block

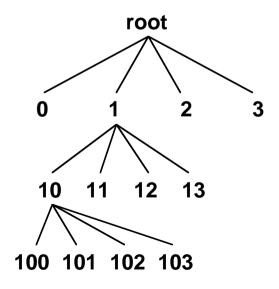
Quadtree Image Representation

Properties of quadtree:

- every node represents a squared image area, e.g. by its mean greyvalue
- every node has 4 children except leaf nodes
- children of a node represent the 4 subsquares of the parent node
- nodes can be refined if necessary

	100	101	44
0	102	103	11
0	1:	2	13
2	3		

quadtree structure:



Quadtree Image Compression

A complete quadtree represents an image of N = $2^K x \ 2^K$ pixels with $1 + 4 + 16 + ... + 2^{2K}$ nodes ≈ 1.33 N nodes.

An image may be compressed by

- storing at every child node the <u>greyvalue difference</u> between child and parent node
- <u>omitting</u> subtrees with equal greyvalues

Quadtree image compression supports progressive image transmission:

- images are transmitted by increasing quadtree levels, i.e. images are progressively refined
- intermediate image representations provide useful information, e.g. for image retrieval

