Probabilistic Models for Occurrences

Modelling probabilistic dependencies (causalities) and independencies
between discrete events of a scene

X
X;=a hypothesis

i random variable models uncertain propositions about a scene

Decomposition of joint probabilities:

P(Xy, Xp5 Xgy - 5 Xn) = P(Xq 1 X5, X3, we 5 Xp) * P(Xp 1 X3, Xgy eee 5 Xpy) * woe * P(Xpq | Xp) * P(Xy)
Simplification in the case of statistical independence:

X independent of X;

P(X 1 Xy, wee Xig 5Xis Xigq 5 o= 5 Xp) = POXT Xy, wee Xiq 5Xi1 5 - 5 Xn)

Joint probability of N variables may be simplified by ordering the
variables according to their direct dependence (causality).

Independence Causes
Complexity Reduction

Assume that all random variables X, of the JPD P(X;, X,, X, ... , X\) have
a domain size K. Then a fully general JPD requires KN entries.

Example: N=20,K=10 => 1020 entries must be specified!

If all random variables are statistically independent, we have
P(X;, X5 X3, ..., Xy) = P(X)) * P(X,) * ... * P(X) and only KN entries are required.

| Exploiting independencies can greatly reduce the size of a probability table!




Conditional Independence

It is useful to determine direct influences Y; on a random variable X,

because given the Y,, X is independent of other Variables Z, "upstream"
to the Y;.

Let dom(X) be the domain of X, i.e. the set of possible values of X.

A random variable X is independent of Z given Y
if for all x; e dom(X), for all y; e dom(Y), and for all z, ¢ dom(2),

P(X=x; | Y=y;, Z=z,) = P(X=x;1Y=y)

Example: X=plate_in_view, Y=plate_on_table, Z=want_to_eat

XYZ P(XY2) XYZ P(XY2) Check whether X is
TTT .09 FTT .024 independent of Z
TTF  .064 FTF .016 given Y!
TFT .0 FFT .08
TFF .0 FFF .72

Causality Graph

Conditional dependencies (causality relations) of random variables define
partial order.

Representation as a directed acyclic graph (DAG):

®) ) )
vT
& O

P(X; 1 Xz, X35 Xg) * P(X2) + P(X31 Xy, X5) * P(X41 Xg) + P(X51 Xg) * P(Xg 1 X7Xg) * P(X7) * P(Xg)

For any DAG, we obtain the JPD as follows:
Pa(X;) parents of node X;

P(X; ... Xy) = [T P(X; | Pa(X)




Example: Traffic Behaviour of Pedestrians

v
X6:
traffic light red
X2: X3: X4: X5:
pedestrian car comes pedestrian pedestrian looks
Iigh‘recl\\‘ inattentive on street
X1:
pedestrian

enters street

Conditional probability table for each node must be known
P(X11X2, X3, X4, X5)  P(X21X6) P(X3 | X6) P(X4) P(X5) P(X6)

X1 X2 X3 X4 X5 P X2 X6 P X3 X6 P X4 P X5 P X6 P
T T T T T 03||(T T 02|(T T 001 |T 0.1 T 07| |T 0.7
F T T TT O07|/|F T 08|F T 09| |F 09| (F 03| |F 03
T F T T T 09||(T F 10||T F 0.6
F F T T T 9.1 F F 00(|F F 04

Bayes Nets are not Unique
Using the chain rule, a JPD P(X,, X,, ... , X) may be expanded in N! ways:

P(Xyy Xgp on » Xp) = P(Xiy 1 Xigy wer 5 Xin) * PXig | Xigy wer 5 Xi) * ooe * P(Xip)

Even with no independencies, each chain rule expansion can be drawn as
a graphical model:

@ @ B )

Any JPD P(X,, X,, X5, X,)
Example: e @ can be represented by this
Bayes Net.

For efficient inferences with a given JPD, it is important to find a Bayes
Net with a low nhumber of dependencies.




Constructing a Bayes Net

By domain analysis:
1. Select discrete variables X; relevant for domain
2. Establish partial order of variables according to causality

3. In the order of decreasing causality:
(i) Generate node X;in net

(ii) As predecessors of X; choose the smallest subset of nodes which are
already in the net and from which X; is causally dependent

(iii) determine a table of conditional probabilities for X;

By data analysis:

Use a learning method to establish a Bayes Net approximating the empirical
joint probablity distribution.

Computing Inferences

We want to use a Bayes Net for probabilistic inferences of the following kind:

Given a joint probability P(X,, ... , X) represented by a Bayes Net,
and evidence X, =a,, , ... , X;, =a, for some of the variables, what is
the probability P(X,=a; | X, =a,, , ... , X, =a, ) of an unobserved
variable to take on a value a; ?

In general this requires
- expressing a conditional probability by a quotient of joint probabilities

P(X,=a, Xy, =8y, - » X =2y, )

P(X,=a 1 Xy, =2y, , - s X, =8, ) = PX_a X =)
my—my? "t T mye

- determining partial joint probabilities from the given total joint probability
by summing out unwanted variables

P(Xm1=am1, vy XmK=amK) = § pX . P(Xm1=am1, R D R X"K)

ng s Ay




Normalization

Basic formula for computing the probability of a query variable X, from a
JPD P(X,, ..., X\) given evidence X =8 = s Xy =8,

_ P(X.= a,, Xm1=am1, . XmK=amK)

P(X,=a 1 Xy, =a,,, ..., X

mK=amK

P(Xqn,=am s - s X =8, )

The denominator on the right is independent of a, and constitutes a
normalizing factor a. It can be computed by requiring that the conditional
probabilities of all a; sum to unity.

P(X.=a;l X =8 o s XmK=amK) = a{P(X,=a, X =8y = s XmK=amK) }

Formulae are often written in this simplified form with o as a normalizing
factor.

Factoring the JPD

JPDs can be computed from a Bayes Net more efficiently by ordering the
"factors" so that only few summations and products must be computed.

Example: e @ @
Compute @ v
P(Xy=a, X,=b | X,=c, X; =d) (%) (X)X, (%)

P(Xy=a, X4=b, X,=c, X; =d)
P(X;=c, X =d)

P(X,=a, X4=b | X =c, X; =d) =

P(Xy=a, X4=b, X;=c, X; =d) = 2 2 2 2 P(Xy=c, X,=a, X3, X, =b, X5, Xg, X7=d, Xg)
x3 XS XG X8
= § § § § P(X,=c | X,=a, X3, X,=b) *+ P(X,=a) * P(X3 | X,=b, X5) *+ P(X,=b 1 X) * P(X51 Xg) *
PRI P(Xg Xp=d, Xg) + P(X;=d) + P(Xg)
one possible
= P(X;=a) - P(X;=d) § P(X;=c | Xy=a, X3, X,=b) - % P(X31 X,;=b, X5) - order for
Y > efficient

computation
10

* 3 P(X,=bl Xg) * P(X51 Xg) * 3 P(Xe 1 Xp=d, Xo) - P(Xe)
6 8




Set-factoring Heuristic

Finding the best possible order for computing factors of a JPD is not
tractable, in general. The set-factoring heuristic is a greedy (suboptimal)
algorithm with often excellent results.

Given X set of random variables to be summed out
‘F set of factors to be combined

Set-factoring heuristic:

+ Pick the pair of factors which produces the smallest probability table
after combination and summing out as many variables of X as possible.
Break ties by choosing the pair where most variables are summed out.

+ Place resulting factor into set F, remove summed-out variables from X
and repeat procedure.

11

Example for Set-factoring Heuristic (1)

Compute
= = =c,X-=d) =
P(X5=a,X,=b,X,=c,X;=d) %( §

3 5

§ § P(X;=cl X,=a,X3,X;=b) * P(X;=a) * P(X;l X4=b,X5) *
6 8
* P(X;=bl Xg) * P(Xsl Xg)* P(X¢gl X;=d,Xg) + P(X7=d) - P(Xg)
Step 1: X'={Xs, X5, Xg, Xg}
F = {P(X;=cl X,=a,X3,X,=b), P(Xy=a), P(X;l X;=b,Xs), P(Xs=bl X;), P(Xsl X),
P(Xgl X;=d,Xg), P(X;=d), P(Xg)}

After extracting the constant factors P(X,=a) and P(X;=d), 6 factors remain, hence 15
possible pairs may be formed. Assuming equally sized domains, the set-factoring
heuristic prefers 2 combinations:

(i) P(Xy=cl Xy=a,X3,X,=b) * P(X;l X;=b,X5) and summing out X;
(ii) P(Xgl X;=d,Xs) * P(Xg) and summing out Xg

Choosing (ii), the new factor P(Xgl X,=d) is computed and the sets are updated:

Step 2: X ={X;, X5, Xg}
F = {P(X;=cl X;=a,X3,X,=b), P(X;l X;=b,X5), P(Xs=bl X¢), P(X;sl X¢), P(X¢l X7=d)}
12




Example for Set-factoring Heuristic (2)

The set-factoring heuristic prefers the combination:

P(X;=cl X,=a,X3,X,=b) * P(X;l X;=b,X5) and summing out X;
The new factor P(X,=cl X,=a,X,=b,X;) is computed and the sets are updated:
Step 3: X ={Xs, Xg}

F = {P(X;=cl X,=a,X,=b,Xs), P(Xs=bl Xg), P(Xsl Xg), P(Xgl X;=d)}
The set-factoring heuristic prefers the combination:

P(X,=cl X,=a,X,=b,X;s) * P(Xs| Xs) and summing out X;

The new factor P(X,=cl X,=a,X,=b,X¢) is computed and the sets are updated:
Step 4: X ={Xg}

F = {P(X;=cl Xy=a,X,;=b,X;), P(X;=bl Xg), P(Xsl X;=d)}
The set-factoring heuristic ranks all combinations equal. Choosing

P(X,=bl Xg) + P(Xgl X;=d)
we get the new factor P(X,;=b,Xgl X,=d) and the updated sets:
Step 5: X ={Xg}

F = {P(X;=cl Xy=a,X,;=b,X;), P(X;=b,Xgl X;=d)} 13

Example for Set-factoring Heuristic (3)

The final result follows from reassembling the summations outwards:
P(X,=a, X;=b, X,=c, X;=d) =

P(X;=a) + P(X;=d)

. §GP(X4=bI Xs) *+ P(Xgl X;=d)

. §5P(X5I Xs)

. %3 P(X;=c | X;=a, X3, X,=b) * P(X;1 X,;=b, Xs)

. ;8 P(Xs 1 X;=d, Xg) + P(Xg)

If D is the size of the domains of the random variables, the number of multiplications is
Nput=D?+ D2+ D2+ D

This is the same as the number of multiplications for the manual ordering proposed
earlier:
Nyut=D?+ D2+ D?+D

In this case, the heuristic did not reduce the computational expenses.
14




Dependance Analysis of Bayes Nets

The arcs in a Bayes Net indicate pairwise independence. Can one infer
other independencies

- in general?
- given partial evidence in terms of node values?

Example:
want to D If it is known
eat guest
- that one wants to lay the
] \ v table and
want to want to want to - that a white blob motion
go out lay table detcz:ate has been observed,
ELelS does this affect the
/ \ N\ probability of
place place place - wanting to go out?
plate saucer flower - red blob motion?
white blob red blob
motion motion

15

Blocking Evidence

In general, (undirected) paths in a Bayes Net indicate possible flow of
information. However, if hard evidence is given at an intermediate
node, the path may be blocked.

Blocking situations:

1. In a serial connection from A to C via
B, evidence from A to C is blocked by 0 9 G
hard evidence about B.

2. In adiverging connection from A to B

and C, evidence from B to C is blocked

by hard evidence about A. @
3. In aconverging situation from A and B

to C, any evidence about C results in
evidence transmitted between A and B. e

16




D-separation

"D-separation” = no flow of evidence from one node to another

Two nodes X and Y in a Bayes Net are d-separated if, for all paths
between X and Y, there is an intermediate node Z for which either:

1. the connection is serial or diverging and the value of Z is known for
certain; or

2. the connection is converging and neither Z (nor any of its
descendants) have received any evidence at all.

want to expect Example:
eat guest _
1 ~_ v Hard evidence for "want to lay table"
want to blocks influence of evidence for
want to want to " . . " "
go out Jay table decorate white blob motion" on "want to eat
o~ S J and "want to go out", but not on any
place place place other nodes.
plate saucer flower
N a v
white blob red blob
motion motion

17

Basic Kinds of Inferences

1. Causal reasoning, prediction
Given upstream evidence, ask for downstream probability
Example: Given "want to eat" is true, what is the probability of "white blob motion"?

2. Evidential reasoning, explanation
Given downstream evidence, ask for upstream probability
Example: Given "white blob motion" is true, what is the probability of "expect guest"?

3. Explaining away WENLD EXpect
eat guest
Given evidence of a node with two i ~_, 7
parents and evidence for one of the want to want to e
parents, ask for probability of other G G aviiabe table
parent node i A S
) ) place place place
Example: Given evidence for "place plate saucer flower
saucer" and "want to to eat", what is the o o ¥
probability of "want to decorate table"? white blob red blob
motion motion

18




Evidence Propagation in Polytrees

polytree = DAG where each pair of distinct nodes O‘/ ‘/O g
I'4

is connected by a single (undirected) path

Any node X, in a polytree separates the tree into an

"upper" and "lower" part. Hence the marginal O

probability P(X,=c) can be computed from two factors. ‘/ 5
I'4

o

S+={X; "above" X,} S-={X; below X}
PX,=c)= X P(X; ... X,=C ... Xy)
X; # X

= X P(X.=cl Pa(X,)) IT P(X;1Pa(X,))
X; # X, X; = X, Xc=c

=[ 2 PX=clPa(X,) IT P(X,1Pa(X))]:-[ 2 II P(X;1Pa(X)) ]

X; & S* X, &S Xc=c

=7 (X,=c) * M (X,=c) => propagation scheme is possible

19

Approximate Inference in
Bayesian Networks

» Inference in singly-connected Bayes Nets can be computed with O(N)

+  Worst-case complexity in general Bayes Nets is exponential, hence
approximate algorithms with less complexity are useful.

Basic idea:

Use random sampling (Monte Carlo method) to compute the
approximate probability of an event based on a JPD and evidence.

Il ‘ Example: Determine
P("place flower" | "want to lay table")
want to expect
eat guest
7 ~_, v + Draw sample for each node
e E—— want to based on probability
go out lay table di‘;z::‘e conditioned on parent samples
X < < - Repeat process many times
place place place * Relative frequency of samples
plate saucer flower . .
< — 7 matching evidence converges
to correct result in the limit.
white blob red blob
motion motion

20
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Sampling Methods

Recommended Reading:

Direct Sampling: Russell & Norvig:
Estimate the probability of an event without LR W EERE - 2

Modern Approach, 2nd

evidence by sampling a Bayes Net. Ed., Prentice Hall, 2003

Rejection Sampling:

Estimate the probability of an event by sampling a Bayes Net and
discarding all samples which do not match the evidence

Sampling with Likelihood Weighting:

Estimate the probability of an event by sampling a Bayes Net and
weighting all samples according to their likelihood to generate the
evidence

All three methods generate consistent estimates (which converge to the
true value).

21

Hidden Markov Models

A sequence of observations may be governed by underlying probabilistic
state transitions.

Example: A person laying a table may plan to first place the plates, then the cups,
then the cutlery in a cyclic order (with a chance to deviate from this order).

As usual in vision, observations may be disturbed and may provide
uncertain evidence about the current state.

Such phenomena may be modelled by a Hidden Markov Model (HMM).

A (discrete) HMM is defined by
- afinite number of states a,, a,, ..., ax
- asequence of state transition events t, t,, ..., t, (not necessarily times)

- probabilities of state transitions Pij from state i to state j, each
depending only on the previous state

- observations b,, b,, ... , b, probabilistically related to each state
- probabilities q,,, which map states into observations

22
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Notation for HMM

sequence of random variables X, ... , X(" (state variables) with values from
{ay, -, ag
Markov Chain property of X, ... , X(W:  P(XMIX(r-1) . X(1)) = P(X(MIX(n-1))

- if P(XMIX(1) js independent of n, the Markov Chain is homogeneous
- transition probabilities P(X‘":ailx("'”:aj) are represented by the state transition matrix

wm = P11 - Pk

Pgi - Pkk
random variables Y, ..., Y(™ (observations) with values from {b,, ..., by}
observation probabilities P(YIX() are represented by the matrix

Q= i1 = Gim

Ok1 - Gkm

initial probabilities &™ = [ P(XM=a,) P(X(=a,) ... P(X(=a,) ]

23

Properties of a Homogeneous HMM

Probability vector for state X(?: 2 =WTg
Probability vector for state X(M: g = (WT)»1 g

There is always a stationary distribution &, such that &, = WT &

Graphical representation: Trellis ("Spalier") representation:

each (directed) path corresponds to a legal
sequence of states

the probability of a path is equal to the product of
the transition probabilities

24
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Paths through a HMM

Given a sequence of N observations, we want to find the most probable
sequence of states which may have led to the observations.

Extension of trellis representation

- arc weights leading into states X(": transition probabilities p;;
+ node weights of states X(": observation likelihoods g;;, for
given observations Y = b,
- product of initial probability and P(Y(1)=bm1, s Y(N)=me, X(1)=ak1, s X(N)=akN)
node and arc probabilities along path:  probability of observations and states
Example:
W= 0.3 0.2 0.5 Q= 0.8 0.2 T = 0.6 observations
0.1 0.0 0.9 0.4 0.6 0.3 b,, by, by, by
0.4 0.6 0.0 0.2 0.8 0.1

0.4

P(Y(1 )=b2,Y(2)=b1 ,Y(3)=b1 ,Y(4)= b2!

0.6 (at) 0.2 ‘.@ 0.8 ‘.@ 0.8 ‘.@ 0.2 s;ct)rl:aal::ity of observations along
0.3 @2) 0.6 { (@2) (82) 0.4 C @2 06
3

\ states of path) =
02 @3 08 0.6+0.2:0.2:0.4+0.1:0.8:0.5+0.8

25

Finding Most Probable Paths

The most probable sequence of states is found by maximizing

max P(X(")=a, , ..., XM=a, |Y()=b_, .., YN=b_)= max P(alb)
K, - ky 1 N 1 N a

Equivalently, the most probable sequence of states follows from

max P(a b) = max P(a I b) P(b)

Hence the maximizing sequence of states can be found by exhaustive
search of all path probabilities in the trellis. However, complexity is
O(KN) with K = number of different states and N = length of sequence.
The Viterbi Algorithm does the job in O(KN)!

Overall maximization may be decomposed into a backward sequence of
maximizations:

max P(a b) = max m, Qm, IL P, 1y Gy ymy

= mak)f T, Aiym, (mkazx Pk Gipm, (- (mfo Py 1k iy gmy )

Step N Step N-1 Step 1 26
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Example for Viterbi Algorithm

Typical maximization step of Viterbi algorithm:
max { Pr, 1k, * Gk, qm,, * <result of previous maximization step> }

Example as earlier:

W= 0.3 0.2 0.5 Q= 0.8 0.2 = 0.6 observations
0.1 0.0 0.9 0.4 0.6 0.3 by, by, by, b,
0.4 0.6 0.0 0.2 0.8 0.1
Step 4

0.6 . 0.2:0.023
@ 0.00276

0.3 0.6-0.031
@ 0.00558

0.1 0.8:0.031
@ 0.00248

n=1

red numbers show maximization results, red arrows maximizing transitions

Model Evaluation for Given Observations

What is the likelihood that a particular HMM (out of several possible models)
has generated the observations?

Likelihood of observations given model:
P(Y(1)=bm1, ey Y(N)=me I model ) = P(b) = Za P(a b)

Instead of summing over all a, one can use a forward algorithm based
on the recursive formula:

P(a™", b e s By s bmn+1)
= P(a™", bm1, -y bmn)-P(bmn+1 | a,n+)
=Zi [ P(aj(n+1), P(a,", bm1, ey bmn)] . p(bmn+1 | aj(n+1))
=Zi [ P(aj(n+1)l P(a,", bm1, . bmn)P(ai(n), bm1, vy bmn)] . p(bmn+1 | aj(n+1))
=3 [P I P(a®) - P@, by, .., by )1 P(by,  13(+1)

=3 [y P(a®, by s B )1 G,

Finally: P(by, , ..., by )= 3 P, b, ..., by)
28
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Example for Model Evaluation (1)

Computing the probability of observations stepwise as they come in.

Example as earlier:

W= 0.3 0.2 0.5 Q= 0.8 0.2 T = 0.6 observations
0.1 0.0 0.9 0.4 0.6 0.3 by, by, by, b,
0.4 0.6 0.0 0.2 0.8 0.1
Step 1
P@®, by) = * Q) m,
P(a,", b,) = 0.6:0.2 = 0.12 Note that P(bm1, ey bm ) can be
P(a,", b,) = 0.3:0.6 = 0.18 computed after each sfep by summing
P(a;", b,) = 0.1-0.8 = 0.08 out the dependency on the state X(".
Step 2

P(a®, bm1! bmz) =2 [p; - P(@®, bm1)] *Qim,

P(a,@, by, by) = [ 0.3-0.12 + 0.1-0.18 + 0.4-0.08 ]-0.8 = 0.0314
P(a,, by, by) =[ 0.2:0.12 + 0.6-0.08 10.4 = 0.0288
P(a;2, by, by) = [ 0.5-0.12 + 0.9-0.18 1-0.2 = 0.0072

29

Example for Model Evaluation (2)

Example continued:

W= 0.3 0.2 0.5 Q= 0.8 0.2 = 0.6 observations
0.1 0.0 0.9 0.4 0.6 0.3 by, by, by, b,
0.4 0.6 0.0 0.2 0.8 0.1

Step 3

P(aj(s)y bm1! bm2! bm3) = Z [ pij ° P(aj(2), bm15 bmz)] ° qj mg
P(a;®, by, b;, by) =[ 0.3-0.0314 + 0.1-0.0288 + 0.4-0.0072 ]-0.8 = 0.01214

P(a,®, by, by, b;) =[ 0.2:0.0314 + 0.6-0.0072 ]-0.4 = 0.00424
P(a;®, by, by, by) =[ 0.5-0.0314 + 0.9-0.0288 1:0.2 = 0.00832
Step 4

P(aj(4)5 bm15 bmzy bm3’ bm4) = z [ pij ° P(aj(Z), bm15 bmzy bma)] ° q] my
P(a;¥, by, by, by, by) = [ 0.3:0.01214 + 0.1-0.00424 + 0.4-0.00832 ]-0.2 = 0.001479

P(a,™, by, by, by, by) =[ 0.2:0.01214 + 0.6-0.00832 ]-0.6 = 0.004452
P(a;¥, by, by, by, b,) = [ 0.5:0.01214 + 0.9:0.00424 1:0.4 = 0.003954
Final step

P(Bpm,» Brnys Brngs Bny) == P(a®, by, by, by, by, ) = | 0.009885

30
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