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Motion Analysis

Motion detection
Register locations in an image sequence which have change due to motion

Moving object detection and tracking
Detect individual moving objects, determine and predict object trajectories,
track objects with a moving camera

Derivation of 3D object properties
Determine 3D object shape from multiple views ("shape from motion")

Motion analysis of digital images is based on a temporal sequence of
image frames of a coherent scene.
"sparse sequence"    => few frames, temporally spaced apart,

considerable differences between frames
"dense sequence"      => many frames, incremental time steps,

incremental differences between frames
video          => 50 half frames per sec, interleaving,

line-by-line sampling
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Case Distinctions for Motion Analysis
stationary observer
moving observer
single moving object
multiple moving objects
rigid objects
jointed objects
deformable objects
perspective projection
weakly perspective projection
orthographic projection
rotation only
translation only
unrestricted motion
2 image analysis
multiple image analysis
incremental motion
large-scale motion

B/W images
colour images
xray images
IR images
natural images
noisy data
ideal data
monocular images
stereo images
dense flow
sparse flow
no flow
paralaxis
quatitative motion
qualitative motion
small objects
extended objects

polyeder
smooth objects
arbitrary objects
matte surfaces
specular surfaces
textured surfaces
arbitrary surfaces
without occlusion
with occlusion
uncalibrated camera
calibrated camera
data-driven
expectation-driven
real-time
no real-time
parallel computation
sequential computation

Many motion analysis methods are only applicable in restricted cases! 
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Motion in Video Images

TV

moving object TV halfframes

TV-rate sampling affects images of moving objects:
- contours show saw-tooth pattern 
- deformed angles
- limited resolution

Example: - 512 pixels per row
- length of dark car is ca. 3.5 m » 130 pixel
- speed is ca. 50 km/h » 14 m/s
- displacement between halfframes is ca.

10 pixels
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Difference Images
An obvious technique for motion detection is based on difference images:
• take the pixelwise difference of images of a sequence
• threshold the magnitude of the differences
• regions above threshold may be due to motion

Examples:

frame1 frame12 difference 
frame2 - frame1

threshold 30 

difference 
frame12 - frame1

threshold 30 

difference 
frame34 - frame1

threshold 30 

difference 
frame34 - frame1
without threshold

Note effects which prohibit reliable motion detection:
- phase jitter between frames (pixels do not correspond exactly)
- spurious motion of branches, pedestrians, dogs, etc.
- motion of uniform brightness regions does not show
- temporal changes of illumination cause non-motion differences
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Counting Differences
If the goal is to isolate the images of moving objects, it may be useful to
• count how often a pixel differs from its initial value (first-order

difference picture FODP)
• count how often a  pixel of a FODP region differs from its previous

value (second-order difference picture SODP)
(R. Jain 76)

frame1 difference 
frame4 - frame1
FODP (yellow)

SODP (red)

difference 
frame10 - frame1

FODP (yellow)
SODP (red)

difference 
frame30 - frame1

FODP (yellow)
SODP (red)

The problem of uniform brightness regions is not really overcome. 
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Corresponding Interest Points
Detection of moving objects by
- finding "interest points" in all frames of a sequence
- determining the correspondence of interest points in different frames
- chaining correspondences over time
- grouping interest points into object candidates

Example: Tracking interest points of a taxi turning off Schlüterstraße 
(Dreschler and Nagel 82) 
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Moravec Interest Operator
Interest points (feature points) are image locations  where an interest
operator computes a high value. Interest operators measure properties of a
local pixel neighbourhood.

Moravec interest operator: ij

This simple operator measures the distinctness of a point w.r.t. its surround.

Refinement of Moravec operator:
Determine locations with strong
brightness variations along two
orthogonal directions (e.g. based
on variances in horizontal,
vertical and diagonal direction).

Interest points in different frames may not correspond to identical
physical object parts due to their small neighbourhood and noise.

  
M(i, j) = 1

8
|g(m,n) − g(i, j)|

n= j−1

j+1

∑
m= i−1

i+1

∑

8

Corner Models
Interest points may be based on
models of interesting facets of
the image function, e.g. corners.
"corner" = location with extremal
Gaussian curvatures
(Dreschler and Nagel 81)

Zuniga-Haralick operator:
• fit a cubic polynomial  

f(i,j) = c1 + c2x + c3y + c4x2 + c5xy + c6y2 + c7x3 + c8x2y + c9xy2 + c10y3

For a 5x5 neighbourhood the coefficients of the best-fitting polynomial can
be directly determined from the 25 greyvalues

• compute interest value from polynomial coefficients  

ZH(i,j) = −2(c22c6 − c2c3c5 − c32c4)

c2
2 + c3

2( )
3
2

measure of "cornerness" of the polynomial
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Correspondence Problem

Difficulties:

• scene may not offer enough structure to uniquely locate points

• scene may offer too much structure to uniquely locate points

• geometric features may differ strongly between frames

• photometric features differ strongly between frames

• there may be no corresponding point because of occlusion

Note that these difficulties apply to single-camera motion analysis as
well as multiple-camera 3D analysis (e.g. binocular stereo).

The correspondence problem is to determine which interest points in
different frames of a sequence mark the same physical part of a scene.

10

Correspondence by Iterative Relaxation

Basic scheme (Thompson and Barnard 81) modified by Dreschler and Nagel:
• initialize correspondence confidences between all pairs of interest points

in 2 frames based on
-  similarity of greyvalue neighbourhoods
-  plausibility of distance (velocity)

• modify confidences iteratively based on
-  similarity of displacement vectors in the neighbourhood
-  confidence of competing displacement vectors

initialized confidences confidences after 10 iterationsinterest points of 2 frames
(red and blue)
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Kalman Filters (1)
A Kalman filter provides an iterative scheme for (i) predicting an event and
(ii) incorporating new measurements.

prediction measurement

Assume a linear system with observations depending linearly on the
system state, and white Gaussian noise disturbing the system evolution
and the observations:

xk+1 = Akxk + wk

zk = Hkxk + vk

xk quantity of interest ("state") at time k
Ak model for evolution of xk
wk zero mean Gaussian noise with

covariance Qk
zk observations at time k
Hk relation of observations to state
vk zero mean Gaussian noise with

covariance Rk

Often, Ak, Qk, Hk and Rk are constant.

What is the best estimate of xk
based on the previous estimate
xk-1 and the observation zk?

12

Kalman Filters (2)
The best a priori estimate of xk before observing zk is

xk´ = Ak-1xk-1

After observing zk, the a priori estimate is updated by
xk´´ =  xk´ + Kk(zk - Hkxk´ )

Kk is Kalman gain matrix. Kk is determined to minimize the a posteriori
variance Pk´´ of the error xk - xk´´. The minimizing Kk is

Kk = Pk´Hk
T (HkPk´Hk

T + Rk)-1

with  Pk´ = AkPk-1´´Ak
T + Qk-1 and  Pk´´= (I - KkHk) Pk´

Pk´ is covariance of error xk - xk´ before observation of zk.

Iterative order of computations:

(1)  xk´ = Ak-1xk-1´´ 

(2)  Pk´ = AkPk-1´´Ak
T + Qk-1

(1)  Kk = Pk´Hk
T (HkPk´Hk

T + Rk)-1

(2)  xk´´ =  xk´ + Kk(zk - Hkxk´ )

(3)  Pk´´= (I - KkHk) Pk´

x0´ 

P0´ 

initialization
k := k+1
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Kalman Filter Example
Track positions pk and velocities vk of an object moving along a straight line.
Assume unknown accelerations ak with probability density N(0, q2) and
measurements of positions pk corrupted by white noise bk with probability
density N(0, r2).

xk+1 = Akxk + wk

zk = Hkxk + vk

pk+1     = 1    T pk     +   T2/2   ak
vk+1         0    1 vk            T

T is time
increment

zk = pk + bkzk     =   1     0     pk     +    bk
0            0    0     vk            0

P0´=   0    0
          0    0

initialization   (here: position and velocity 
          values are known with certainty)

x0´ =    p0
           v0

K0 =   0    0
          0    0

x0´´=   p0
           v0

P0´´=   0    0
            0   0

x1´ =    1    T    p0    =   p0 + v0T
            0    1    v0              v0

K1 =    q2      1    0
         q2+ r2   0    0

x1´´=   p0 + v0T  +   q2      z1 - (p0 + v0T)
                v0              q2+ r2              0

P1´´=   q2    1    0
        q2+ 1  0    0

P1´= q2  1   0
              0   0
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Diagrams for Kalman Filter Example (1)
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Diagrams for Kalman Filter Example (2)
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Optical Flow Constraint Equation
Optical flow is the displacement field of surface elements of a scene during
an incremental time interval dt ("velocity field").

Assumptions:
• Observed brightness is constant over time (no illumination changes)
• Nearby image points move similarly (velocity smoothness constraint) 

For a continuous image g(x, y, t) a linear Taylor series approximation gives
g(x+dx, y+dy, t+dt) » g(x, y, t) + gxdx + gydy + gtdt

For motion without illumination change we have
g(x+dx, y+dy, t+dt) = g(x, y, t)

Hence gxdx/dt + gydy/dt = gxu + gyv = -gt        u, v velocity components
 

gxu + gyv = -gt optical flow constraint equation

gx ≈ Δg/Δx,  gy ≈ Δg/Δy,  gt ≈ Δg/Δt  may be estimated from the spatial and
temporal surround of a location (x, y), hence the optical flow constraint
equation provides one equation for the two unknowns u and v.
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Aperture Effect

The optical flow constraint allows for ambiguous motion interpretations.
This can be illustrated by the aperture effect.

In which direction has the edge moved?

Compare with the barber pole effect:

Due to the linear approximation of the image function, the velocity vector
cannot be determined uniquely from a local neighbourhood.
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Optical Flow Smoothness Constraint
For dynamic scenes one can often assume that the velocity field changes
smoothly in a spatial neighbourhood:

- large objects
- translational motion
- observer motion, distant objects

Hence, as an additional constraint, one can minimize a smoothness error:

One also wants to minimize the error in the optical flow constraint equation: 

es = ((ux
2∫∫ + uy

2 ) + (vx
2 + vy

2 )) dx dy

ec = (gxu+∫∫ gyv + gt )
2  dx dy

Using a Lagrange multiplier λ, both constraints can be combined into an
error functional, to be minimized by the calculus of variations:

e = (gxu +∫∫ gyv + gt )2 + λ (ux
2 + uy

2 + v x
2 + vy

2 ) dx dy
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Optical Flow Algorithm
The solution for optical flow with smoothness constraint is given in terms
of a pair of partial differential equations:

u =u − gx
gxu + gy v
λ2 + gx

2 + gy
2 v = v − gy

gxu + gy v
λ2 + gx

2 + gy
2

The equations can be solved by a Gauss-Seidel iteration based on pairs of
consecutive images (Horn & Schunck 81).

1. Initialize velocity vectors c(i, j) for all (i, j) where cT = [u v]
2. Estimate gx, gy, gt for all (i, j) from the pair of consecutive images
3. For the k-th iteration, compute

Basic optical flow algorithm (Sonka et al. 98, pp. 687):

Qk−1(i,j) =
gx (i,j)u

k−1(i, j) + gy(i,j)v
k−1(i,j)

λ2 + gx
2 (i, j) + gy

2 (i,j)
uk (i,j) = uk−1(i,j) − gx (i,j)Q

k−1(i, j)
vk (i,j) = vk−1(i,j) − gy (i,j)Q

k−1(i, j)
with

4. Repeat step 3 until the error e is below a threshold
ek = [gx(i,j)u

k (i, j) + gy (i,j)v
k (i, j) + gt (i,j)]

2 +
i
∑

i
∑

λ [ux
k 2 (i, j) + uy

k 2(i,j) + vx
k 2(i,j) + vy

k2 (i, j) <  ε

λ is a fixed value chosen
to balance the constraints

u and v denote mean velocity values 
based on the local neighbourhood

20

Optical Flow Improvements

Several improvements of the Horn & Schunck optical flow computation
have been suggested. For example, Nagel (1983) introduced the "oriented
smoothness constraint" which does not enforce smoothness across edges.

(from Nagel and Enkelmann 86)

2 frames of the
taxi sequence

frame 11

frame 12

needle diagram of optical
flow for taxi motion with
isotropic smoothness
constraint after 30
iterations

the same with oriented
smoothness constraint
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Optical Flow and Segmentation
The optical flow smoothness constraint is not valid at occluding boundaries
("silhouettes"). In order to inhibit the constraint, one may try to segment the
image based on optical flow discontinuities while performing the iterations.

Checkered sphere
rotating before

randomly textured
background

1. iteration 4. iteration 16. iteration

64. iteration final result ideal result

(From B.K.P. Horn, Robot Vision, 1986)
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Optical Flow Patterns
Complex optical flow fields may be segmented into components which
show a consistent qualitative pattern.

Qualitative flow patterns:

translation at
constant distance

translation
in depth

rotation at
constant distance

rotation about
axis parallel to

image plane

General translation results in a flow pattern with a focus of expansion (FOE):

•
FOE •

As the direction of motion changes, the FOE changes its location.
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Optical Flow and 3D Motion (1)
In general, optical flow may be caused by an unknown 3D motion of an
unkown surface.
How do the flow components u´, v´ depend on the 3D motion parameters?
Assume camera motion in a static scene, optical axis = z-axis, rotation about
the origin.

•
•

•

optical
center

optical 
axis

scene point r = x
y
z

z

y

x x´

y´

image plane
at f=1

3D velocity v

2D velocity v´

3D velocity v of a point r is determined by rotational velocity ω and
translational velocity t:

v = -t - ω x r

rotation
axis ω

24

Optical Flow and 3D Motion (2)
By taking the component form of  v = -t - ω x r  with  tT = [tx, ty, tz], ωT = [a, b, c]
and rT = [x y z] and computing the perspective projection we get

The translational and rotational parts may be separated:

Observation of u´and v´at location (x´, y´) gives 2 equations for 7 unknowns.
Note that motion of a point at distance kz with translation kt and the same
rotation ω will give the same optical flow, k any scale factor.

u′ =
˙ x 
z
−

x˙ z 
z2 = −

tx

z
− b + c ′ y ⎛ 

⎝ 
⎞ 
⎠ − ′ x −

tz

z
− a ′ y + b ′ x ⎛ 

⎝ 
⎞ 
⎠ 

v ′ =
˙ y 
z
−

y˙ z 
z2 = −

ty

z
− c ′ x + a

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
− ′ y −

tz

z
− a ′ y + b ′ x ⎛ 

⎝ 
⎞ 
⎠ 

u′ translation = − tx + ′ x tz

z
      u ′ rotation = a ′ x ′ y - b( ′ x 2 + 1) + c ′ y 

v ′ translation = −
ty + ′ y tz

z
      v ′ rotation = a( ′ y 2 + 1) -b ′ x ′ y + c ′ x 

For pure translation we have 2 equations for 3 unknows (z fixed arbitrarily).
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3D Motion Analysis Based on
2D Point Displacements

2D displacements of points
observed on an unknown
moving rigid body may
provide information about
- the 3D structure of the points
- the 3D motion parameters

Cases of interest:

• stationary camera, moving object(s)

• moving camera, stationary object(s)

• moving camera, moving object(s)

camera motion
parameters may
be known

Rotating cylinder experiment
by S. Ullman (1981)

26

•

x1

y1

projection plane P1

oa1

Structure from Motion (1)
Ullman showed 1979 that the spatial structure of 4 rigidly connected
non-coplanar points may be recovered from 3 orthographic projections.

O, A, B, C 4 rigid points
a, b, c vectors to A, B, C
Π1, Π2, Π3 projection planes
xi, yi coordinate axes of Pi
ai, bi, ci coordinate pairs of points 

A, B, C in projection plane Πi

The problem is to determine the spatial orientations of Π1, Π2, Π3 from the
9 projection coordinate pairs ai, bi, ci, i = 1, 2, 3.

•Ou12 u31

u23
The 3 projection planes intersect and form a tetrahedron.
u12, u23, u31 are unit vectors along the intersections.
The idea is to determine the uij from the observed
coordinates ai, bi, ci.

x

y

z

•a
A

•
b

B•
c

C

•O
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Structure from Motion (2)
The projection coordinates are

a1x = aTx1 a1y = aTy1
b1x = bTx1 b1y = bTy1
c1x = cTx1 c1y = cTy1

Since each uij lies in both planes Πi and Πj, it can be written as
uij = αijxi + βijyi
uij = γijxj + δijyj

αijxi + βijyi = γijxj + δijyj 

Multiplying with aT, bT and cT we get
αijaix + βijaiy = γijajx + δijajy  
αijbix + βijbiy = γijbjx + δijbjy  
αijcix + βijciy = γijcjx + δijcjy  

Exploiting the constraints αij
2 + βij

2 = 1 and γij
2 + δij

2 = 1, we can solve for
     αij, βij, γij, δij. 

28

Structure from Motion (3)

From the coefficients αij, βij, γij, δij one
can compute the distances between the
3 unit vectors u12, u23, u31:

O

d1
d2d3

d1 = || u23 - u12 || = || (α23 - α12)xi + (β23 - β12)yi || = (α23 - α12)2 + (β23 - β12)2

d2 = (α31 - α23)2 + (β31 - β23)2

d3 = (α12 - α31)2 + (β12 - β31)2

Hence the relative angles of the projection planes are determined.
The spatial positions of A, B, C relative to the projection planes (and to
the origin O) can be determined by intersecting the projection rays
perpendicular on the  projected points ai, bi, ci.
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Perspective 3D Analysis of
Point Displacements

• relative motion of one rigid object and one camera
• observation of P points in M views

• v1m

• v2m

• v3m
For each point vp in 2 consecutive images we have:
vp,m+1 = Rm vpm + tm motion equation

vpm = λpm vpm´ projection equation

For P points in M images we have
- 3MP unknown 3D point coordinates vpm
- 6(M-1) unkown motion parameters Rm and tm
- MP unknown projection parameters λpm
- 3(M-1)P motion equations
- 3MP projection equations
- 1 arbitrary scaling parameter

# equations ≥ # unknowns  =>                                     =>

• v1,m+1• v2,m+1
• v3,m+1

P ≥ 3 + 2
2M− 3

M P
2 5
3 4
4 4
5 4

30

Essential Matrix
Geometrical constraints derived from 2 views of a point in motion

z

x

y

• vm • vm+1Rm
tm

•

• motion between image m and m+1
may be decomposed into
1) rotation Rm about origin of
coordinate system (= optical center)
2) translation tm

• observations are given by direction
vectors nm and nm+1 along projection
rays

Rmnm, tm and nm+1 are coplanar: [tm x Rmnm]T nm+1 = 0

After some manipulation: nm
T Em nm+1 = 0             E = essential matrix

with Em = and Rm =

nm

nm+1

tmxr1 tmxr2 tmxr3

|

|

|

|

|

|
r1  r2  r3

|

|

|

|

|

|
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Solving for the Essential Matrix
nm

T Em nm+1 = 0 formally one equation for 9 unknowns eij

But: only 6 degrees of freedom 
(3 rotation angles, 3 translation components)
eij can only be determined up to a scale factor 

Basic solution approach:
• observe P points, alltogether in 2 views, P >> 8
• fix e11 arbitrarily
• solve an overconstrained system of equations for the other 8 unknown

coefficients eij

E may be written as E = S R-1 with R = rotation matrix and S =   0  -tz   ty
tz   0   -tx
-ty   tx  0

E may be decomposed into S and R by Singular Value Decomposition (SVD).

Note:  S (and therefore E) has rank 2

32

Singular Value Decomposition of E

Any m x n matrix A, m ≥ n, may be decomposed as A = U D VT  where
U    has orthonormal columns m x n
D    is non-negative diagonal n x n
VT  has orthonormal rows n x n

This can be applied to E to give E =  U D VT  with

R = U G VT   or   R = U GT VT

S = V Z VT

where G =     0   1   0 and Z =    0   -1  0
          -1   0   0    1   0   0
           0   0   1    0   0   0
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Nagel-Neumann Constraint

z

x

y

• vpm • vp,m+1Rm
tm

•
npm

np,m+1

Consider 2 views of 3 points vpm,
p = 1 ... 3, m = 1, 2

The planes through Rmnpm and
np,m+1 all intersect in tm

=> the normals of the planes are
coplanar

Coplanarity condition for 3 vectors a, b, c:     (a x b)T c = 0

( [Rmn1m x n1,m+1] x [Rmn2m x n2,m+1] )T [Rmn3m x n3,m+1] = 0

Nonlinear equation with 3 unknown rotation parameters.
=>  Observation of at least 5 points required to solve for the unknowns.

34

Reminder: Homogeneous Coordinates

• (N+1)-dimensional notation for points in N-dimensional Euclidean space
• allows to express projection and translation as linear operations

Normal coordinates: vT = [x y z]
Homogeneous coordinates: vT = [wx wy wz w]

w ≠ 0 is arbitrary constant

Rotation and translation in homogeneous coordinates:
v´ = Av with      A = R    t

0    1

Projection in homogeneous coordinates:
v´ = Bv with      B = f   0  0

0  f   0
0  0  1

Divide the first N
components by the (N+1)rst
component to recover
normal coordinates
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From Homogeneous World Coordinates
to Homogeneous Image Coordinates

x, y, z = v  = scene coordinates
xp´´, yp´´ = vP = image coordinates

wxp´´ x x
wyp´´   =     K R    K t y = M y
w z z

1 1

K = fa fb xp0 intrinsic camera parameters
0 fc yp0 ("camera calibration matrix K")
0 0 1

R, t extrinsic camera parameters

M =  3 x 4 projective matrix

fa = scaling in xP-axis
fc = scaling in yP-axis
fb = slant of axes
xP0, yP0 = "principal point"
(optical center in image
plane)

vp = M v 

36

Camera Calibration
Determine intrinsic and/or extrinsic camera parameters for a specific
camera-scene configuration. Prior calibration may be needed
- to measure unknown objects
- to navigate as a moving observer
- to perform stereo analysis
- to compensate for camera distortions

Important cases:
1. Known scene

Each image point corresponding with a known scene point provides
an equation vp = M v

2. Unknown scene
Several views are needed, differing by rotation and/or translation
a. Known camera motion
b.  Unknown camera motion ("camera self-calibration")
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Calibration of One Camera
from a Known Scene

• "known scene" = scene with prominent points, whose scene 
coordinates are known

• prominent points must be non-coplanar to avoid degeneracy
Projection equation vp = M v  provides 2 linear equations for unknown
coefficients of M:
xp (m31x + m32y + m33z + m34) = m11x + m12y + m13z + m14
yp (m31x + m32y + m33z + m34) = m21x + m22y + m23z + m24

Taking N points, N > 6, M can be estimated with a least-square
method from an overdetermined system of 2N linear equations.
From M =  [ KR  Kt ] = [ A b ], one gets K and R by Principle
Component Analysis (PCA) of A and t from t = K-1b.

38

Fundamental Matrix
The fundamental matrix F generalizes the essential matrix E by incorporating
the intrinsic camera parameters of two (possibly different) cameras.

Essential matrix constraint for 2 views of a point:
nT E n´ = 0

From vp = Kα n and vp´ = K´β n´ we get:

vp (K-1)T E (K´)-1 vp´ =  vp F vp´ = 0

Note that E and hence F have rank 2.
For each epipole of a 2-camera configuration we have eTF = 0 and Fe´= 0.

••C C´
e e´

K = fa fb xp0
0 fc yp0
0 0 1
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Epipolar Plane

••C C´e e´

•   v

vp vp´

The epipolar plane is spanned by
the projection rays of a point v and
the baseline CC´of a stereo
camera configuration.

The epipoles e and e´ are the intersection points of the baseline with the
image planes. The epipolar lines l and l´ mark the intersections of the
epipolar plane in the left and right image, respectively.

Search for corresponding points in stereo images may be restricted to the
epipolar lines.

l l´

In a canonical stereo configuration (optical
axes parallel and perpendicular to baseline)
all epipolar lines are parallel:

•
•

C

C´

b
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Algebra of Epipolar Geometry

••C Re e´

•   v

vp vp´l l´
b

Observation vp´ can be modelled
as a second observation after
translation b and rotation R of
the optical system.

Coplanarity of vp, b and vp´ (rotated back into coo-system at C) can be
expressed as

vp [ b x Rvp´] = 0 = vp [ b ] Rvp´ = vp E vp´ 

A vector product c x d can be written in matrix form:

c x d = cydz - czdy     = 0  -cz  cy       dx =  [ c ] d
czdx - cxdz cz  0  -cx           dy
cxdy - cydx -cy  cx  0       dz

essential matrix



  

 21

41

Correspondence Problem Revisited

For multiple-view 3D analysis it is essential to find corresponding
images of a scene point - the correspondence problem.
Difficulties:
• scene may not offer enough structure to uniquely locate points
• scene may offer too much structure to uniquely locate points
• geometric features may differ strongly between views
• there may be no corresponding point because of occlusion
• photometric features differ strongly between views

Note that difficulties apply to multiple-camera 3D analysis (e.g. binocular
stereo) as well as single-camera motion analysis.

42

Correspondence Between Two
Mars Images

Two images taken from two cameras of the Viking Lander I (1978).
Disparities change rapidly moving from the horizon to nearby structures.
(From B.K.P. Horn, Robot Vision, 1986)
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Constraining Search for Correspondence
The ambiguity of correspondence search may be reduced by several
(partly heuristic) constraints.
• Epipolar constraint

reduces search space from 2D to 1D
• Uniqueness constraint

a pixel in one image can correspond to only one pixel in another image
• Photometric similarity constraint

intensities of a point in different images may differ only a little
• Geometric similarity constraint

geometric features of a point in different images may differ only a little
• Disparity smoothness constraint

disparity varies only slowly almost everywhere in the image
• Physical origin constraint

points may correspond only if they mark the same physical location
• Disparity limit constraint

in humans disparity must be smaller than a limit to fuse images
• Ordering constraint

corresponding points lie in the same order on the epipolar line
• Mutual correspondence constraint

correspondence search must succeed irrespective of order of images

44

Neural Stereo Computation
Neural-network inspired approach to stereo computation devised by
Marr and Poggio (1981)

• • • • • • • •

• •

disparity d

left image right image

•••
• •
•• •
••• •• •

•
•

possible
correspon-

dencesExploitation of 2 constraints:
• each point in the left image

corresponds only to one point
in the right image

• depth varies smoothly

Relaxation procedure:
Modify correspondence values c(x, y, d) interatively until values converge.

� 

cn + 1(x,y,d)= w1 cn
S 1

∑ ( ′ x , ′ y , ′ d )− w2 cn
S2

∑ ( ′ x , ′ y , ′ d )+ w0c0 (x,y,d)

S1 = { neighbours of (x, y) with d´= d }
S2 = { neighbours of (x, y) with |d´- d| = 1 and (x, y) = (x´, y´) }

1 2 3 4 1 2 3 4


