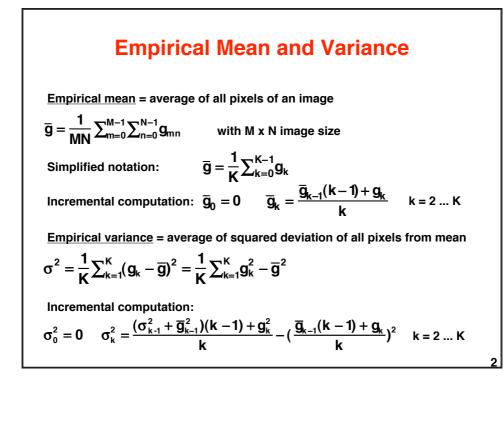
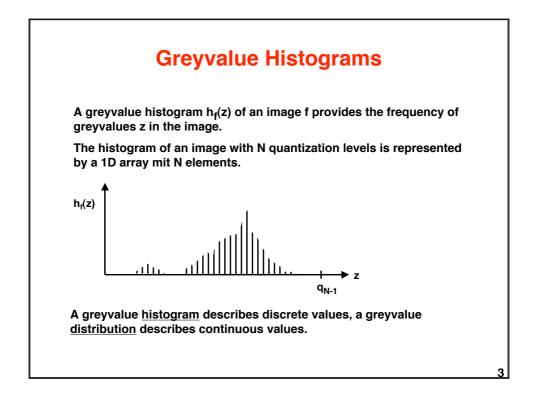


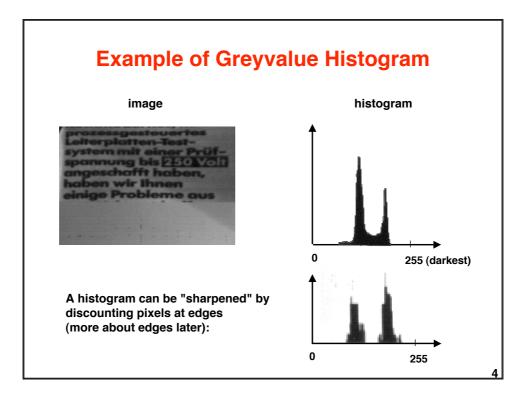
Global image properties refer to an image as a whole rather than components. Computation of global image properties is often required for image enhancement, preceding image analysis.

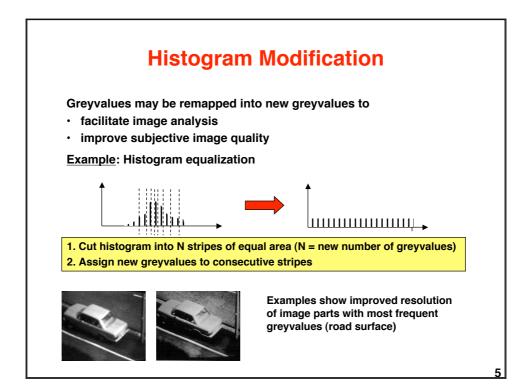
We treat

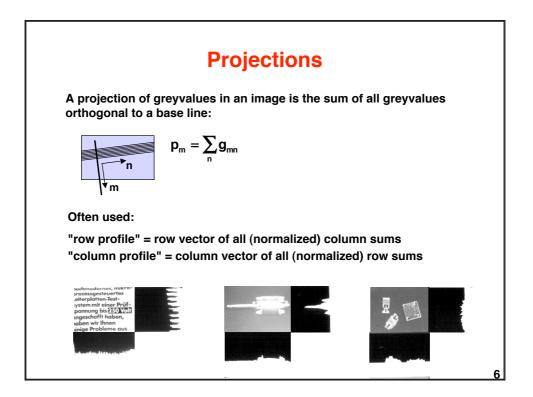
- empirical mean and variance
- histograms
- projections
- · cross-sections
- frequency spectrum

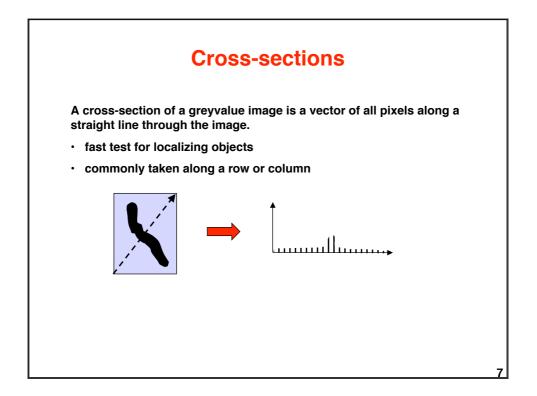




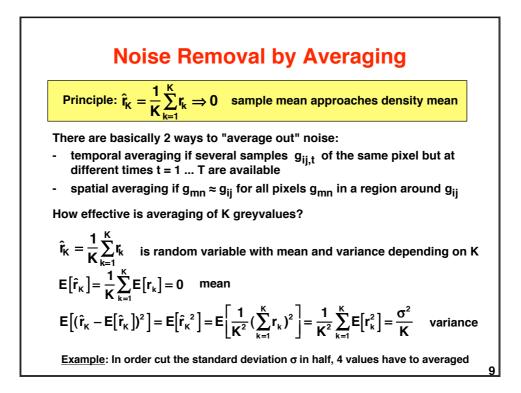


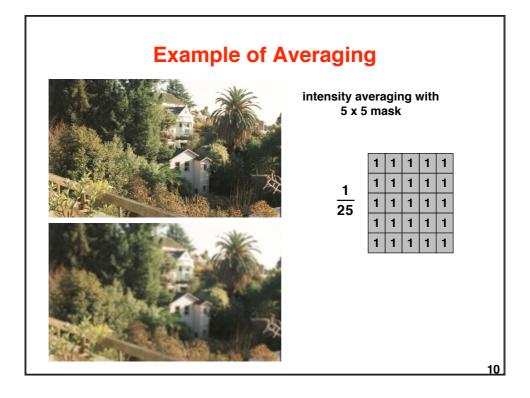


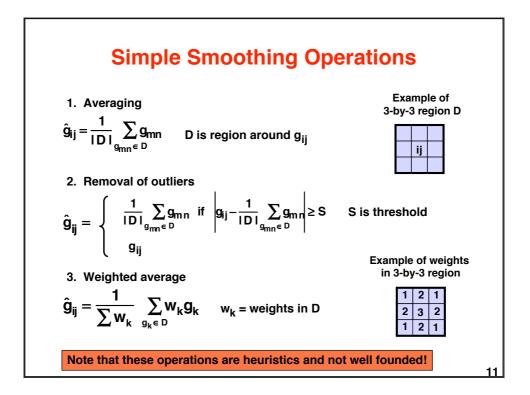


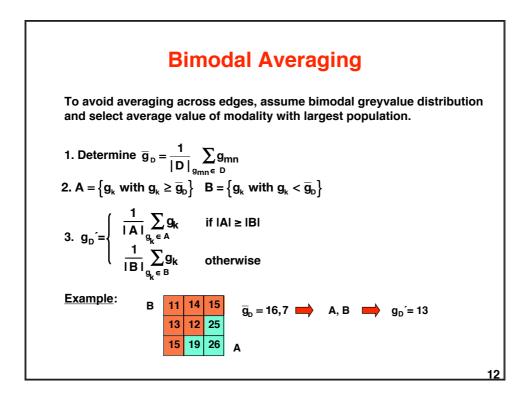


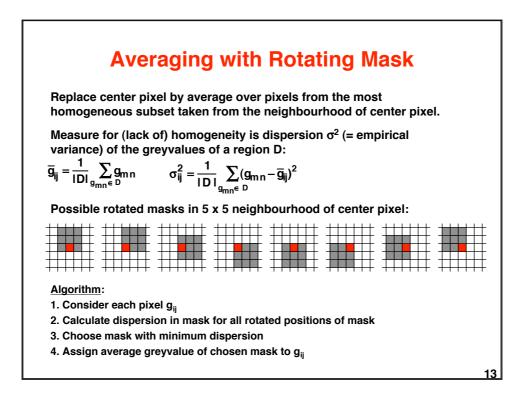


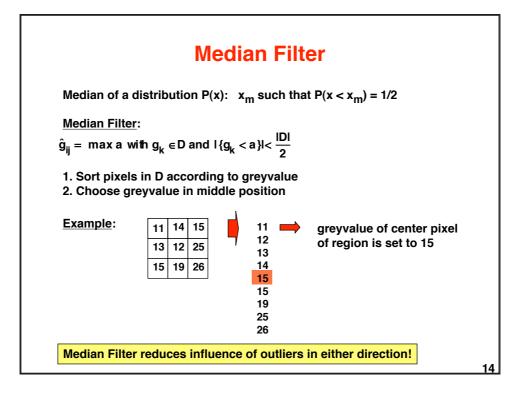


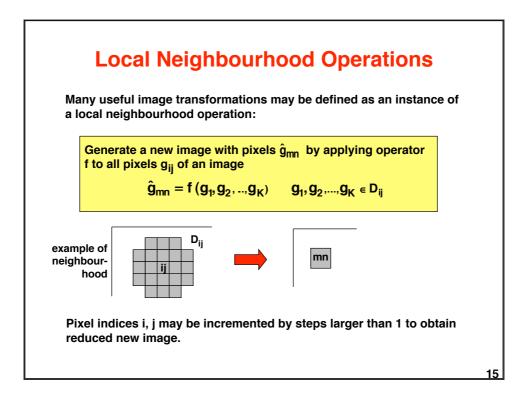


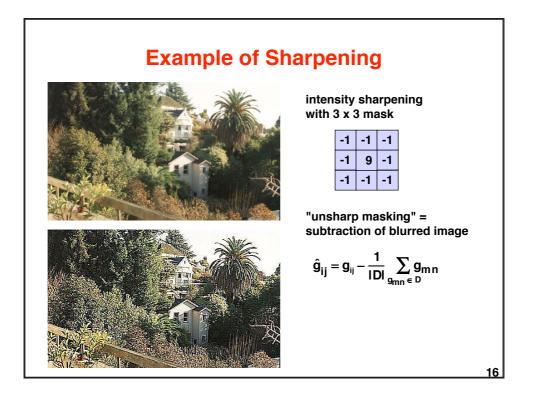


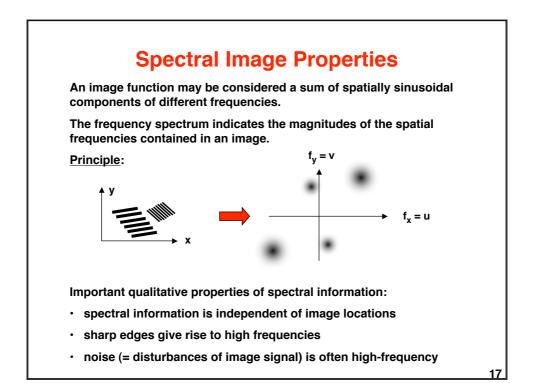


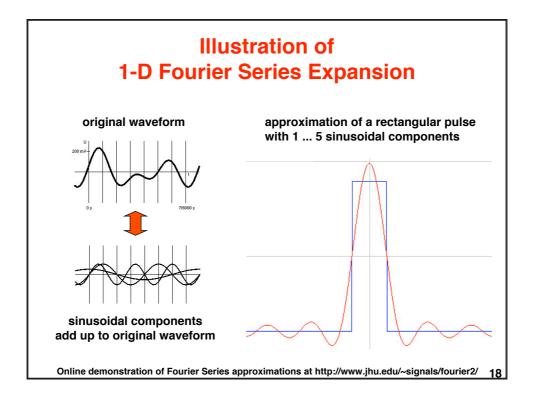


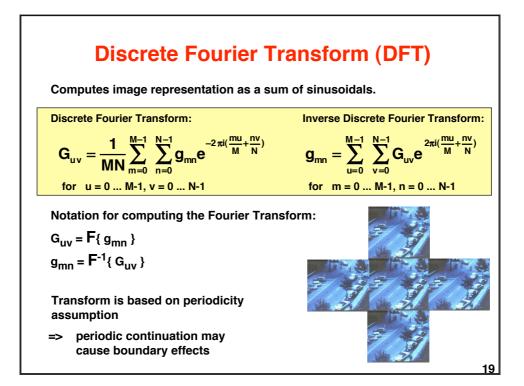


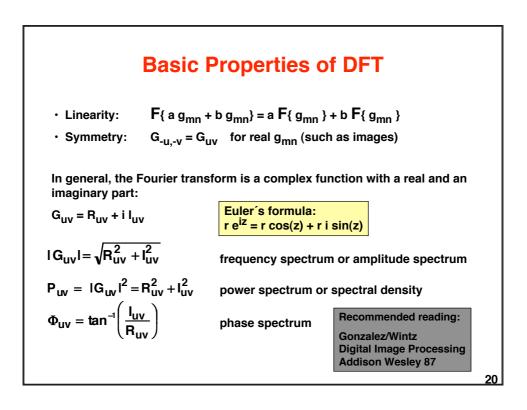


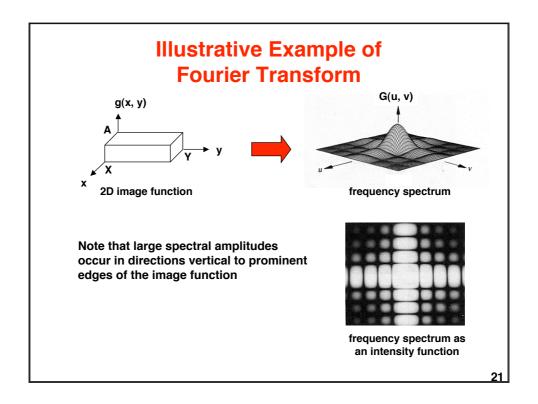


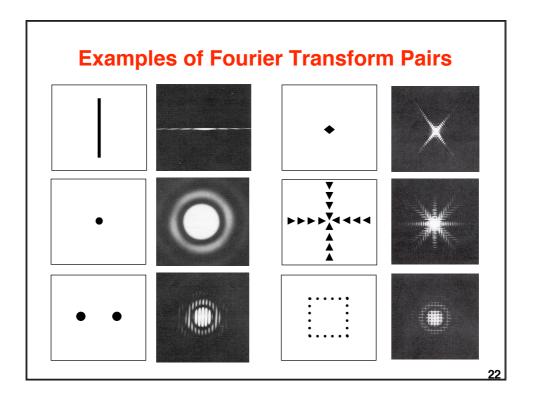












Fast Fourier Transform (FFT)

Ordinary DFT needs \sim (MN)² operations for an M x N image. Example: M = N = 1024, 10⁻¹² sec/operation => 1,1 sec

FFT is based on recursive decomposition of g_{mn} into subsequences. => multiple use of partial results => ~MN log₂(MN) operations Same example needs only 0.000021 sec

Decomposition principle for 1D Fourier transform:

$$\begin{aligned} \mathbf{G}_{r} &= \frac{1}{N} \sum_{n=0}^{N-1} \mathbf{g}_{n} \mathbf{e}^{-2\pi i r \frac{n}{N}} & \{ \mathbf{g}_{n} \} = \checkmark \{ \mathbf{g}_{n}^{(1)} \} = \{ \mathbf{g}_{2n} \} \\ \mathbf{G}_{r} &= \frac{1}{N} \sum_{n=0}^{\frac{N}{2}-1} \left\{ \mathbf{g}_{n}^{(1)} \mathbf{e}^{-2\pi i r \frac{2n}{N}} + \mathbf{g}_{n}^{(2)} \mathbf{e}^{-2\pi i r \frac{(2n+1)}{N}} \right\} & r = 0 \dots N/2-1 \\ \mathbf{G}_{r} &= \mathbf{G}_{r}^{(1)} + \mathbf{e}^{-2\pi i \frac{r}{N}} \mathbf{G}_{r}^{(2)} & r = 0 \dots N/2-1 \\ \mathbf{G}_{r+N/2} &= \mathbf{G}_{r}^{(1)} - \mathbf{e}^{-2\pi i \frac{r}{N}} \mathbf{G}_{r}^{(2)} & r = 0 \dots N/2-1 \end{aligned}$$

Convolution

Convolution is an important operation for describing and analyzing linear operations, e.g. filtering.

Definition of 2D convolution for continuous signals:

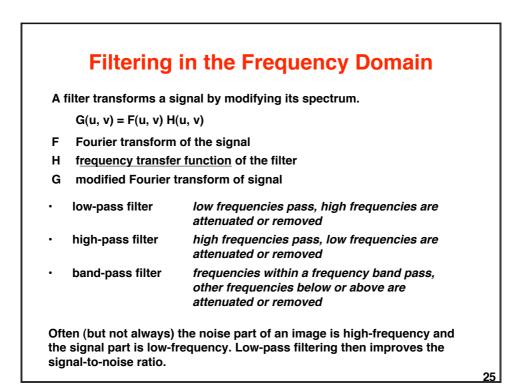
$$g(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(r,s) h(x-r,y-s) dr ds = f(x,y) * h(x,y)$$

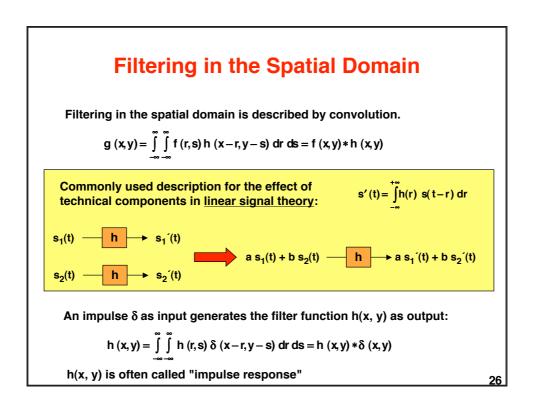
Convolution in the spatial domain is dual to multiplication in the frequency domain:

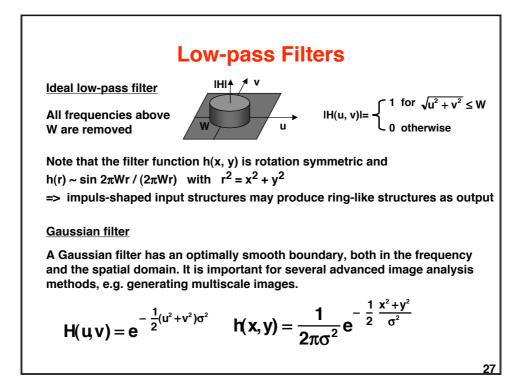
$$F\{ f(x, y) * h(x, y) \} = F(u, v) H(u, v)$$

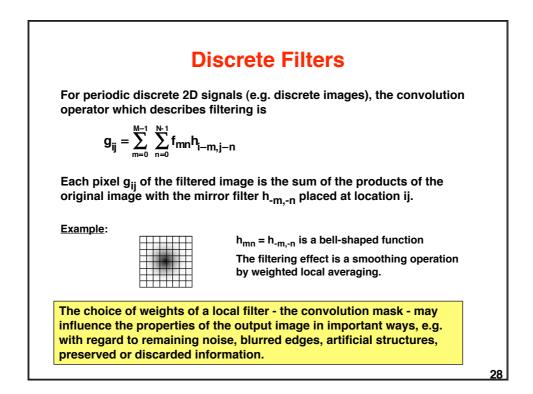
$$F\{ f(x, y) h(x, y) \} = F(u, v) * H(u, v)$$

H can be interpreted as attenuating or amplifying the frequencies of F. => Convolution describes <u>filtering</u> in the spatial domain.









The convolution operation $g_{ij} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f_{mn} h_{i-m,j-n}$

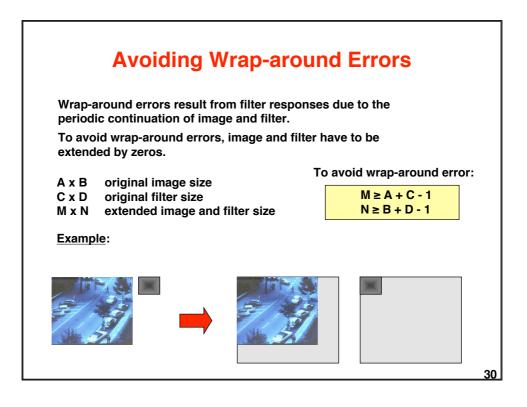
may be expressed as matrix multiplication $g = H \underline{f}$.

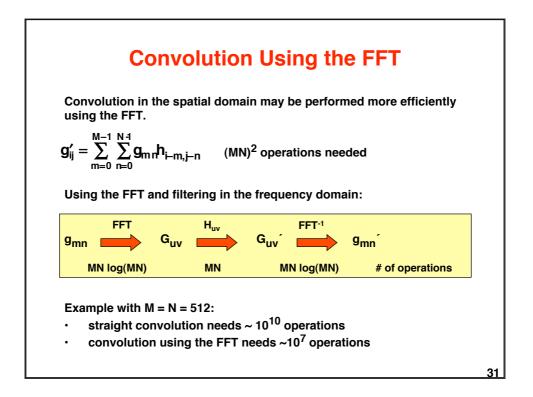
Vectors \underline{g} and \underline{f} are obtained by stacking rows (or columns) onto each other:

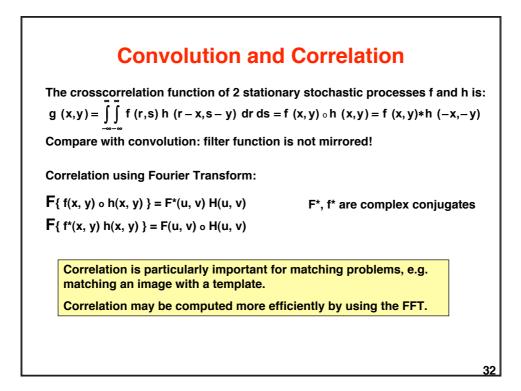
$$\begin{split} \mathbf{g}^{\mathsf{T}} &= [\mathbf{g}_{00} \; \mathbf{g}_{01} \; \cdots \; \mathbf{g}_{0 \; \mathsf{N-1}} \; \mathbf{g}_{10} \; \mathbf{g}_{11} \; \cdots \; \mathbf{g}_{\mathsf{N-1} \; \mathsf{N}} \; \mathbf{g}_{\mathsf{M-1} \; \mathsf{0}} \; \mathbf{g}_{\mathsf{M-1} \; \mathsf{1}} \; \cdots \; \mathbf{g}_{\mathsf{M-1} \; \mathsf{N-1}}] \\ & \underline{\mathbf{f}}^{\mathsf{T}} = [\mathbf{f}_{00} \; \mathbf{f}_{01} \; \cdots \; \mathbf{f}_{0 \; \mathsf{N-1}} \; \mathbf{f}_{10} \; \mathbf{f}_{11} \; \cdots \; \mathbf{f}_{1 \; \mathsf{N-1}} \; \cdots \; \mathbf{f}_{\mathsf{M-1} \; \mathsf{0}} \; \mathbf{f}_{\mathsf{M-1} \; \mathsf{1}} \; \cdots \; \mathbf{f}_{\mathsf{M-1} \; \mathsf{N-1}}] \end{split}$$

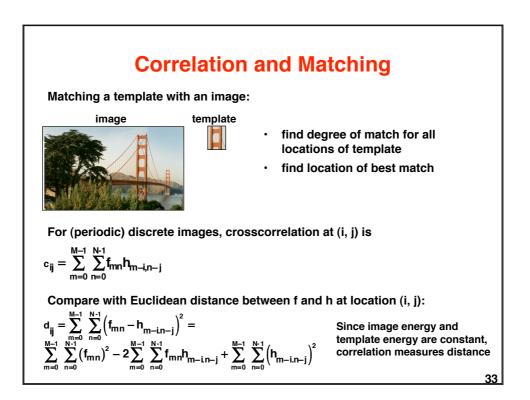
The filter matrix H is obtained by constructing a matrix H_i for each row j of h_{ii}:

H _j =	h _{j 0} h _{j 1}	h _{j N-1} h _{j 0}	h _{j N-2} h _{j N-1}	 h _{j1} h _{j2}
	: h _{j N-1}	h _{j N-2}	h _{1 N-3}	 h _{jo}
H =	H ₀ H ₁	Н _{м-1} Н ₀	Н _{м-2} Н _{м-1}	 $ \begin{bmatrix} h_{j1} \\ h_{j2} \\ h_{j0} \end{bmatrix} $ $ \begin{bmatrix} H_1 \\ H_2 \\ H_0 \end{bmatrix} $ $ 29 $
	: H _{M-1}	H _{M-2}	H _{M-3}	 H ₀ 29









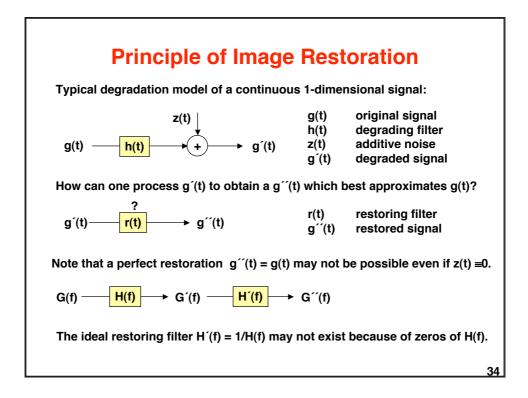


Image Restoration by Minimizing the MSE

Degradation in matrix notation: g' = Hg + z

Restored signal $g^{\prime\prime}$ must minimize the mean square error J($g^{\prime\prime}$) of the remaining difference:

min ||g´- Hg´´||²

$$\delta J(\underline{g}')/\delta \underline{g}' = 0 = -2H^{T}(\underline{g}' - H\underline{g}')$$

g´´= (<u>H^TH)⁻¹H</u>^Tg´ _____

— pseudoinverse of H

If M = N and hence H is a square matrix, and <u>if H⁻¹ exists</u>, we can simplify:

g´´= H⁻¹g´

The matrix H⁻¹ gives a perfect restoration if $\underline{z} \equiv 0$.

35