







































Cross-correlation

 $\mathbf{r} = \sum_{mn} \mathbf{g}_{mn} \mathbf{t}_{mn}$

cross-correlation between image \mathbf{g}_{mn} and template \mathbf{t}_{mn}

Compare with squared Euclidean distance d_e²:

$$d_e^2 = \sum_{mn} (g_{mn} - t_{mn})^2 = \sum_{mn} g_{mn}^2 + \sum_{mn} t_{mn}^2 - 2r$$

Image "energy" $\Sigma g_{mn}{}^2$ and template "energy" $\Sigma t_{mn}{}^2$ correspond to length of feature vectors.

$$r' = \frac{\sum_{mn} g_{mn} t_{mn}}{\sqrt{\sum_{mn} g_{mn}^2 \sum_{mn} t_{mn}^2}}$$

Normalized cross-correlation is independent of image and template energy. It measures the cosine of the angle between the feature vectors in MN-space.

Cauchy-Schwartz Inequality:

 $|r'| \le 1$ with equality iff $g_{mn} = c t_{mn}$, all mn

21











