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Probabilistic Models for
Scene Interpretation

2

Uncertainty in Scene Interpretation

Causes for uncertainty in scene interpretation:

• Images give incomplete evidence for 3D
scenes, allowing for multiple interpretations
-  spatial and temporal clipping
-  occlusion

• Image data may be corrupted by noise, image
analysis will result in uncertain data

• Image analysis procedures may be coarse,
allowing for multiple interpretations

• Models of the knowledge base may lack
differentiation, allowing for multiple
interpretations

• Logics of scene interpretation allow multiple
interpretations

3D scene

2D data

symbolic
primitives

scene
interpretation

sensors

image
analysis

knowledge
base
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Probabilistic Approaches for
Scene Interpretation

Several ways to use probabilistic representations for scene interpretation:

• Sensor modelling and sensor fusion

• Feature-based object classification

• Scene modelling (stationary + dynamic)

• Preference measure for logic-based interpretation
treated in
this course

Sage & Buxton 2005
http://www.ecvision.org/education/On-line_Cognitive_Vision_Course.htm
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Probabilistic Scene Modelling

X4:
pedestrian
inattentive

X3:
 other traffic

X2:
pedestrian
light red

X5:
pedestrian looks

on street

X1:
pedestrian

enters street

X6: 
traffic light red

• Random variables assigned to scene components:
-  events, occurrences
-  objects
-  properties
-  reified relations

• Probabilistic dependencies via joint distributions

Example: Probabilistic description of a traffic
situation for a driver assistance system
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Random Variables and Chain Rule

Modelling probabilistic dependencies (causalities) and independencies
between components of a scene

Xi random variable models uncertain propositions about a scene

Xi = a hypothesis

Decomposition of joint probabilities:
P(X1, X2, X3, ... , XN) = P(X1 | X2, X3, ... , XN) • P(X2 | X3, X4, ... , XN) • ... • P(XN-1 | XN) • P(XN)

Simplification in the case of statistical independence:
X independent of Xi

P(X | X1, ... Xi-1 ,Xi, Xi+1 , ... , XN) =  P(X | X1, ... Xi-1 ,Xi+1 , ... , XN)

Joint probability of N variables may be simplified by ordering the
variables according to their direct dependence (causality).

6

Independence Causes
Complexity Reduction

Assume that all random variables Xn of the JPD P(X1, X2, X3, ... , XN) have
a domain size K. Then a fully general JPD requires KN entries.

Example:  N = 20, K = 10    =>     1020 entries must be specified! 

If all random variables are statistically independent, we have
P(X1, X2, X3, ... , XN) = P(X1) • P(X2) • ... • P(XN) and only KN entries are required. 

Exploiting independencies can greatly reduce the size of a probability table!
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Conditional Independence

It is useful to determine direct influences Yi on a random variable X,
because given the Yi , X is independent of other Variables Zk "upstream"
to the Yi .

Let dom(X) be the domain of X, i.e. the set of possible values of X.

A random variable X is independent of Z given Y
if for all xi e dom(X),  for all yj e dom(Y), and for all zk e dom(Z),

P(X=xi | Y=yj, Z=zk)  =  P(X=xi | Y=yj)

Example: X=plate_in_view, Y=plate_on_table, Z=want_to_eat

X Y Z P(XYZ)
T T T .096
T T F .064
T F T .0
T F F .0

X Y Z P(XYZ)
F T T .024
F T F .016
F F T .08
F F F .72

Check whether X is
independent of Z
given Y!

8

Causality Graph
Conditional dependencies (causality relations) of random variables define
partial order. Representation as a directed acyclic graph (DAG):

X7

X8

X6

X4

X5 X3

X1

X2

P(X1, X2, X3, ... , X8) = 
P(X1 | X2, X3, X4) • P(X2) • P(X3 | X4, X5) • P(X4 | X6) • P(X5 | X6) • P(X6 | X7X8) • P(X7) • P(X8)

For any DAG, we obtain the JPD as follows:
Pa(Xi) parents of node Xi

P(X1 ... XN) = Π P(Xi | Pa(Xi))i

For each node X we need P(X | parents of X) to obtain a specification of
the JPD of all nodes.
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Example: Traffic Situation

X4:
pedestrian
inattentive

X3:
 other traffic

X2:
pedestrian
light red

X5:
pedestrian looks

on street

X1:
pedestrian

enters street

X6: 
traffic light red

Conditional probability table for each node must be known

 P(X1 | X2, X3, X4, X5)     P(X2 | X6)       P(X3 | X6)       P(X4) P(X5)    P(X6)

X1 X2 X3 X4 X5 P
T T T T T 0.3
F T T T T 0.7
T F T T T 0.9
F F T T T 0.1
• • • • • •• • • • • •• • • • • •

X2 X6 P
T T 0.2
F T 0.8
T F 1.0
F F 0.0

X3 X6 P
T T 0.01
F T 0.99
T F 0.6
F F 0.4

X6 P
T 0.7
F 0.3

X4 P
T 0.1
F 0.9

X5 P
T 0.7
F 0.3

warning to be generated by
driver assistance system
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Bayes Nets are not Unique

Using the chain rule, a JPD P(X1, X2, ... , XN) may be expanded in N! ways:

P(X1, X2, ... , XN) = P(Xi1 | Xi2, ... , XiN) • P(Xi2 | Xi3, ... , XiN) • ... • P(XiN)

Even with no independencies, each chain rule expansion can be drawn as
a graphical model:

Xi1 Xi2 Xi3 XiN• • •

Example: X1

X2

X4

X3

Any JPD P(X1, X2, X3, X4)
can be represented by this
Bayes Net.

For efficient inferences with a given JPD, it is important to find a Bayes
Net with a low number of dependencies.
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 Constructing a Bayes Net
By domain analysis:
1. Select discrete variables Xi relevant for domain

2. Establish partial order of variables according to causality

3. In the order of decreasing causality:
(i) Generate node Xi in net
(ii) As predecessors of Xi choose the smallest subset of nodes which are 

already in the net and from which Xi is causally dependent
(iii) determine a table of conditional probabilities for Xi

By data analysis:
Use a learning method to establish a Bayes Net approximating the empirical
joint probablity distribution.

12

Computing Inferences
We want to use a Bayes Net for probabilistic inferences of the following kind:

Given a joint probability P(X1, ... , XN) represented by a Bayes Net,
and evidence Xm1

=am1
, ... , XmK

=amK
 for some of the variables, what is

the probability P(Xn= ai | Xm1
=am1

, ... , XmK
=amK

) of an unobserved
variable to take on a value ai ?

P(Xn= ai, Xm1
=am1

, ... , XmK
=amK

)
P(Xn= ai | Xm1

=am1
, ... , XmK

=amK
) =

 P(Xm1
=am1

, ... , XmK
=amK

)

In general this requires
• expressing a conditional probability by a quotient of joint probabilities

• determining partial joint probabilities from the given total joint probability
by summing out unwanted variables

P(Xm1
=am1

, ... , XmK
=amK

) =      Σ      P(Xm1
=am1

, ... , XmK
=amK

, Xn1
, ... , XnK

)
Xn1

, ... , XnK
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Normalization

P(Xn= ai, Xm1
=am1

, ... , XmK
=amK

)
P(Xn= ai | Xm1

=am1
, ... , XmK

=amK
) =

 P(Xm1
=am1

, ... , XmK
=amK

)

The denominator on the right is independent of ai and constitutes a
normalizing factor α. It can be computed by requiring that the conditional
probabilities of all ai sum to unity.

P(Xn= ai | Xm1
=am1

, ... , XmK
=amK

) =  α { P(Xn= ai, Xm1
=am1

, ... , XmK
=amK

) }

Basic formula for computing the probability of a query variable Xn from a
JPD P(X1, ... , XN) given evidence Xm1

=am1
, ... , XmK

=amK
 :

Formulae are often written in this simplified form with α as a normalizing
factor.
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Factoring the JPD
JPDs can be computed from a Bayes Net more efficiently by ordering the
"factors" so that only few summations and products must be computed.

X7

X8

X6

X4

X5 X3

X1

X2

Example: 
Compute
P(X2=a, X4=b | X1=c, X7 =d)

P(X2=a, X4=b | X1=c, X7 =d) = 
P(X2=a, X4=b, X1=c, X7 =d)

P(X1=c, X7 =d)

P(X2=a, X4=b, X1=c, X7 =d) =  Σ  Σ  Σ  Σ  P(X1=c, X2=a, X3, X4=b, X5, X6, X7=d, X8)X3  X5  X6  X8

= Σ  Σ  Σ  Σ  P(X1=c | X2=a, X3, X4=b) • P(X2=a) • P(X3 | X4=b, X5) • P(X4 =b | X6) • P(X5 | X6) •X3  X5  X6  X8 • P(X6 | X7=d, X8) • P(X7=d) • P(X8)

= P(X2=a) • P(X7=d) • Σ P(X1=c | X2=a, X3, X4=b) • Σ P(X3 | X4=b, X5) • X3 X5 

X6
• Σ P(X4 =b| X6) • P(X5 | X6) • Σ P(X6 | X7=d, X8) • P(X8)X8

one possible
order for
efficient
computation
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Set-factoring Heuristic

Finding the best possible order for computing factors of a JPD is not
tractable, in general. The set-factoring heuristic is a greedy (suboptimal)
algorithm with often excellent results.

Given X  set of random variables to be summed out

F  set of factors to be combined

Set-factoring heuristic:

• Pick the pair of factors which produces the smallest probability table
after combination and summing out as many variables of X as possible.
Break ties by choosing the pair where most variables are summed out.

• Place resulting factor into set F, remove summed-out variables from X
and repeat procedure.

16

Example for Set-factoring Heuristic (1)

Step  1: X = {X3, X5, X6, X8}  
F = {P(X1=c| X2=a,X3,X4=b),  P(X2=a),  P(X3| X4=b,X5),  P(X4=b| X6),  P(X5| X6), 
       P(X6| X7=d,X8),  P(X7=d),  P(X8)} 

X3  X5  X6  X8

• P(X4=b| X6) • P(X5| X6)• P(X6| X7=d,X8) • P(X7=d) • P(X8)

P(X2=a,X4=b,X1=c,X7=d) = Σ  Σ  Σ  Σ  P(X1=c| X2=a,X3,X4=b) • P(X2=a) • P(X3| X4=b,X5) •

Compute

After extracting the constant factors P(X2=a) and P(X7=d), 6 factors remain, hence 15
possible pairs may be formed. Assuming equally sized domains, the set-factoring
heuristic prefers 2 combinations:

(i) P(X1=c| X2=a,X3,X4=b) • P(X3| X4=b,X5)  and summing out X3 
(ii) P(X6| X7=d,X8) • P(X8)  and summing out X8

Choosing (ii), the new factor P(X6| X7=d) is computed and the sets are updated:

Step  2: X = {X3, X5, X6}  
F = {P(X1=c| X2=a,X3,X4=b),  P(X3| X4=b,X5),  P(X4=b| X6),  P(X5| X6),  P(X6| X7=d)} 
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Example for Set-factoring Heuristic (2)
The set-factoring heuristic prefers the combination:

P(X1=c| X2=a,X3,X4=b) • P(X3| X4=b,X5)  and summing out X3
 

The new factor P(X1=c| X2=a,X4=b,X5) is computed and the sets are updated:

Step  3: X = {X5, X6}  
F = {P(X1=c| X2=a,X4=b,X5),  P(X4=b| X6),  P(X5| X6),  P(X6| X7=d)} 

The set-factoring heuristic prefers the combination:
P(X1=c| X2=a,X4=b,X5) • P(X5| X6)  and summing out X5 

The new factor P(X1=c| X2=a,X4=b,X6) is computed and the sets are updated:

Step  4: X = {X6}  
F = {P(X1=c| X2=a,X4=b,X6),  P(X4=b| X6),  P(X6| X7=d)} 

The set-factoring heuristic ranks all combinations equal. Choosing
P(X4=b| X6) • P(X6| X7=d)

we get the new factor P(X4=b,X6| X7=d) and the updated sets:

Step  5: X = {X6}  
F = {P(X1=c| X2=a,X4=b,X6),  P(X4=b,X6| X7=d)} 

18

Example for Set-factoring Heuristic (3)

X8 

P(X2=a, X4=b, X1=c, X7=d) =
P(X2=a) • P(X7=d)

• [Σ P(X4=b| X6) • P(X6| X7=d)

• [Σ P(X5 | X6)

• [Σ P(X1=c | X2=a, X3, X4=b) • P(X3 | X4=b, X5)

• [Σ P(X6 | X7=d, X8) • P(X8) ] ] ] ]
X3

The final result follows from reassembling the summations outwards:

X6

X5 

If D is the size of the domains of the random variables, the number of multiplications is 
Nmult = D2 +  D3 + D2 + D 

This happens to be more than the number of multiplications for the manual ordering
proposed earlier:

Nmult = D2 +  D2 + D2 + D 

Obviously, the heuristic was not optimal in this case.
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Dependance Analysis of Bayes Nets
The arcs in a Bayes Net indicate pairwise dependence. Can one infer
dependencies and independencies between other nodes?
- in general?
- given partial evidence in terms of node values?

want to
decorate

table

want to
eat

want to
lay table

want to
go out

place
saucer

place
plate

Example:
Given that a white blob
motion has been observed,
does this affect the
probability of
- wanting to go out?
- red blob motion?

white blob
motion in
camera

expect
guest

place
flower

red blob
motion in
camera

20

Blocking Evidence
In general, (undirected)  paths in a Bayes Net indicate possible flow of
information. However, if hard evidence is given at an intermediate
node, the path may be blocked.

Blocking situations:
1. In a serial connection from A to C via

B, evidence from A to C is blocked by
hard evidence about B.

2. In a diverging connection from A to B
and C, evidence from B to C is blocked
by hard evidence about A.

3. In a converging situation from A and B
to C, any evidence about C results in
evidence transmitted between A and B.

A B C

A

B C

A B

C
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D-separation

Two nodes X and Y in a Bayes Net are d-separated if, for all paths
between X and Y, there is an intermediate node Z for which either:
1. the connection is serial or diverging and the value of Z is known for
certain; or
2. the connection is converging and neither Z (nor any of its
descendants) have received any evidence at all.

"D-separation" = no flow of evidence from one node to another

want to
decorate

table

want to
eat

want to
lay table

want to
go out

place
saucer

place
plate

white blob
motion in
camera

expect
guest

place
flower

red blob
motion in
camera

Example:
Hard evidence for "want to lay table"
blocks influence of evidence for
"white blob motion in camera" on
"want to eat" and "want to go out",
but not on any other nodes.

22

Basic Kinds of Inferences

want to
decorate

table

want to
eat

want to
lay table

want to
go out

place
saucer

place
plate

white blob
motion in
camera

expect
guest

place
flower

red blob
motion in
camera

1. Causal reasoning, prediction
Given upstream evidence, ask for downstream probability
Example: Given "want to eat" is true, what is the probability of "white blob motion"?

2. Evidential reasoning, explanation
Given downstream evidence, ask for upstream probability
Example: Given "white blob motion" is true, what is the probability of "expect guest"?

3. Explaining away
Given evidence of a node with two
parents and evidence for one of the
parents, ask for probability of other
parent node
Example: Given evidence for "place
saucer" and "want to to eat", what is the
probability of "want to decorate table"?
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Evidence Propagation in Polytrees

polytree = DAG where each pair of distinct nodes
is connected by a single (undirected) path

Any node Xk in a polytree separates the tree into an
"upper" and "lower" part. Hence the marginal
probability P(Xk=c) can be computed from two factors.

P(Xk=c) =    Σ   P(X1 ... Xk=c ... XN)
Xi ≠ Xk

 =    Σ  P(Xk=c | Pa(Xk)) Π  P(Xi | Pa(Xi))

 = [ Σ  P(Xk=c | Pa(Xk)) Π  P(Xi | Pa(Xi)) ] • [ Σ  Π  P(Xi | Pa(Xi)) ]

S+ = {Xi above Xk}   S- = {Xi below Xk}

Xi ≠ Xk Xi ≠ XkXk = c

Xi ε S+ Xi ε S- Xk = c

 = λ (Xk=c) • ρ (Xk=c) =>  propagation scheme is possible

24

Approximate Inference in
Bayesian Networks

• Inference in singly-connected Bayes Nets can be computed with O(N)
• Worst-case complexity in general Bayes Nets is exponential, hence

approximate algorithms with less complexity are useful.

Basic idea:
Use random sampling (Monte Carlo method) to compute the
approximate probability of an event based on a JPD and evidence.

want to
decorate

table

want to
eat

want to
lay table

want to
go out

place
saucer

place
plate

white blob
motion

expect
guest

place
flower

red blob
motion

Example: Determine 
P("place flower" | "want to lay table")

• Draw sample for each node
based on probability
conditioned on parent samples

• Repeat process many times
• Relative frequency of samples

matching evidence converges
to correct result in the limit.
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Sampling Methods
Direct Sampling:
Estimate the probability of an event without
evidence by sampling a Bayes Net.

Recommended Reading:
Russell & Norvig: Artificial
Intelligence - A Modern
Approach, 2nd Ed.,
Prentice Hall, 2003

Rejection Sampling:
Estimate the probability of an event by sampling a Bayes Net and
discarding all samples which do not match the evidence.

Sampling with Likelihood Weighting:
Estimate the probability of an event by sampling a Bayes Net and
weighting all samples according to their likelihood to generate the
evidence.

All three methods generate consistent estimates (which converge to the
true value).

26

Hidden Markov Models
A sequence of observations may be governed by underlying probabilistic
state transitions.
•  A person laying a table may plan to first place the plates, then the cups, then the
cutlery in a cyclic order (with a chance to deviate from this order).

•  Observations of a moving robot depend on its changing pose

As usual in vision, observations may be disturbed and may provide
uncertain evidence about the current state.

Such phenomena may be modelled by a Hidden Markov Model (HMM).

A (discrete) HMM is defined by
- a finite number of states a1, a2, ... , aK

- a sequence of state transition events t0, t1, ..., tn (not necessarily times)
- probabilities of state transitions pij from state i to state j , each

depending only on the previous state
- observations b1, b2, ... , bM probabilistically related to each state
- probabilities qkm which map states into observations
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Notation for HMM
• Sequence of random variables X(1), ... , X(n) (state variables) with values from

{a1, ... , aK}

• Markov Chain property of X(1), ... , X(n):   P(X(n)|X(n-1) ... X(1)) = P(X(n)|X(n-1))

-   if P(X(n)|X(n-1)) is independent of n, the Markov Chain is homogeneous
-   transition probabilities P(X(n)=aj|X(n-1)=ai) are represented by the
state transition matrix

         W(n) = p11  ... p1K
...
PK1  ... pKK

• random variables Y(1), ... , Y(n) (observations) with values from {b1, ... , bM}

• observation probabilities P(Y(n)|X(n)) are represented by the matrix

Q = q11  ... q1M
...
qK1  ... qKM

• initial probabilities pT = [ P(X(1)=a1)  P(X(1)=a2) ... P(X(1)=aK) ]

28

Properties of a Homogeneous HMM
Probability vector for state X(2): π(2) = WT π 
Probability vector for state X(n): π(n) = (WT)n-1 π 
There is always a stationary distribution πs such that  πs = WT πs

Graphical representation:         Trellis ("Spalier") representation:

a1 a2

a3

p12

p21

p23

p32
p13

p31

p22
p11

p33

a1

a2

a3

a1

a2

a3

a1

a2

a3

a1

a2

a3

•••

• each (directed) path corresponds to a legal
sequence of states

• the probability of a path is equal to the product of
the transition probabilities

t = 1           2  3        4
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Paths through a HMM

Extension of trellis representation
• arc weights leading into states X(n): transition probabilities pij

• node weights of states X(n):   observation likelihoods qjm for 
given observations Y(n) = bmn

• product of initial probability and P(Y(1)=bm1
, ... , Y(N)=bmN

, X(1)=ak1
, ... , X(N)=akN

)
node and arc probabilities along path: probability of observations and states

Example:

W = 0.3  0.2  0.5 Q = 0.8  0.2 π = 0.6
0.1  0.0  0.9 0.4  0.6 0.3
0.4  0.6  0.0 0.2  0.8 0.1

observations
b2, b1, b1, b2

a1

a2

a3

a1

a2

a3

0.6

0.3

0.1

0.2

0.6

0.8

a1

a2

a3

0.8

0.4

0.2

a1

a2

a3

0.8

0.4

0.2

0.2

0.6

0.8

Given a sequence of N observations, we want to find the most probable
sequence of states which may have led to the observations.

probability of observations along
path are
P(Y(1)=b2,Y(2)=b1,Y(3)=b1,Y(4)=b2,
states of path) =
0.6• 0.2• 0.2• 0.4• 0.1• 0.8• 0.5• 0.8

30

Finding Most Probable Paths

Hence the maximizing sequence of states can be found by exhaustive
search of all path probabilities in the trellis.  However, complexity is
O(KN) with K = number of different states and N = length of sequence.
The Viterbi Algorithm does the job in O(KN)!
Overall maximization may be decomposed into a backward sequence of
maximizations:

Step N             Step N-1        • • •         Step 1

The most probable sequence of states is found by maximizing

max P(X(1)=ak1
, ... , X(N)=akN

 | Y(1)=bm1
, ... , Y(N)=bmN

) =  max P(a | b)
k1 ... kN

a

Equivalently, the most probable sequence of states follows from

max P(a b) = max P(a | b) P(b)
a a

= max pk1
 qk1m1

 (max  pk1k2
 qi2m2

 ( ... (max pkN-1kN
 qkN-1mN 

)...))
k1 k2 kN

max P(a b) = max pk1
 qk1m1

    Π   pkn-1kn
 qkn-1mnn=2...Na k1 ... kN
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Example for Viterbi Algorithm

a1

a2

a3

a1

a2

a3

0.2

0.6

Step 1

0.4

0.72

0.36

a1

a2

a3

a1

a2

a3

0.8•0.4

0.4•0.72

0.2•0.36

Step 2

0.096

0.065

0.173

a1

a2

a3

a1

a2

a3

0.8•0.096

0.4•0.065

0.2•0.173

Step 3

0.023

0.031

0.031

Step 4

a1

a2

a3

0.6

0.3

0.1

0.2•0.023

0.6•0.031

0.8•0.031

0.00276

0.00558

0.00248
n=1         n=1              n=2                     n=2               n=3                 n=3               n= 4 

W = 0.3  0.2  0.5 Q = 0.8  0.2 π = 0.6
0.1  0.0  0.9 0.4  0.6 0.3
0.4  0.6  0.0 0.2  0.8 0.1

observations
b2, b1, b1, b2

Example as earlier:

Typical maximization step of  Viterbi algorithm: 
max { pkn-1kn

 • qkn-1mn 
• <result of previous maximization step> }

kn

0.8

red numbers show maximization results, red arrows maximizing transitions

32

Model Evaluation for Given Observations
What is the likelihood that a particular HMM (out of several possible models)
has generated the observations?

Likelihood of observations given model:

P(Y(1)=bm1
, ... , Y(N)=bmN

 | model )  =  P(b) =  Σ P(a b)

Instead of summing over all a, one can use a forward algorithm based
on a recursive formula:

P(aj
(n+1), bm1

, ... , bmn
, bmn+1

)
     = P(aj

(n+1), bm1
, ... , bmn

)• P(bmn+1
 | aj

(n+1))
     = Σ  [ P(aj

(n+1),  ai
(n), bm1

, ... , bmn
)] • P(bmn+1

 | aj
(n+1))

     = Σ  [ P(aj
(n+1) |  ai

(n), bm1
, ... , bmn

) P(ai
(n), bm1

, ... , bmn
)] • P(bmn+1

 | aj
(n+1))

     = Σ  [ P(aj
(n+1) |  ai

(n)) • P(ai
(n), bm1

, ... , bmn
)] • P(bmn+1

 | aj
(n+1))

     = Σ  [ pij • P(ai
(n), bm1

, ... , bmn
)] • qj mn+1

 

i

i

i
i

a

P(bm1
, ... , bmN

) =  Σ  P(ai
(n+1), bm1

, ... , bmN
)

i

i

observation depends
only on current state

current state depends
only on previous state
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Example for Model Evaluation (1)

W = 0.3  0.2  0.5 Q = 0.8  0.2 π = 0.6
0.1  0.0  0.9 0.4  0.6 0.3
0.4  0.6  0.0 0.2  0.8 0.1

observations
b2, b1, b1, b2

Example as earlier:

P(aj
(1), bm1

) = πj • qj m1
 

P(a1
(1), b2) = 0.6•0.2 = 0.12

P(a2
(1), b2) = 0.3•0.6 = 0.18

P(a3
(1), b2) = 0.1•0.8 = 0.08

P(aj
(2), bm1

, bm2
) = Σ  [ pij • P(ai

(1), bm1
)] • qj m2

 

P(a1
(2), b2, b1) = [ 0.3•0.12 + 0.1•0.18 + 0.4•0.08 ]•0.8 = 0.0314

P(a2
(2), b2, b1) = [ 0.2•0.12 +                  0.6•0.08 ]•0.4 = 0.0288

P(a3
(2), b2, b1) = [ 0.5•0.12 + 0.9•0.18                  ]•0.2 = 0.0072

Step 1

Step 2

Computing the probability of observations stepwise as they come in. 

Note that P(bm1
, ... , bmn

) can be
computed after each step by summing
out the dependency on the state X(n).

i
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Example for Model Evaluation (2)

W = 0.3  0.2  0.5 Q = 0.8  0.2 π = 0.6
0.1  0.0  0.9 0.4  0.6 0.3
0.4  0.6  0.0 0.2  0.8 0.1

observations
b2, b1, b1, b2

Example continued:

P(aj
(3), bm1

, bm2
, bm3

) = Σ  [ pij • P(aj
(2), bm1

, bm2
)] • qj m3

P(a1
(3), b2, b1, b1) = [ 0.3•0.0314 + 0.1•0.0288  + 0.4•0.0072 ]•0.8 = 0.01214

P(a2
(3), b2, b1, b1) = [ 0.2•0.0314 +                       0.6•0.0072 ]•0.4 = 0.00424

P(a3
(3), b2, b1, b1) = [ 0.5•0.0314 + 0.9•0.0288                       ]•0.2 = 0.00832

P(aj
(4), bm1

, bm2
, bm3

, bm4
) = Σ  [ pij • P(aj

(2), bm1
, bm2

, bm3
)] • qj m4

P(a1
(4), b2, b1, b1, b2) = [ 0.3•0.01214 + 0.1•0.00424  + 0.4•0.00832 ]•0.2 = 0.001479

P(a2
(4), b2, b1, b1, b2) = [ 0.2•0.01214 +                         0.6•0.00832 ]•0.6 = 0.004452

P(a3
(4), b2, b1, b1, b2) = [ 0.5•0.01214 + 0.9•0.00424                         ]•0.4 = 0.003954

P(bm1
, bm2

, bm3
, bm4

) = Σ  P(aj
(4), bm1

, bm2
, bm3

, bm4
) =    0.009885

Step 3

Step 4

Final step


