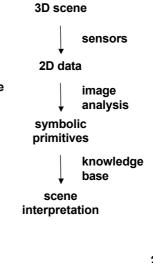
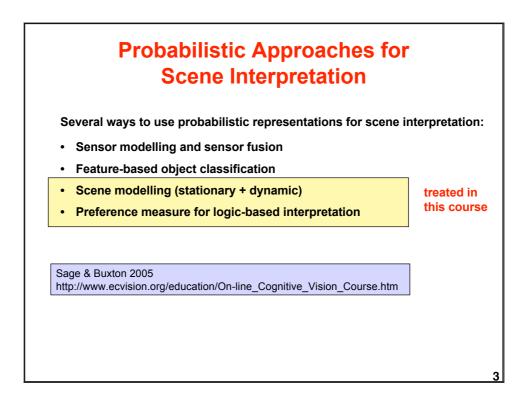
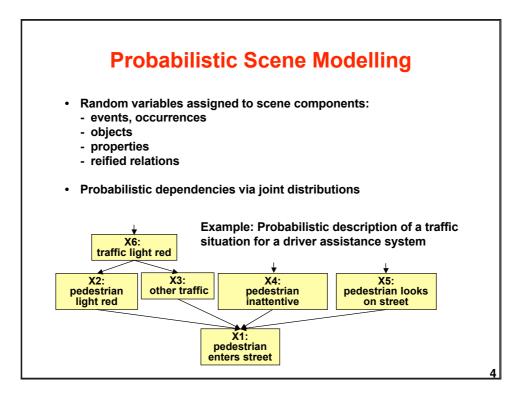
Probabilistic Models for Scene Interpretation

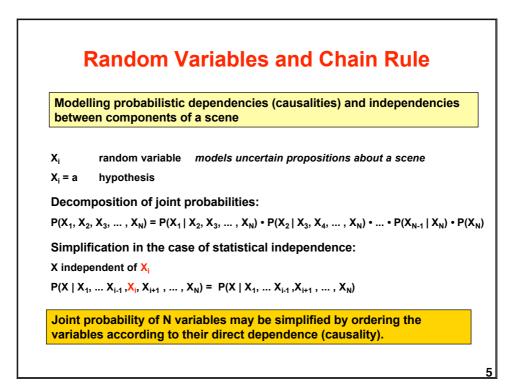
Causes for uncertainty in scene interpretation:

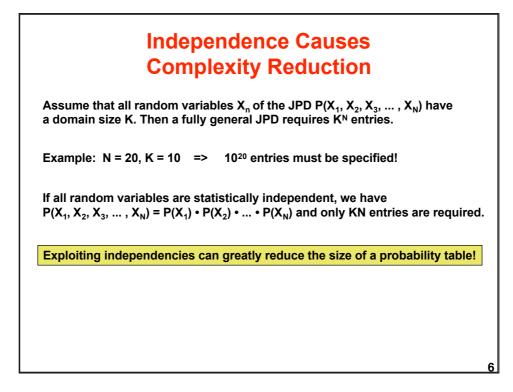
- Images give incomplete evidence for 3D scenes, allowing for multiple interpretations
 - spatial and temporal clipping
 - occlusion
- Image data may be corrupted by noise, image analysis will result in uncertain data
- Image analysis procedures may be coarse, allowing for multiple interpretations
- Models of the knowledge base may lack differentiation, allowing for multiple interpretations
- Logics of scene interpretation allow multiple interpretations











It is useful to determine direct influences Y_i on a random variable X, because given the Y_i , X is independent of other Variables Z_k "upstream" to the Y_i .

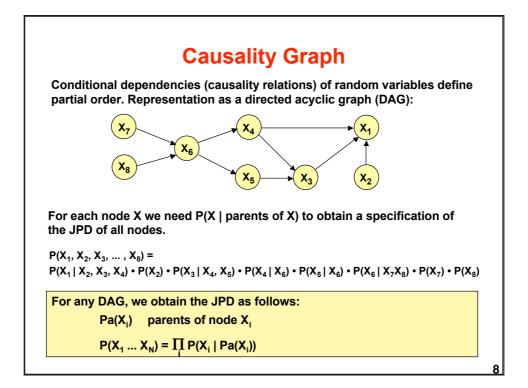
Let dom(X) be the domain of X, i.e. the set of possible values of X.

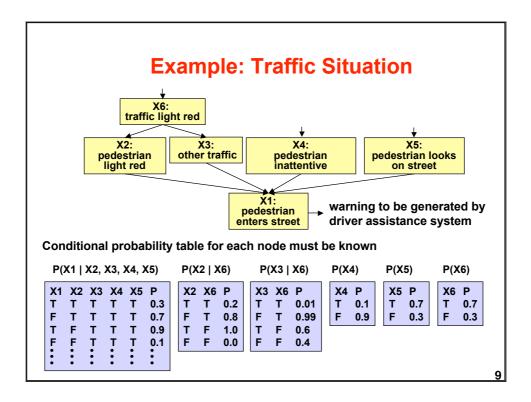
A random variable X is independent of Z given Y if for all x_i e dom(X), for all y_i e dom(Y), and for all z_k e dom(Z),

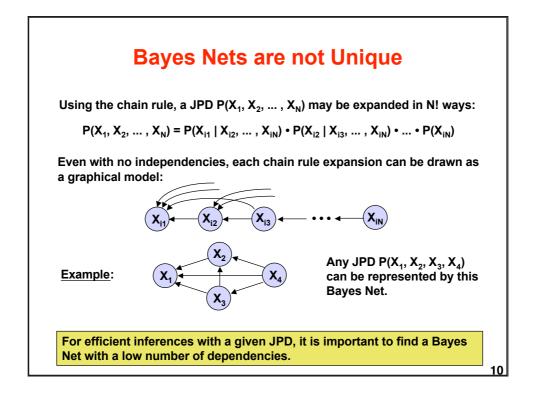
 $P(X=x_i | Y=y_i, Z=z_k) = P(X=x_i | Y=y_i)$

Example: X=plate_in_view, Y=plate_on_table, Z=want_to_eat

X Y Z T T T T T F T F T	P(XYZ) .096 .064 .0	XYZ FTT FTF FFT	P(XYZ) .024 .016 .08	Check whether X is independent of Z given Y!
TFF	.0	FFF	.72	







By domain analysis:

- 1. Select discrete variables X_i relevant for domain
- 2. Establish partial order of variables according to causality
- 3. In the order of decreasing causality:
 - (i) Generate node X_i in net
 - (ii) As predecessors of X_i choose the smallest subset of nodes which are already in the net and from which X_i is causally dependent
 - (iii) determine a table of conditional probabilities for X_i

By data analysis:

Use a learning method to establish a Bayes Net approximating the empirical joint probablity distribution.

Computing Inferences

We want to use a Bayes Net for probabilistic inferences of the following kind:

Given a joint probability $P(X_1, ..., X_N)$ represented by a Bayes Net, and evidence $X_{m_1} = a_{m_1}, ..., X_{m_K} = a_{m_K}$ for some of the variables, what is the probability $P(X_n = a_i | X_{m_1} = a_{m_1}, ..., X_{m_K} = a_{m_K})$ of an unobserved variable to take on a value a_i ?

In general this requires

· expressing a conditional probability by a quotient of joint probabilities

$$P(X_{n}=a_{i} | X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}}) = \frac{P(X_{n}=a_{i}, X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}})}{P(X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}})}$$

 determining partial joint probabilities from the given total joint probability by summing out unwanted variables

$$P(X_{m_1}=a_{m_1}, ..., X_{m_K}=a_{m_K}) = \sum_{X_{n_1}, ..., X_{n_K}} P(X_{m_1}=a_{m_1}, ..., X_{m_K}=a_{m_K}, X_{n_1}, ..., X_{n_K})$$

12

Normalization

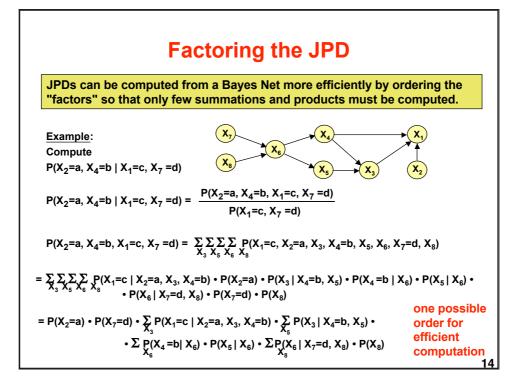
Basic formula for computing the probability of a query variable X_n from a JPD P($X_1, ..., X_N$) given evidence $X_{m_1} = a_{m_1}, ..., X_{m_K} = a_{m_K}$:

$$P(X_{n}=a_{i} | X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}}) = \frac{P(X_{n}=a_{i}, X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}})}{P(X_{m_{1}}=a_{m_{1}}, ..., X_{m_{K}}=a_{m_{K}})}$$

The denominator on the right is independent of a_i and constitutes a normalizing factor α . It can be computed by requiring that the conditional probabilities of all a_i sum to unity.

$$P(X_n = a_i \mid X_{m_1} = a_{m_1}, \dots, X_{m_K} = a_{m_K}) = \alpha \{ P(X_n = a_i, X_{m_1} = a_{m_1}, \dots, X_{m_K} = a_{m_K}) \}$$

Formulae are often written in this simplified form with $\boldsymbol{\alpha}$ as a normalizing factor.



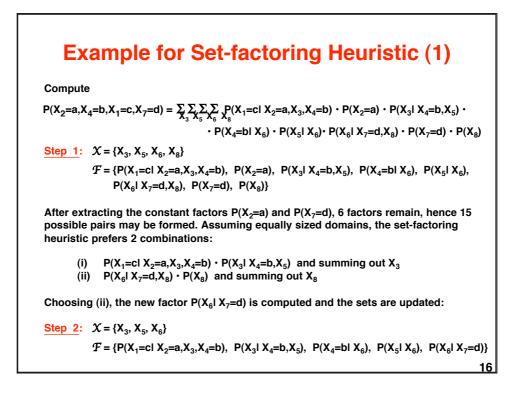
Finding the <u>best</u> possible order for computing factors of a JPD is not tractable, in general. The set-factoring heuristic is a greedy (suboptimal) algorithm with often excellent results.

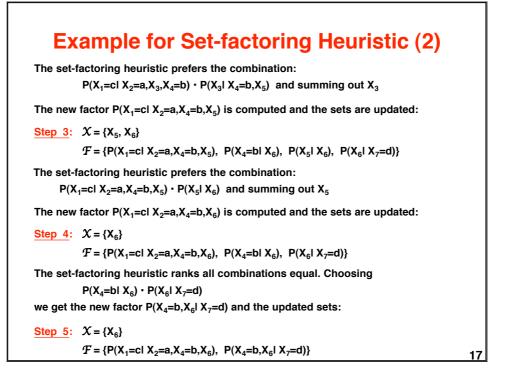
Given X set of random variables to be summed out

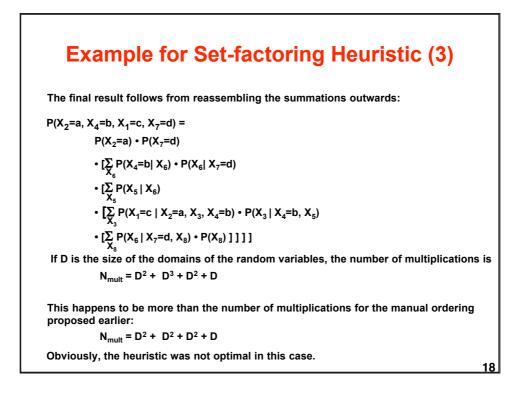
 ${\mathcal F}$ set of factors to be combined

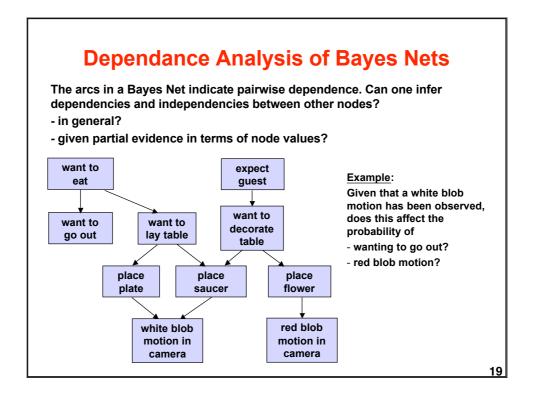
Set-factoring heuristic:

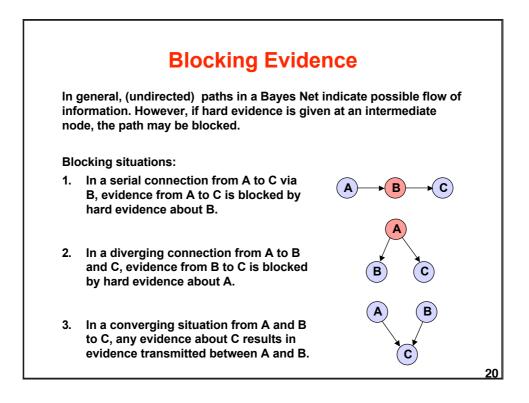
- Pick the pair of factors which produces the smallest probability table after combination and summing out as many variables of X as possible. Break ties by choosing the pair where most variables are summed out.
- Place resulting factor into set *F*, remove summed-out variables from *X* and repeat procedure.

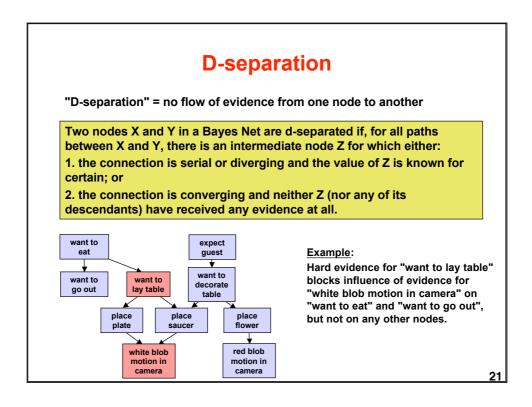


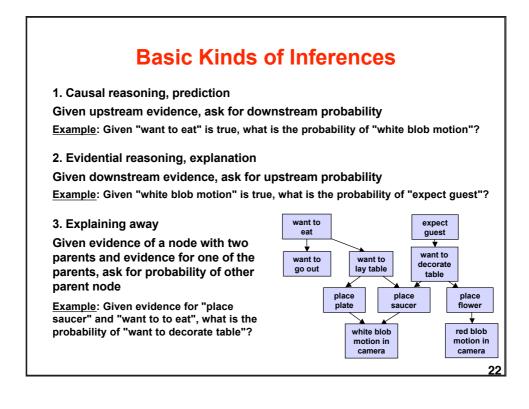


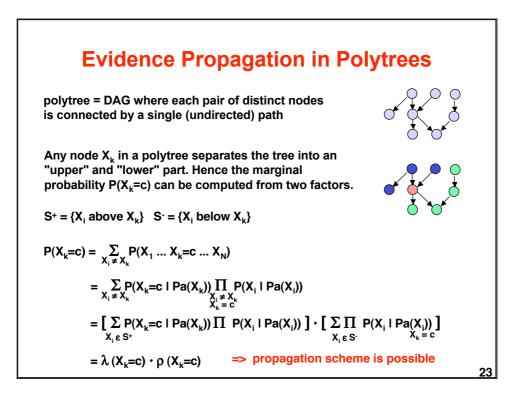


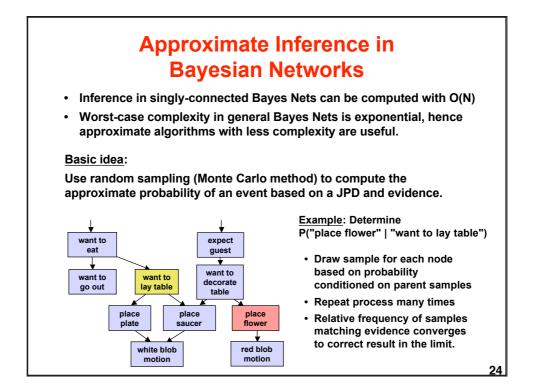


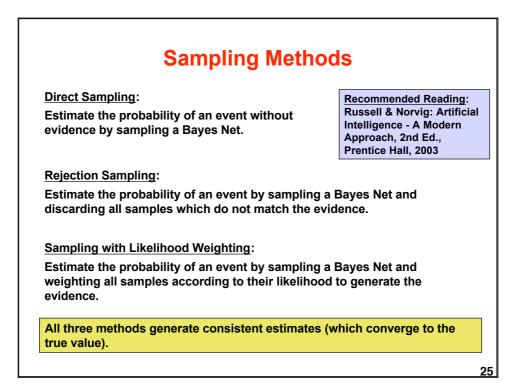


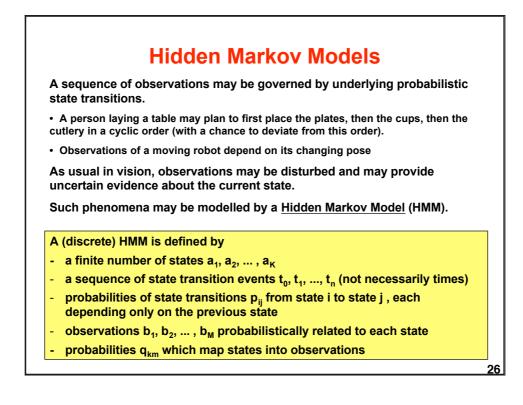


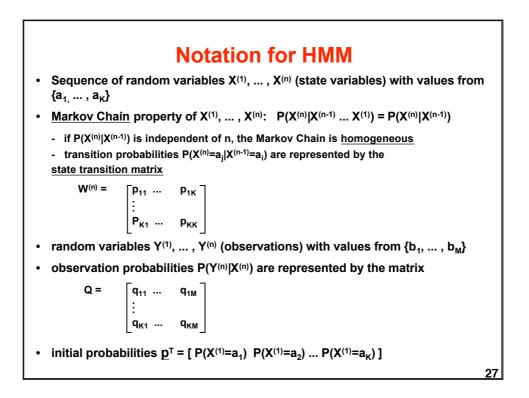


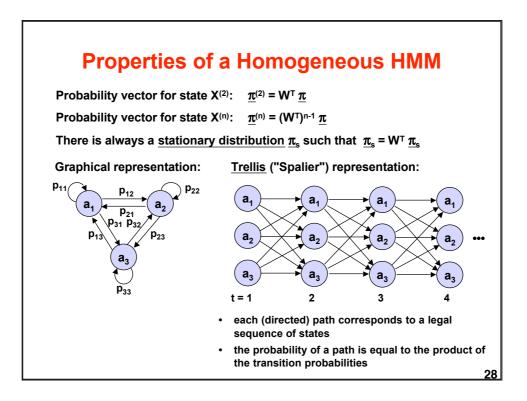


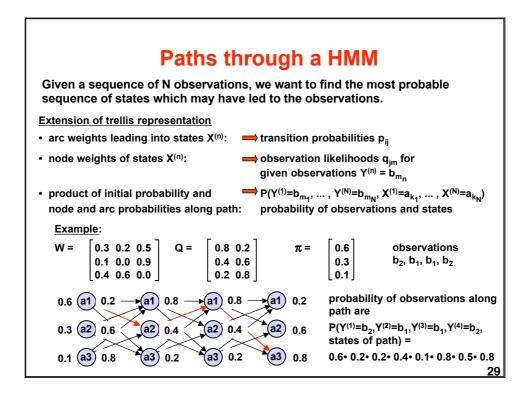




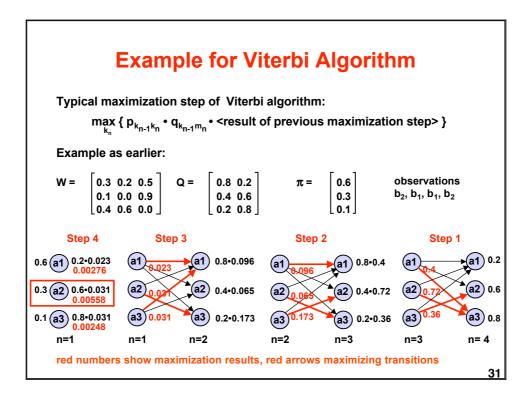




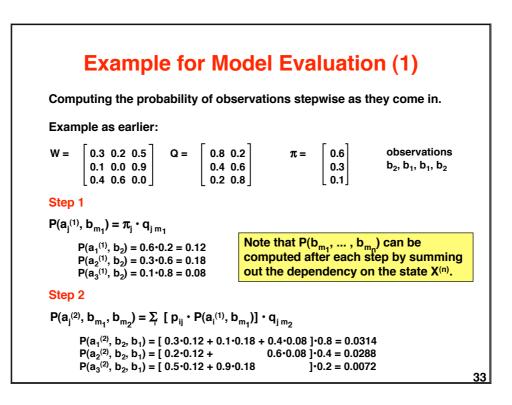




Finding Most Probable Paths The most probable sequence of states is found by maximizing $\max_{k} P(X^{(1)}=a_{k_{1}}, \dots, X^{(N)}=a_{k_{N}} \mid Y^{(1)}=b_{m_{1}}, \dots, Y^{(N)}=b_{m_{N}}) = \max_{a} P(\underline{a} \mid \underline{b})$ k₁ ... k_N Equivalently, the most probable sequence of states follows from $\max_{a} P(\underline{a} \ \underline{b}) = \max_{a} P(\underline{a} \mid \underline{b}) P(\underline{b})$ Hence the maximizing sequence of states can be found by exhaustive search of all path probabilities in the trellis. However, complexity is $O(K^N)$ with K = number of different states and N = length of sequence. The Viterbi Algorithm does the job in O(KN)! Overall maximization may be decomposed into a backward sequence of maximizations: $\max_{\underline{a}} P(\underline{a} \underline{b}) = \max_{k_1 \dots k_n} p_{k_1} q_{k_1 m_1} \prod_{n=2 \dots N} p_{k_{n-1}k_n} q_{k_{n-1}m_n}$ $= \max_{k_1} p_{k_1} q_{k_1m_1} (\max_{k_2} p_{k_1k_2} q_{i_2m_2} (\dots (\max_{k_N} p_{k_{N-1}k_N} q_{k_{N-1}m_N})...))$ Step N Step N-1 ••• Step 1 30



<text><text><text><text><text><equation-block><equation-block>



	Example for Model Evaluation (2)
Exan	ple continued:
W =	$\begin{bmatrix} 0.3 & 0.2 & 0.5 \\ 0.1 & 0.0 & 0.9 \\ 0.4 & 0.6 & 0.0 \end{bmatrix} \begin{array}{c} Q = \left[\begin{array}{c} 0.8 & 0.2 \\ 0.4 & 0.6 \\ 0.2 & 0.8 \end{array} \right] \begin{array}{c} \pi = \left[\begin{array}{c} 0.6 \\ 0.3 \\ 0.1 \end{array} \right] \begin{array}{c} \text{observations} \\ b_2, b_1, b_1, b_2 \end{array}$
Step	3
P(a _i (3	$(b_{m_1}, b_{m_2}, b_{m_3}) = \Sigma [p_{ij} \cdot P(a_{j}^{(2)}, b_{m_1}, b_{m_2})] \cdot q_{jm_3}$
	$\begin{array}{l} P(a_1^{(3)},b_2,b_1,b_1) = [\ 0.3 \cdot 0.0314 + 0.1 \cdot 0.0288 + 0.4 \cdot 0.0072 \] \cdot 0.8 = 0.01214 \\ P(a_2^{(3)},b_2,b_1,b_1) = [\ 0.2 \cdot 0.0314 + 0.00072 \] \cdot 0.4 = 0.00424 \\ P(a_3^{(3)},b_2,b_1,b_1) = [\ 0.5 \cdot 0.0314 + 0.9 \cdot 0.0288 \] \cdot 0.2 = 0.00832 \end{array}$
Step	4
P(a _i (4	$(b_{m_1}, b_{m_2}, b_{m_3}, b_{m_4}) = \Sigma [p_{ij} \cdot P(a_{j}^{(2)}, b_{m_1}, b_{m_2}, b_{m_3})] \cdot q_{jm_4}$
-	$ \begin{array}{l} P(a_1^{(4)},b_2,b_1,b_2) = [\ 0.3 \cdot 0.01214 + 0.1 \cdot 0.00424 + 0.4 \cdot 0.00832] \cdot 0.2 = 0.00147 \\ P(a_2^{(4)},b_2,b_1,b_1,b_2) = [\ 0.2 \cdot 0.01214 + 0.1 \cdot 0.00424 + 0.4 \cdot 0.00832] \cdot 0.6 = 0.00445 \\ P(a_3^{(4)},b_2,b_1,b_1,b_2) = [\ 0.5 \cdot 0.01214 + 0.9 \cdot 0.00424 &] \cdot 0.4 = 0.00395 \\ \end{array} $
Final	step
P(b _m	$_{1}, \mathbf{b}_{m_{2}}, \mathbf{b}_{m_{3}}, \mathbf{b}_{m_{4}}) = \Sigma \mathbf{P}(\mathbf{a}_{j}^{(4)}, \mathbf{b}_{m_{1}}, \mathbf{b}_{m_{2}}, \mathbf{b}_{m_{3}}, \mathbf{b}_{m_{4}}) = 0.009885$