
Computational Intelligence Chapter 12, Lecture 2, Page 1

Robot Architectures

You don’t need to implement an intelligent agent as:

Perception Reasoning Action

as three independent modules, each feeding into the the next.

➤ It’s too slow.

➤ High-level strategic reasoning takes more time than the

reaction time needed to avoid obstacles.

➤ The output of the perception depends on what you will

do with it.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 12, Lecture 2, Page 2

Hierarchical Control

➤ A better architecture is ahierarchy of controllers.

➤ Each controller sees the controllers below it as a

virtual body from which it gets percepts and sends

commands.

➤ The lower-level controllers can

➣ run much faster, and react to the world more quickly

➣ deliver a simpler view of the world to the higher-level

controllers.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 12, Lecture 2, Page 3

Hierarchical Robotic System Architecture

ROBOT

ENVIRONMENT

stimuli actions

... ...

body

controller-1

controller-2

controller-n

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 12, Lecture 2, Page 4

Example: delivery robot
➤ The robot has three actions: go straight, go right, go left.

(Its velocity doesn’t change).

➤ It can be given aplan consisting of sequence of named
locations for the robot to go to in turn.

➤ The robot must avoid obstacles.

➤ It has a singlewhisker sensorpointing forward and to
the right. The robot can detect if the whisker hits an
object. The robot knows where it is.

➤ The obstacles and locations can be moved dynamically.
Obstacles and new locations can be created dynamically.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 12, Lecture 2, Page 5

A Decomposition of the Delivery Robot

steer robot & report
obstacles & position

go to location &

plan

goal_pos

steer

arrived

robot_pos
compass

whisker_sensor

goal_pos
to_do

DELIVERY ROBOT

follow plan

avoid obstacles

environment

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 12, Lecture 2, Page 6

Axiomatizing a Controller

➤ A fluent is a predicate whose value depends on the time.

➤ We specify state changes usingassign(Fl, Val, T)

which means fluentFl is assigned valueVal at timeT .

➤ was is used to determine a fluent’s previous value.

was(Fl, Val, T1, T) is true if fluentFl was assigned a

value at timeT1, and this was the latest time it was

assigned a value before timeT .

➤ val(Fl, Val, T) is true if fluentFl was assigned value

Val at timeT or Val was its value before timeT .

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 12, Lecture 2, Page 7

Middle Layer of the Delivery Robot

➤ Higher layer gives a goal position

➣ Head towards the goal position:

➢ If the goal is straight ahead (within an arbitrary

threshold of±11◦), go straight

➢ If the goal is to the right, go right

➢ If the goal is to the left, go left

➤ Avoid obstacles:

➣ If the whisker sensor is on, turn left

➤ Report when arrived

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 12, Lecture 2, Page 8

Code for the middle layer

steer(D, T) means that the robot will steer in directionD at
time T , whereD ∈ {left, straight, right}.
The robot steers towards the goal, except when the whisker
sensor is on, in which case it turns left:

steer(left, T)← whisker_sensor(on, T).

steer(D, T)← whisker_sensor(off , T) ∧ goal_is(D, T).

goal_is(D, T) means the goal is in directionD from the robot.

goal_is(left, T)←
goal_direction(G, T) ∧ val(compass, C, T) ∧
(G− C + 540) mod 360− 180> 11.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 12, Lecture 2, Page 9

Middle layer (continued)
This layer needs to tell the higher layer when it has arrived.

arrived(T) is true if the robot has arrived at, or is close
enough to, the (previous) goal position:

arrived(T)←
was(goal_pos, Goal_Coords, T0, T) ∧
robot_pos(Robot_Coords, T) ∧
close_enough(Goal_Coords, Robot_Coords).

close_enough((X0, Y0), (X1, Y1))←√
(X1− X0)2+ (Y1− Y0)2 < 3.0.

Here 3.0 is an arbitrarily chosen threshold.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 12, Lecture 2, Page 10

Top Layer of the Delivery Robot

➤ The top layer is given a plan which is a sequence of

named locations.

➤ The top layer tells the middle layer the goal position of

the current location.

➤ It has to remember the current goal position and the

locations still to visit.

➤ When the middle layer reports the robot has arrived, the

top layer takes the next location from the list of positions

to visit, and there is a new goal position.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 12, Lecture 2, Page 11

Code for the top layer
The top layer has two state variables represented as fluents.
The value of the fluentto_do is the list of all pending
locations. The fluentgoal_pos maintains the goal position.

assign(goal_pos, Coords, T)←
arrived(T) ∧
was(to_do, [goto(Loc)|R], T0, T) ∧
at(Loc, Coords).

assign(to_do, R, T)←
arrived(T) ∧
was(to_do, [C|R], T0, T).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 12, Lecture 2, Page 12

Simulation of the Robot

0

20

40

60

0 20 40 60 80 100

robot path
obstacle

goals

start

assign(to_do, [goto(o109), goto(storage), goto(o109),

goto(o103)], 0).

arrived(1).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 12, Lecture 2, Page 13

What should be in an agent’s state?

➤ An agent decides what to do based on its state and what it

observes.

➤ A purely reactive agent doesn’t have a state.

A dead reckoningagent doesn’t perceive the world.

— neither work very well in complicated domains.

➤ It is often useful for the agent’s belief state to be a model

of the world (itself and the environment).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002

☞

☞

http://www.cs.ubc.ca/spider/poole/ci.html

