Regression

- Idea: don't solve one subgoal by itself, but keep track of all subgoals that must be achieved.
- > Given a set of goals:
 - If they all hold in the initial state, return the empty plan
 - The subgoals. This will be the last action in the plan.
 - Determine what must be true immediately before *A* so that all of the goals will be true immediately after. Recursively solve these new goals.

Regression as Path Finding

- The nodes are sets of goals. Arcs correspond to actions.
- A node labeled with goal set G has a neighbor for each action A that achieves one of the goals in G.
- The neighbor corresponding to action A is the node with the goals G_A that must be true immediately before the action A so that all of the goals in G are true immediately after A. G_A is the weakest precondition for action A and goal set G.
 - Search can stop when you have a node where all the goals are true in the initial state.

Weakest preconditions

wp(A, GL, WP) is true if WP is the weakest precondition that must occur immediately before action A so every element of goal list GL is true immediately after A.

- For the STRIPS representation (with all predicates primitive):
- \blacktriangleright wp(A, GL, WP) is false if any element of GL is on delete list of action A.

Otherwise WP is

 $preconds(A) \cup \{G \in GL : G \not\in add_list(A)\}.$ where preconds(A) is the list of preconditions of action A and $add_list(A)$ is the add list of action A.

Weakest Precondition Example

The weakest precondition for

```
[sitting_at(rob, lab2), carrying(rob, parcel)]

to be true after move(rob, Pos, lab2) is that

[autonomous(rob),

adjacent(Pos, lab2),

sitting_at(rob, Pos),
```

is true immediately before the action.

carrying(rob, parcel)]

A Regression Planner

% solve(GL, W) is true if every element of goal list GL is true

% in world W.

 $solve(GoalSet, init) \leftarrow$

holdsall(GoalSet, init).

 $solve(GoalSet, do(Action, W)) \leftarrow$

 $consistent(GoalSet) \land$

choose_goal(Goal, GoalSet) ∧

 $choose_action(Action, Goal) \land$ $wp(Action, GoalSet, NewGoalSet) \land$ solve(NewGoalSet, W).

Regression Search Space Example

[carrying(rob,parcel), sitting_at(rob,lab2)] pickup(rob,parcel) [sitting_at(parcel,lab2), sitting_at(rob,lab2)] [carrying(rob, parcel), $sitting_at(rob, P)$, adjacent(P, lab2)] [carrying(rob,parcel), sitting_at(rob,o103), unlocked(door1)] unlock(rob,door1)

[carrying(rob,parcel), sitting_at(rob,o103), carrying(rob,k1)]