## Contents Chapters 2 \& 3

Chapters 2 \& 3: A Representation and Reasoning System
$>$ Lecture 1 Representation and Reasoning Systems. Datalog.
$>$ Lecture 2 Semantics.
$>$ Lecture 3 Variables, queries and answers, limitations.
$>$ Lecture 4 Proofs. Soundness and completeness.
$>$ Lecture 5 SLD resolution.
$>$ Lecture 6 Proofs with variables. Function Symbols.

## Representation and Reasoning System

A Representation and Reasoning System (RRS) is made up of:
formal language: specifies the legal sentences
semantics: specifies the meaning of the symbols reasoning theory or proof procedure: nondeterministic specification of how an answer can be produced.

## Implementation of an RRS

An implementation of an RRS consists of
$>$ language parser: maps sentences of the language into data structures.
reasoning procedure: implementation of reasoning theory + search strategy.

Note: the semantics aren't reflected in the implementation!

## Using an RRS

1. Begin with a task domain.
2. Distinguish those things you want to talk about (the ontology).
3. Choose symbols in the computer to denote objects and relations.
4. Tell the system knowledge about the domain.
5. Ask the system questions.

## Role of Semantics in an RRS

## in(alan,r123).

part_of(r123,cs_building). $\operatorname{in}(X, Y) \leftarrow$ part_of $(Z, Y) \wedge$ in $(X, Z)$.


## Simplifying Assumptions of Initial RRS

An agent's knowledge can be usefully described in terms of individuals and relations among individuals.

An agent's knowledge base consists of definite and positive statements.

The environment is static.
There are only a finite number of individuals of interest in the domain. Each individual can be given a unique name.
$\Longrightarrow$ Datalog

## Syntax of Datalog

variable starts with upper-case letter.
constant starts with lower-case letter or is a sequence of digits (numeral).
predicate symbol starts with lower-case letter.
term is either a variable or a constant.
atomic symbol (atom) is of the form $p$ or $p\left(t_{1}, \ldots, t_{n}\right)$ where $p$ is a predicate symbol and $t_{i}$ are terms.

## Syntax of Datalog (cont)

definite clause is either an atomic symbol (a fact) or of the form:

$$
\underbrace{a}_{\text {head }} \leftarrow \underbrace{b_{1} \wedge \cdots \wedge b_{m}}_{\text {body }}
$$

where $a$ and $b_{i}$ are atomic symbols.
query is of the form $? b_{1} \wedge \cdots \wedge b_{m}$.
knowledge base is a set of definite clauses.

## Example Knowledge Base

in $($ alan,$R) \leftarrow$
teaches(alan, cs322) $\wedge$
in(cs322, R).
grandfather (william, $X$ ) $\leftarrow$
father(william, $Y) \wedge$
$\operatorname{parent}(Y, X)$.
slithy(toves) $\leftarrow$
mimsy $\wedge$ borogroves $\wedge$
outgrabe(mome, Raths).


## Characteristics of sublogics

- FOPC
- clausal form
- Horn clauses
- definite clauses
- function-free FOPC
- datalog
- propositional calculus
- propositional clauses
- 3-CNF
- 2-CNF
- propositional definite
- propositional database
first-order predicate calculus conjunctions of disjunctions of literals (CNF) definite clauses and integrity contraints cluases with function symbols FOPC without functions or existentially quantified variables in the scope of universally quantified variables definite clauses without function symbols FOPC without variables or function symbols clausal form without variables or function symbols propositional clauses with at most 3 disjuncts in a clause propositional clauses with at most 2 disjuncts in a clause definite clauses without variables or function symbols facts without variables or function symbols (no rules)


## Semantics: General Idea

A semantics specifies the meaning of sentences in the language.
An interpretation specifies:
> what objects (individuals) are in the world
the correspondence between symbols in the computer and objects \& relations in world
constants denote individuals
$>$ predicate symbols denote relations

## Formal Semantics

An interpretation is a triple $I=\langle D, \phi, \pi\rangle$, where
$>D$, the domain, is a nonempty set. Elements of $D$ are individuals.
$>\phi$ is a mapping that assigns to each constant an element of $D$. Constant $c$ denotes individual $\phi(c)$.
$>\pi$ is a mapping that assigns to each $n$-ary predicate symbol a relation: a function from $D^{n}$ into $\{$ TRUE, $\operatorname{FALSE}\}$.

## Example Interpretation

Constants: phone, pencil, telephone.
Predicate Symbol: noisy (unary), left_of (binary).
$>D=\{\sigma<, \boldsymbol{0}, \otimes\}$.
$\boldsymbol{>}($ phone $)=\boldsymbol{\widetilde { 0 }}, \phi($ pencil $)=\phi($ telephone $)=\boldsymbol{\Xi}$.

$\rangle \pi$ (noisy): | $\langle\boldsymbol{\sigma}\rangle$ | FALSE | $\langle\boldsymbol{\mathbf { O }}\rangle$ | TRUE | $\langle\boldsymbol{2}\rangle$ | FALSE |
| :--- | :--- | :--- | :--- | :--- | :--- |

$\pi$ (left_of):


## Important points to note

> The domain $D$ can contain real objects. (e.g., a person, a room, a course). $D$ can't necessarily be stored in a computer.
$>\pi(p)$ specifies whether the relation denoted by the $n$-ary predicate symbol $p$ is true or false for each $n$-tuple of individuals.
$>$ If predicate symbol $p$ has no arguments, then $\pi(p)$ is either true or false.

## Truth in an interpretation

A constant $c$ denotes in $I$ the individual $\phi(c)$.
Ground (variable-free) atom $p\left(t_{1}, \ldots, t_{n}\right)$ is
true in interpretation $I$ if $\pi(p)\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)=$ TRUE, where $t_{i}$ denotes $t_{i}^{\prime}$ in interpretation $I$ and
$>$ false in interpretation $I$ if $\pi(p)\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)=$ FALSE.
Ground clause $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ is false in interpretation $I$ if $h$ is false in $I$ and each $b_{i}$ is true in $I$, and is true in interpretation $I$ otherwise.

## Example Truths

In the interpretation given before:

| noisy(phone) | true |
| :--- | :--- |
| noisy(telephone $)$ | true |
| noisy(pencil) | false |
| left_of $($ phone, pencil $)$ | true |
| left_of $($ phone, telephone $)$ | false |
| noisy $($ pencil $) \leftarrow$ left_of $($ phone, telephone $)$ | true |
| noisy $($ pencil $) \leftarrow$ left_of $($ phone, pencil $)$ | false |
| noisy $($ phone $) \leftarrow$ noisy $($ telephone $) \wedge$ noisy $($ pencil $)$ | true |

## Models and logical consequences

A knowledge base, $K B$, is true in interpretation $I$ if and only if every clause in $K B$ is true in $I$.

A model of a set of clauses is an interpretation in which all the clauses are true.
$>$ If $K B$ is a set of clauses and $g$ is a conjunction of atoms, $g$ is a logical consequence of $K B$, written $K B \models g$, if $g$ is true in every model of $K B$.
$>$ That is, $K B \models g$ if there is no interpretation in which $K B$ is true and $g$ is false.

## Simple Example

$$
K B=\left\{\begin{array}{l}
p \leftarrow q \\
q \\
r \leftarrow s
\end{array}\right.
$$

|  | $\pi(p)$ | $\pi(q)$ | $\pi(r)$ | $\pi(s)$ |  |
| :---: | :---: | :---: | :---: | :---: | :--- |
| $I_{1}$ | TRUE | TRUE | TRUE | TRUE | is a model of $K B$ |
| $I_{2}$ | FALSE | FALSE | FALSE | FALSE | not a model of $K B$ |
| $I_{3}$ | TRUE | TRUE | FALSE | FALSE | is a model of $K B$ |
| $I_{4}$ | TRUE | TRUE | TRUE | FALSE | is a model of $K B$ |
| $I_{5}$ | TRUE | TRUE | FALSE | TRUE | not a model of $K B$ |

## User's view of Semantics

1. Choose a task domain: intended interpretation.
2. Associate constants with individuals you want to name.
3. For each relation you want to represent, associate a predicate symbol in the language.
4. Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
5. Ask questions about the intended interpretation.
6. If $K B \models g$, then $g$ must be true in the intended interpretation.

## Computer's view of semantics

$>$ The computer doesn't have access to the intended interpretation.
> All it knows is the knowledge base.
The computer can determine if a formula is a logical consequence of KB .
$>$ If $K B \models g$ then $g$ must be true in the intended interpretation.
$>$ If $K B \not \models g$ then there is a model of $K B$ in which $g$ is false. This could be the intended interpretation.

## Variables

> Variables are universally quantified in the scope of a clause.

A variable assignment is a function from variables into the domain.
$>$ Given an interpretation and a variable assignment, each term denotes an individual and each clause is either true or false.
$>$ A clause containing variables is true in an interpretation if it is true for all variable assignments.

## Queries and Answers

A query is a way to ask if a body is a logical consequence of the knowledge base:

$$
? b_{1} \wedge \cdots \wedge b_{m}
$$

An answer is either
$>$ an instance of the query that is a logical consequence of the knowledge base $K B$, or
$>$ no if no instance is a logical consequence of $K B$.

## Example Queries

$$
K B=\left\{\begin{array}{l}
\text { in }(\text { alan }, r 123) . \\
\text { part_of }(r 123, \text { cs_building }) . \\
\text { in }(X, Y) \leftarrow \text { part_of }(Z, Y) \wedge \text { in }(X, Z) .
\end{array}\right.
$$

## Query <br> Answer

?part_of(r123, B). part_of(r123, cs_building)
?part_of(r023, cs_building). no
? in(alan, r023). no
?in(alan, B). in(alan, r123)
in(alan, cs_building)

## Logical Consequence

Atom $g$ is a logical consequence of $K B$ if and only if:
$>g$ is a fact in $K B$, or
$>$ there is a rule

$$
g \leftarrow b_{1} \wedge \ldots \wedge b_{k}
$$

in $K B$ such that each $b_{i}$ is a logical consequence of $K B$.

## Debugging false conclusions

To debug answer $g$ that is false in the intended interpretation:
If $g$ is a fact in $K B$, this fact is wrong.
Otherwise, suppose $g$ was proved using the rule:

$$
g \leftarrow b_{1} \wedge \ldots \wedge b_{k}
$$

where each $b_{i}$ is a logical consequence of $K B$.
$\geqslant$ If each $b_{i}$ is true in the intended interpretation, this clause is false in the intended interpretation.
$>$ If some $b_{i}$ is false in the intended interpretation, debug $b_{i}$.

# Electrical Environment 



## Axiomatizing the Electrical Environment

$\% \operatorname{light}(L)$ is true if $L$ is a light
$\operatorname{light}\left(l_{1}\right)$. $\operatorname{light}\left(l_{2}\right)$.
\% down $(S)$ is true if switch $S$ is down
$\operatorname{down}\left(s_{1}\right)$. up $\left(s_{2}\right)$. up $\left(s_{3}\right)$.
$\% o k(D)$ is true if $D$ is not broken
$o k\left(l_{1}\right) . \quad o k\left(l_{2}\right) . \quad o k\left(c b_{1}\right) . \quad o k\left(c b_{2}\right)$.
?light $\left(l_{1}\right) . \quad \Longrightarrow$ yes
?light $\left(l_{6}\right) . \Longrightarrow$ no
$? u p(X) . \quad \Longrightarrow \quad u p\left(s_{2}\right), u p\left(s_{3}\right)$
connected_to $(X, Y)$ is true if component $X$ is connected to $Y$

$$
\begin{aligned}
& \text { connected_to }\left(w_{0}, w_{1}\right) \leftarrow u p\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{0}, w_{2}\right) \leftarrow \operatorname{down}\left(s_{2}\right) . \\
& \text { connected_to }\left(w_{1}, w_{3}\right) \leftarrow u p\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{2}, w_{3}\right) \leftarrow \operatorname{down}\left(s_{1}\right) . \\
& \text { connected_to }\left(w_{4}, w_{3}\right) \leftarrow u p\left(s_{3}\right) . \\
& \text { connected_to }\left(p_{1}, w_{3}\right) .
\end{aligned}
$$

?connected_to $\left(w_{0}, W\right) . \quad \Longrightarrow \quad W=w_{1}$
?connected_to $\left(w_{1}, W\right) . \Longrightarrow$ no
?connected_to $\left(Y, w_{3}\right) \quad \Longrightarrow \quad Y=w_{2}, Y=w_{4}, Y=p_{29}$
?connected_to $(X, W) \quad \Longrightarrow \quad X=w_{0}, W=w_{1}, \ldots$
$\% \operatorname{lit}(L)$ is true if the light $L$ is lit

$$
\operatorname{lit}(L) \leftarrow \operatorname{light}(L) \wedge o k(L) \wedge \operatorname{live}(L)
$$

\% live $(C)$ is true if there is power coming into $C$
live $(Y) \leftarrow$
connected_to $(Y, Z) \wedge$
live $(Z)$.
live(outside).
This is a recursive definition of live.

## Recursion and Mathematical Induction

$\operatorname{above}(X, Y) \leftarrow \operatorname{on}(X, Y)$. $\operatorname{above}(X, Y) \leftarrow \operatorname{on}(X, Z) \wedge \operatorname{above}(Z, Y)$.

This can be seen as:
$>$ Recursive definition of above: prove above in terms of a base case (on) or a simpler instance of itself; or

Way to prove above by mathematical induction: the base case is when there are no blocks between $X$ and $Y$, and if you can prove above when there are $n$ blocks between them, you can prove it when there are $n+1$ blocks.

## Limitations

Suppose you had a database using the relation:

## enrolled (S, C)

which is true when student $S$ is enrolled in course $C$.
You can't define the relation:
empty_course (C)
which is true when course $C$ has no students enrolled in it.
This is because empty_course $(C)$ doesn't logically follow from a set of enrolled relations. There are always model $3_{32}$ where someone is enrolled in a course!

## Proofs

$>$ A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
$>$ Given a proof procedure, $K B \vdash g$ means $g$ can be derived from knowledge base $K B$.
$>$ Recall $K B \models g$ means $g$ is true in all models of $K B$.
$>$ A proof procedure is sound if $K B \vdash g$ implies $K B \models g$.
$>$ A proof procedure is complete if $K B \models g$ implies $K B \vdash g$.

## Bottom-up Ground Proof Procedure

One rule of derivation, a generalized form of modus ponens:
If " $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ " is a clause in the knowledge base, and each $b_{i}$ has been derived, then $h$ can be derived.

You are forward chaining on this clause.
(This rule also covers the case when $m=0$.)

## Bottom-up proof procedure

## $K B \vdash g$ if $g \in C$ at the end of this procedure:

$C:=\{ \} ;$

## repeat

select clause " $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ " in $K B$ such that

$$
b_{i} \in C \text { for all } i \text {, and }
$$

$$
h \notin C ;
$$

$$
C:=C \cup\{h\}
$$

until no more clauses can be selected.
$a \leftarrow b \wedge c$.
$a \leftarrow e \wedge f$.
$b \leftarrow f \wedge k$.
$c \leftarrow e$.
$d \leftarrow k$.
$e$.
$f \leftarrow j \wedge e$.
$f \leftarrow c$.
$j \leftarrow c$.

## Soundness of bottom-up proof procedure

If $K B \vdash g$ then $K B \models g$.
Suppose there is a $g$ such that $K B \vdash g$ and $K B \not \models g$.
Let $h$ be the first atom added to $C$ that's not true in every model of $K B$. Suppose $h$ isn't true in model $I$ of $K B$.
There must be a clause in $K B$ of form

$$
h \leftarrow b_{1} \wedge \ldots \wedge b_{m}
$$

Each $b_{i}$ is true in $I . h$ is false in $I$. So this clause is false in $I$. Therefore $I$ isn't a model of $K B$.

Contradiction: thus no such $g$ exists.

## Fixed Point

The $C$ generated at the end of the bottom-up algorithm is called a fixed point.

Let $I$ be the interpretation in which every element of the fixed point is true and every other atom is false.
$I$ is a model of $K B$.
Proof: suppose $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ in $K B$ is false in $I$. Then $h$ is false and each $b_{i}$ is true in $I$. Thus $h$ can be added to $C$. Contradiction to $C$ being the fixed point.
$I$ is called a Minimal Model.

## Completeness

## If $K B \models g$ then $K B \vdash g$.

Suppose $K B \models g$. Then $g$ is true in all models of $K B$.
Thus $g$ is true in the minimal model.
Thus $g$ is generated by the bottom up algorithm.
Thus $K B \vdash g$.

## Top-down Ground Proof Procedure

Idea: search backward from a query to determine if it is a logical consequence of $K B$.

An answer clause is of the form:

$$
\text { yes } \leftarrow a_{1} \wedge a_{2} \wedge \ldots \wedge a_{m}
$$

The SLD Resolution of this answer clause on atom $a_{i}$ with the clause:

$$
a_{i} \leftarrow b_{1} \wedge \ldots \wedge b_{p}
$$

is the answer clause

$$
\text { yes } \leftarrow a_{1} \wedge \cdots \wedge a_{i-1} \wedge b_{1} \wedge \cdots \wedge b_{p} \wedge a_{i+1} \wedge \cdots \wedge a_{m}^{40} .
$$

## Derivations

An answer is an answer clause with $m=0$. That is, it is the answer clause yes $\leftarrow$.

A derivation of query "? $q_{1} \wedge \ldots \wedge q_{k}$ " from $K B$ is a sequence of answer clauses $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}$ such that $>\gamma_{0}$ is the answer clause yes $\leftarrow q_{1} \wedge \ldots \wedge q_{k}$, $\gamma_{i}$ is obtained by resolving $\gamma_{i-1}$ with a clause in $K B$, and
$>\gamma_{n}$ is an answer.

## Top-down definite clause interpreter

To solve the query $? q_{1} \wedge \ldots \wedge q_{k}$ :
$a c:=" y e s \leftarrow q_{1} \wedge \ldots \wedge q_{k} "$
repeat
select a conjunct $a_{i}$ from the body of $a c$;
choose clause $C$ from $K B$ with $a_{i}$ as head;
replace $a_{i}$ in the body of $a c$ by the body of $C$
until $a c$ is an answer.

## Nondeterministic Choice

$>$
Don't-care nondeterminism If one selection doesn't lead to a solution, there is no point trying other alternatives. select
$>$
Don't-know nondeterminism If one choice doesn't lead to a solution, other choices may. choose

## Example: successful derivation

$$
\begin{array}{lll}
a \leftarrow b \wedge c . & a \leftarrow e \wedge f . & b \leftarrow f \wedge k \\
c \leftarrow e . & d \leftarrow k . & e . \\
f \leftarrow j \wedge e . & f \leftarrow c . & j \leftarrow c .
\end{array}
$$

Query: ?a

$$
\begin{array}{ll}
\gamma_{0}: \text { yes } \leftarrow a & \gamma_{4}: \text { yes } \leftarrow e \\
\gamma_{1}: \text { yes } \leftarrow e \wedge f & \gamma_{5}: \text { yes } \leftarrow \\
\gamma_{2}: \text { yes } \leftarrow f \\
\gamma_{3}: \text { yes } \leftarrow c &
\end{array}
$$

## Example: failing derivation

$$
\begin{array}{lll}
a \leftarrow b \wedge c . & a \leftarrow e \wedge f . & b \leftarrow f \wedge k \\
c \leftarrow e . & d \leftarrow k . & e . \\
f \leftarrow j \wedge e . & f \leftarrow c . & j \leftarrow c .
\end{array}
$$

Query: ?a
$\gamma_{0}: \quad y e s \leftarrow a$
$\gamma_{1}:$ yes $\leftarrow b \wedge c$
$\gamma_{2}:$ yes $\leftarrow f \wedge k \wedge c$
$\gamma_{3}:$ yes $\leftarrow c \wedge k \wedge c$
$\gamma_{4}: y e s \leftarrow e \wedge k \wedge c$
$\gamma_{5}:$ yes $\leftarrow k \wedge c$

## Reasoning with Variables

- An instance of an atom or a clause is obtained by uniformly substituting terms for variables.
$>$ A substitution is a finite set of the form $\left\{V_{1} / t_{1}, \ldots, V_{n} / t_{n}\right\}$, where each $V_{i}$ is a distinct variable and each $t_{i}$ is a term.
> The application of a substitution $\sigma=\left\{V_{1} / t_{1}, \ldots, V_{n} / t_{n}\right\}$ to an atom or clause $e$, written $e \sigma$, is the instance of $e$ with every occurrence of $V_{i}$ replaced by $t_{i}$.


## Application Examples

The following are substitutions:
$>\sigma_{1}=\{X / A, Y / b, Z / C, D / e\}$
$>\sigma_{2}=\{A / X, Y / b, C / Z, D / e\}$
$>\sigma_{3}=\{A / V, X / V, Y / b, C / W, Z / W, D / e\}$
The following shows some applications:
$>p(A, b, C, D) \sigma_{1}=p(A, b, C, e)$
$p(X, Y, Z, e) \sigma_{1}=p(A, b, C, e)$
$p(A, b, C, D) \sigma_{2}=p(X, b, Z, e)$
$p(X, Y, Z, e) \sigma_{2}=p(X, b, Z, e)$
$p(A, b, C, D) \sigma_{3}=p(V, b, W, e)$
$p(X, Y, Z, e) \sigma_{3}=p(V, b, W, e)$

## Unifiers

$>$ Substitution $\sigma$ is a unifier of $e_{1}$ and $e_{2}$ if $e_{1} \sigma=e_{2} \sigma$.
$>$ Substitution $\sigma$ is a most general unifier (mgu) of $e_{1}$ and $e_{2}$ if
$>\sigma$ is a unifier of $e_{1}$ and $e_{2}$; and
$\nabla$ if substitution $\sigma^{\prime}$ also unifies $e_{1}$ and $e_{2}$, then $e \sigma^{\prime}$ is an instance of $e \sigma$ for all atoms $e$.
$>$ If two atoms have a unifier, they have a most general unifier.

## Unification Example

$p(A, b, C, D)$ and $p(X, Y, Z, e)$ have as unifiers:
$>\sigma_{1}=\{X / A, Y / b, Z / C, D / e\}$
$>\sigma_{2}=\{A / X, Y / b, C / Z, D / e\}$
$>\sigma_{3}=\{A / V, X / V, Y / b, C / W, Z / W, D / e\}$
$>\sigma_{4}=\{A / a, X / a, Y / b, C / c, Z / c, D / e\}$
$>\sigma_{5}=\{X / A, Y / b, Z / A, C / A, D / e\}$
$>\sigma_{6}=\{X / A, Y / b, Z / C, D / e, W / a\}$
The first three are most general unifiers.
The following substitutions are not unifiers:

$$
\begin{aligned}
\sigma_{7} & =\{Y / b, D / e\} \\
\sigma_{8} & =\{X / a, Y / b, Z / c, D / e\}
\end{aligned}
$$

## Bottom-up procedure

Y You can carry out the bottom-up procedure on the ground instances of the clauses.
> Soundness is a direct corollary of the ground soundness.
$>$ For completeness, we build a canonical minimal model. We need a denotation for constants:

Herbrand interpretation: The domain is the set of constants (we invent one if the KB or query doesn't contain one). Each constant denotes itself.

## Definite Resolution with Variables

A generalized answer clause is of the form

$$
\operatorname{yes}\left(t_{1}, \ldots, t_{k}\right) \leftarrow a_{1} \wedge a_{2} \wedge \ldots \wedge a_{m}
$$

where $t_{1}, \ldots, t_{k}$ are terms and $a_{1}, \ldots, a_{m}$ are atoms.
The SLD resolution of this generalized answer clause on $a_{i}$ with the clause

$$
a \leftarrow b_{1} \wedge \ldots \wedge b_{p}
$$

where $a_{i}$ and $a$ have most general unifier $\theta$, is

$$
\begin{aligned}
& \left(y e s\left(t_{1}, \ldots, t_{k}\right) \leftarrow\right. \\
& \left.\left.\quad a_{1} \wedge \ldots \wedge a_{i-1} \wedge b_{1} \wedge \ldots \wedge b_{p} \wedge a_{i+1} \wedge \ldots \wedge a_{m}\right)\right)^{\text {® }}
\end{aligned}
$$

## To solve query ? $B$ with variables $V_{1}, \ldots, V_{k}$ :

Set $a c$ to generalized answer clause yes $\left(V_{1}, \ldots, V_{k}\right) \leftarrow B$; While $a c$ is not an answer do

Suppose $a c$ is $y e s\left(t_{1}, \ldots, t_{k}\right) \leftarrow a_{1} \wedge a_{2} \wedge \ldots \wedge a_{m}$
Select atom $a_{i}$ in the body of $a c$;
Choose clause $a \leftarrow b_{1} \wedge \ldots \wedge b_{p}$ in $K B$;
Rename all variables in $a \leftarrow b_{1} \wedge \ldots \wedge b_{p}$;
Let $\theta$ be the most general unifier of $a_{i}$ and $a$.
Fail if they don't unify;
Set $a c$ to $\left(y e s\left(t_{1}, \ldots, t_{k}\right) \leftarrow a_{1} \wedge \ldots \wedge a_{i-1} \wedge\right.$

$$
\left.b_{1} \wedge \ldots \wedge b_{p} \wedge a_{i+1} \wedge \ldots \wedge a_{m}\right) \theta
$$

end while.

## Example

live $(Y) \leftarrow$ connected_to $(Y, Z) \wedge$ live $(Z)$. live $($ outside $)$ connected_to $\left(w_{6}, w_{5}\right)$. connected_to( $w_{5}$, outside). ?live (A).
yes $(A) \leftarrow \operatorname{live}(A)$.
yes $(A) \leftarrow$ connected_to $\left(A, Z_{1}\right) \wedge$ live $\left(Z_{1}\right)$.
$\operatorname{yes}\left(w_{6}\right) \leftarrow \operatorname{live}\left(w_{5}\right)$.
yes $\left(w_{6}\right) \leftarrow$ connected_to $\left(w_{5}, Z_{2}\right) \wedge$ live $\left(Z_{2}\right)$.
yes $\left(w_{6}\right) \leftarrow$ live $($ outside $)$.
$y e s\left(w_{6}\right) \leftarrow$.

## Function Symbols

Often we want to refer to individuals in terms of components.
Examples: 4:55 p.m. English sentences. A classlist. We extend the notion of term. So that a term can be $f\left(t_{1}, \ldots, t_{n}\right)$ where $f$ is a function symbol and the $t_{i}$ are terms.

In an interpretation and with a variable assignment, term $f\left(t_{1}, \ldots, t_{n}\right)$ denotes an individual in the domain. With one function symbol and one constant we can refer to infinitely many individuals.

## Lists

A list is an ordered sequence of elements.
Let's use the constant nil to denote the empty list, and the function $\operatorname{cons}(H, T)$ to denote the list with first element $H$ and rest-of-list $T$. These are not built-in.

The list containing david, alan and randy is cons(david, cons(alan, cons(randy, nil)))
append $(X, Y, Z)$ is true if list $Z$ contains the elements of $X$ followed by the elements of $Y$

```
append(nil, Z, Z).
append}(\operatorname{cons}(A,X),Y,\operatorname{cons}(A,Z))\leftarrow\operatorname{append}(X,Y,Z
```

