Computational Intelligence Slides Online Click on ahighlighted lecture

Chapter 4. Searching

Lecture 1l Searching. Graphs. Generic search engine.
Lecture 2 Blind search strategies.
Lecture 3 Heuristic search, including A*.

Lecture 4 Pruning the search space, direction of search,
Iterative deepening, dynamic programming.

Lecture5 Constraint satisfaction problems, consistency
algorithms.

Lecture 6 Hill climbing, randomized algorithms.

|:| © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998-2002 L] D

http://www.cs.ubc.ca/spider/poole/ci.html

Searching

L] Often we are not given an algorithm to solve a problem,
but only a specification of what is a solution — we have
to search for a solution.

Ll Search isaway to implement don’t know
nondeterminism.

L] So far we have seen how to convert a semantic problem
of finding logical consegquence to a search problem of

finding derivations.
2

http://www.cs.ubc.ca/spider/poole/ci.html

Search Graphs

[l A graph consistsof aset N of nodes and aset A of
ordered pairs of nodes, called arcs.

L] Noden,isa neighbor of n; if thereisan arc from n; to
No. That is, If (ng, np) € A.

L1 A path isasegquence of nodes (ng, ny, ..., Nk) such that
(Ni—1, Nj) € A

[Givenasetof start nodes and goal nodes, a solution

IS apath from a start node to a goal node. .

jl:lD

http://www.cs.ubc.ca/spider/poole/ci.html

Example Graph for the Delivery Robot

r123

? /storage

0125 aff=== (123 s ()]] 9

13d1

302 s 3013
1201 m— 202

1203 m— |2d4

4

:IDD

http://www.cs.ubc.ca/spider/poole/ci.html

Search Graph for SLD Resolution

yes<—a/\d
eS<—h/\d
a<bAac a<ag. y%<—b/\0/\d y&s<—gAd
a < h. b<«j. yes<—m/\d\ yes<—m/\d
b <« k. d <~ m. yes—jrcnd es<—f/\d
yes<—kAcAd
d < p. f<~m ./ yes<—m/\d yes<—p/\d
f < p. g<—m yes<—mAcAd yes<d
g < f. kK < m. £ A
) yes<—m Yes<—p
<~ m. p.

Y& <

Ll
[]
H

7and

http://www.cs.ubc.ca/spider/poole/ci.html

Graph Searching

L] Generic search agorithm: given agraph, start nodes, and
goal nodes, incrementally explore paths from the start
nodes.

L] Maintain a frontier of paths from the start node that
have been explored.

1 Assearch proceeds, the frontier expands into the
unexplored nodes until a goal node is encountered.

[l Theway in which the frontier is expanded defines the
search strategy. 6

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Problem Solving by Graph Searching

start
node ~]

SRS

:IDD

http://www.cs.ubc.ca/spider/poole/ci.html

Graph Search Algorithm

|nput: agraph,
a set of start nodes,
Boolean procedure goal (n) that tests if nisagoa nod
frontier := {(s) : sisastart node};
while frontier is not empty:
select and remove path (ng, ..., nk) from frontier;
If goal (nk)
return (np, ..., Nk);
for every neighbor n of ng
add (ng, ..., Nk, n) to frontier;
end while

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

We assume that after the search algorithm returns an
answer, it can be asked for more answers and the
procedure continues.

Which value is selected from the frontier at each stage
defines the search strategy.

The neighbors defines the graph.

IS _goal defines what is a solution.

]

http://www.cs.ubc.ca/spider/poole/ci.html

Depth-first Search

L1 Depth-first search treatsthe frontier as a stack

L] 1t always selects one of the last elements added to the
frontier.

L] If thefrontieris[p1, po, .. .]
L] p;isselected. Pathsthat extend p; are added to the
front of the stack (in front of po.
L1 pyisonly selected when al paths from p; have been
explored. 0

http://www.cs.ubc.ca/spider/poole/ci.html

lllustrative Graph — Depth-first Search

©
/\
NN

A A qQ Q
HO 86 0 CL
FREH QK

CEP @Y OO O
@ O OO .

http://www.cs.ubc.ca/spider/poole/ci.html

Complexity of Depth-first Search

Depth-first search isn't guaranteed to halt on infinite
graphs or on graphs with cycles.

The space complexity islinear in the size of the path
being explored.

Search is unconstrained by the goal until it happensto
stumble on the goal.

12

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Breadth-first Search

| Breadth-first search treatsthe frontier as a queue.

L1 It always selects one of the earliest elements added to the
frontier.

L] If thefrontieris[ps, p2, ..., Prl:

L] p;isselected. Its neighbors are added to the end of
the queue, after py.

Ll p,isselected next.

13

jDD

http://www.cs.ubc.ca/spider/poole/ci.html

|llustrative Graph — Breadth-first Search

D
/\
S N

G a8 Q9
4o g6 hdk
FRen 60 68

PO O CHOTO
50 O SO -

http://www.cs.ubc.ca/spider/poole/ci.html

Complexity of Breadth-first Search

The branching factor of anode isthe number of its
nelghbors.

If the branching factor for all nodes isfinite, breadth-first
search is guaranteed to find a solution if one exists.
It is guaranteed to find the path with fewest arcs.

Time complexity is exponential in the path length:
b", where b is branching factor, n is path length.

The space complexity is exponential in path length: b".

15

Search is unconstrained by the goal.

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

L owest-cost-first Search

Sometimes there are costs associated with arcs. The
cost of a path isthe sum of the costs of its arcs.

cost({no, ...,)—ZI Ni—1, Ni)|

At each stage, lowest-cost-first search selects a path on
the frontier with lowest cost.

| Thefrontier isapriority queue ordered by path cost.
It finds a least-cost path to a goal node.

| When arc costs are equal = breadth-first search. °

]

http://www.cs.ubc.ca/spider/poole/ci.html

Heuristic Searc

ldea: don’t ignore the goal when selecting paths.

Often there is extra knowledge that can be used to g
the search heuristics.

n(n) Is an estimate of the cost of the shortest path fr
noden to a goal node.

h(n) uses only readily obtainable information (that is
easy to compute) about a node.

h can be extended to pathis((ng, ..., Nk)) = h(nk).

h(n) is an underestimate if there is no path fror‘mﬁa
goal that has path length less tham).

http://www.cs.ubc.ca/spider/poole/ci.html

Example Heuristic Functio

1 If the nodes are points on a Euclidean plane and the
IS the distance, we can use the straight-line distance
n to the closest goal as the valuelgh).

L] If the graph is one of queries for a derivation from a k
one heuristic function is the number of atoms in the

query.

] If the nodes are locations and cost is time, we can us

distance to a goal divided by the maximum speed.
18

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

]

Best-first Searc

ldea: select the path whose end is closest to a goal
according to the heuristic function.

Best-first search selects a path on the frontier with
minimal h-value.

It treats the frontier as a priority queue orderedhby

19

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

lllustrative Graph — Best-first Sear

jl:ID

http://www.cs.ubc.ca/spider/poole/ci.html

Complexity of Best-first Searc

L] It uses space exponential in path length.
L1 Itisn’t guaranteed to find a solution, even if one exist

L] It doesn’t always find the shortest path.

21

jDD

http://www.cs.ubc.ca/spider/poole/ci.html

Heuristic Depth-first Searc

It's a way to use heuristic knowledge in depth-first
search.

Idea: order the neighbors of a nhode (hybefore addin
them to the front of the frontier.

It locally selects which subtree to develop, but still do
depth-first search. It explores all paths from the node
the head of the frontier before exploring paths from tt
next node.

Space is linear in path length. It isn’t guaranteed to fi
solution. It can get led up the garden path. =

Ll
[]
H

http://www.cs.ubc.ca/spider/poole/ci.html

_| A* search uses both path cost and heuristic values

cost(p) is the cost of the patp.
h(p) estimates of the cost from the endpoffo a goal.

Letf (p) = cost(p) + h(p). f (p) estimates of the total
path cost of going from a start node to a goalpia

pathp estimate
ssaat — n — goal

cosvt (p) h{n)

N /

f (D) ’

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

A* Search Algorith

A* I1s a mix of lowest-cost-first and best-first search.
It treats the frontier as a priority queue ordered hy).

It always selects the node on the frontier with the low
estimated distance from the start to a goal node
constrained to go via that node.

24

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Admissiblility of A*

If there is a solutionA* always finds an optimal solution
—the first path to a goal selected— if

L] the branching factor is finite

1 arc costs are bounded above zero (there is somé
such that all of the arc costs are greater tharand

L1 h(n) is an underestimate of the length of the shortest

from n to a goal node.
25

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Why is A* admissible

If a pathp to a goal is selected from a frontier, can the
be a shorter path to a goal?

Suppose patp’ is on the frontier. Becaugewas chosel
beforep’, andh(p) = 0:

cost(p) < cost(p’) + h(p).
Becausd Is an underestimate

cost(p) + h(p’) < cost(p”)
for any pathp” to a goal that extends

Socost(p) < cost(p”) for any other patlp” to a goé?. :

4

http://www.cs.ubc.ca/spider/poole/ci.html

Why is A* admissible

L] There is always an element of an optimal solution pa
on the frontier before a goal has been selected. This
because, in the abstract search algorithm, there is th
Initial part of every path to a goal.

L1 A* halts, as the minimurg-value on the frontier keeps
Increasing, and will eventually exceed any finite num

27

]

http://www.cs.ubc.ca/spider/poole/ci.html

Summary of Search Strategies

Strategy Frontier Selection | Halts? | Space
Depth-first Last nodeadded | No Linear
Breadth-first First node added | Yes Exp
Heuristic depth-first | Local min h(n) No Linear
Best-first Global minh(n) | No EXp
L owest-cost-first Minimal g(n) Yes EXp
A* Minimal f(n) Yes EXp

http://www.cs.ubc.ca/spider/poole/ci.html

Cycle Checking

T

L] You can prune a path that ends in anode already on the
path. This pruning cannot remove an optimal solution.

L] Using depth-first methods, with the graph explicitly

stored, this can be done in constant time. ”

L] For other methods, the cost is linear in path length.

jDD

http://www.cs.ubc.ca/spider/poole/ci.html

Multiple-Path Pruning

L] You can prune a path to node n that you have already
found a path to.

[Multiple-path pruning subsumes a cycle check.

L] Thisentails storing all nodes you have found paths té?

jl:lD

http://www.cs.ubc.ca/spider/poole/ci.html

Multiple-Path Pruning & Optimal Solutio

Problem: what if a subsequent path to n is shorter than the
first path to n?

L] You can remove all paths from the frontier that use the
longer path.

L] You can change theinitial segment of the paths on the
frontier to use the shorter path.

1 You can ensure this doesn’t happen. You make sure that

the shortest path to anode is found first. ar

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Multiple-Path Pruning & A*

Suppose path p to n was selected, but there is a shorter path to
N. Suppose this shorter path isvia path p’ on the frontier.

Suppose path p’ ends at noden'.

cost(p) + h(n) < cost(p’) + h(n’) because p was selected
beforep'.

cost(p’) + d(n’, n) < cost(p) because the pathto nviap' is
shorter.

d(n’, n) < cost(p) — cost(p’) < h(n) — h(n).

You can ensure this doesn’t occur if |h(n") — h(n)| < d(n3? n.

http://www.cs.ubc.ca/spider/poole/ci.html

Monotone Restriction

] Heuristic function h satisfiesthe monotone restriction if
lh(n") — h(n)| < d(m, n) for every arc (m, n).

L1 If h satisfies the monotone restriction, A* with multiple
path pruning always finds the shortest path to a goal.

33

jDD

http://www.cs.ubc.ca/spider/poole/ci.html

Iterative Deepening

So far all search strategies that are guaranteed to halt use
exponential space.

|dea: let’s recompute elements of the frontier rather
than saving them.

Look for paths of depth 0, then 1, then 2, then 3, etc.

| You need a depth-bounded depth-first searcher.

If apath cannot be found at depth B, ook for a path at
depth B + 1. Increase the depth-bound when the search
fails unnaturally (depth-bound was reached). 34

Ll
[]
H

http://www.cs.ubc.ca/spider/poole/ci.html

Iterative Degpening Complexity

Complexity with solution at depth k & branching factor b:

level | breadth-first | iterative degpening | # nodes
1 1 K b
2 1 k—1 b?
k—111 2 k-1
k 1 1 bX

S)

35

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Direction of Search

The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes.

Forward branching factor: number of arcs out of a node.

Backward branching factor: number of arcs into a node.

Search complexity isb". Should use forward search if
forward branching factor is less than backward branching
factor, and vice versa.

Note: sometimes when graph isdynamically constructed, you
may not be able to construct the backwards graph. 36

Ll
[]
H

http://www.cs.ubc.ca/spider/poole/ci.html

Bidirectiona Search

You can search backward from the goal and forward from
the start simultaneoudly.

Thiswins as 2b%/2 « bX. Thiscan resultin an
exponential saving in time and space.

The main problem is making sure the frontiers meet.

Thisis often used with one breadth-first method that
builds a set of locations that can lead to the goal. In the
other direction another method can be used to find a path
to these interesting locations. 37

Ll
[]
H

http://www.cs.ubc.ca/spider/poole/ci.html

|sland Driven Search

ldea: find aset of islands between sand g.
S— 1 —l0— ... — Im1—0
There are m smaller problems rather than 1 big problem.

This can win as mb¥/™ « bX.

The problem isto identify the islands that the path must pass
through. It isdifficult to guarantee optimality.

You can solve the subproblems using islands =

hierarchy of abstractions. 38

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Dynamic Programming

|dea: for statically stored graphs, build atable of dist(n) the
actual distance of the shortest path from node n to agoal.

This can be built backwards from the goal.

dist(n) = if is_goal (n)

MmN myeal(l(N, M)| + dist(m)) otherwise
This can be used locally to determine what to do.

There are two main problems:
¢ You need enough space to store the graph.
e The dist function needs to be recomputed for each goal?’.9

OJ
5

http://www.cs.ubc.ca/spider/poole/ci.html

Constraint Satisfaction Problems

L1 Multi-dimensional Selection Problems
L] Given aset of variables, each with a set of possible values
(adomain), assign avalue to each variable that either

|| satisfies some set of constraints:
satisfiability problems — “hard constraints’

] minimizes some cost function, where each
assignment of values to variables has some cost:
optimization problems — “soft constraints’

1 Many problems are amix of hard and soft constraints.

http://www.cs.ubc.ca/spider/poole/ci.html

Relationship to Search

The path to agoal isn’'t important, only the solution is.

Many algorithms exploit the multi-dimensional nature of
the problems.

There are no predefined starting nodes.

Often these problems are huge, with thousands of
variables, so systematically searching the spaceis
Infeasible.

For optimization problems, there are no well-defined
goal nodes. 4

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Posing a Constraint Satisfaction Problem

A CSP is characterized by
[| A setof variables V1, Vo, ..., Vp.

] Eachvariable V; has an associated domain Dy, of
possible values.

1 For satisfiability problems, there are constraint relations
on various subsets of the variables which give legal
combinations of values for these variables.

L] A solution to the CSP is an n-tuple of values for the

variables that satisfies all the constraint relations, *2

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Example: scheduling activities

Variables: A, B, C, D, E that represent the starting times of
various activities.

Domains. Da = {1, 2, 3,4}, Dg = {1, 2, 3, 4},
Dc=1{123,4},Dp ={1, 2, 3,4}, De = {1, 2, 3, 4}

Constraints:

BEIIACEZ2DANAAB AB#AC)A
C<DAA=D AE<AAE<BA

(E<C)A (E <D)A (B+#£D). N

jl:lD

http://www.cs.ubc.ca/spider/poole/ci.html

Generate-and-Test Algorithm

Generate the assignment space D = Dy, x Dy, x ... x Dy,.
Test each assignment with the constraints.

Example:
D = DaxDgx D¢ xDp x Dg
= {1,2,3,4 x{1,2,3,4} x {1, 2, 3, 4}
x{1,2,3,4} x {1, 2,3, 4}
= {(1,1,1,11),(1,1,1,1,2),..,(4,4,4,4,4)}

Generate-and-test is always exponential . 44

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Backtracking Algorithms

Systematically explore D by instantiating the variables in
some order and evaluating each constraint predicate as soon
as all itsvariables are bound. Any partial assignment that
doesn't satisfy the constraint can be pruned.

Example Assignment A = 1 A B = 1 isinconsistent with
constraint A # B regardless of the value of the other variables.

45

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

CSP as Graph Searching

A CSP can be seen as a graph-searching algorithm:
L] Totally order the variables, V1, ..., Vp.
L1 A node assigns values to the first j variables.

LI Theneighbors of node {V1/v1, ..., Vj/vj} are the
consistent nodes {V1/v1, ..., Vj/Vj, Vj+1/Vj+1} for each

Vi+1 € Dy,
L] The start node is the empty assignment {}.

L] A goa nodeisatotal assignment that satisfies the
constraints.

46

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Consistency Algorithms

ldea: prune the domains as much as possible before selecting

values from them.

A variableis domain consistent 1f no value of the domain of
the node is ruled impossible by any of the constraints.

Example: Dg = {1, 2, 3, 4} isn't domain consistent asB = 3
violates the constraint B £ 3.

47

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Arc Consistency

L] A constraint network has nodes corresponding to
variables with their associated domain. Each constraint
relation P(X, Y) correspondsto arcs (X, Y) and (Y, X).

L] Anarc (X,Y) is arc consistent if for each value of X in
Dx thereissomevaluefor Y in Dy such that P(X, Y) is
satisfied. A network isarc consistent if al itsarcsare arc
consistent.

L] If anarc (X, Y) isnot arc consistent, all values of X in
Dx for which there is no corresponding value in Dy may
be deleted from Dy to makethe arc (X, Y) cons stent. s

4

http://www.cs.ubc.ca/spider/poole/ci.html

Example Constraint Network

49

:IDD

http://www.cs.ubc.ca/spider/poole/ci.html

Arc Consistency Algorithm

The arcs can be considered in turn making each arc consistent.

Anarc (X, Y) needsto berevisited if thedomanof Y is
reduced.

Three possible outcomes (when all arcs are arc consistent):
[1 Onedomainisempty = no solution
[] Each domain has asingle value = unique solution

L] Some domains have more than one value = may or
may not be a solution 50

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

]

Finding solutions when AC finishes

If some domains have more than one e ement = search

Split adomain, then recursively solve each half.
We only need to revisit arcs affected by the split.

It is often best to split adomain in half.

91

]

http://www.cs.ubc.ca/spider/poole/ci.html

Hill Climbing

Many search spaces are too big for systematic search.

A useful method in practice for some consistency and
optimization problems i hill climbing:

L1 Assume a heuristic value for each assignment of valt
to all variables.

1 Maintain an assignment of a value to each variable.

L] Select a “neighbor” of the current assignment that
Improves the heuristic value to be the next current
assignment. 52

http://www.cs.ubc.ca/spider/poole/ci.html

Selecting Neighbors in Hill Climbin

1 When the domains are small or unordered, the neigh
of a node correspond to choosing another value for c
of the variables.

L] When the domains are large and ordered, the neighb
a node are the adjacent values for one of the dimens

L] If the domains are continuous, you can use
Gradient ascentchange each variable proportional tc
the gradient of the heuristic function in that direction.
The value of variabl&; goes fromv; tov; + ”ax.

Gradient descentgo downhill;v; becomes; — ngiﬁ
g

4

http://www.cs.ubc.ca/spider/poole/ci.html

Problems with Hill Climbing

Foothills local maxima
that are not global
maxima

Plateaus heuristic values
are uninformative

Ridge foothill where

n-step lookahead @
might help Foothil
| gnor ance of the peak

http://www.cs.ubc.ca/spider/poole/ci.html

Randomized Algorithm

[| Consider two methods to find a maximum value:

L1 Hill climbing, starting from some position, keep
moving uphill & report maximum value found

L1 Pick values at random & report maximum value fo

L1 Which do you expect to work better to find a maximu

[] Can a mix work better?

95

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Randomized Hill Climbing

As well as uphill steps we can allow for:

] Random stepsmove to a random neighbor.

[1 Random restartreassign random values to all variab

Which is more expensive computationally?

56

jl:lD

http://www.cs.ubc.ca/spider/poole/ci.html

1-Dimensional Ordered Exampl

Two 1-dimensional search spaces; step right or left:

Which method would most easily find the maximum?

What happens in hundreds or thousands of dimensic

| What if different parts of the search space have differ
structure? o7

Ll
[]
H

http://www.cs.ubc.ca/spider/poole/ci.html

Stochastic Local Search for CS

Goal is to find an assignment with zero unsatisfied
relations.

Heuristic function: the number of unsatisfied relation

We want an assignment with minimum heuristic valu

Stochastic local search i1s a mix of:

Greedy descent: move to a lowest neighbor
Random walk: taking some random steps

Random restart: reassigning values to all vagable

O

[]
i

http://www.cs.ubc.ca/spider/poole/ci.html

Greedy Desce

L1 It may be too expensive to find the variable-value pai
that minimizes the heuristic function at every step.

L1 An alternative is:
L1 Select a variable that participates in the most nun
of conflicts.

L1 Choose a (different) value for that variable that
resolves the most conflicts.

The alternative is easier to compute even if it doesn’t alw.
maximally reduce the number of conflicts. 59

Ll
[]
H

http://www.cs.ubc.ca/spider/poole/ci.html

Random Wal

You can add randomness:

[1 When choosing the best variable-value pair, random|
sometimes choose a random variable-value pair.

1 When selecting a variable then a value:
[| Sometimes choose a random variable.

|] Sometimes choose, at random, a variable that
participates in a conflict (a red node).

[| Sometimes choose a random variable.

|| Sometimes choose the best value and sometimGeOs cl
a random value. =
F

http://www.cs.ubc.ca/spider/poole/ci.html

Comparing Stochastic Algorith

L] How can you compare three algorithms when

L] one solves the problem 30% of the time very quic
but doesn’t halt for the other 70% of the cases

L] one solves 60% of the cases reasonably quickly &
doesn’t solve the rest

L1 one solves the problem in 100% of the cases, but
slowly?

L] Summary statistics, such as mean run time, median
time, and mode run time don’t make much sense:

Ll
[]
H

http://www.cs.ubc.ca/spider/poole/ci.html

Runtime Distributio

L] Plots runtime (or number of steps) and the proportior
number) of the runs that are solved within that runtin

1

0.90
0.8]
0.7L
0.6]
0.50
0.4L
0.3]
0.21
0.1L

62

1 10 100 1000

jl:lD

http://www.cs.ubc.ca/spider/poole/ci.html

Variant: Simulated Anneall

|| Pick a variable at random and a new value at randomn

L1 Ifitis an improvement, adopt it.
L] Ifitisn’t an improvement, adopt it probabilistically
depending on a temperature parameler,
L1 With current noden and proposed nod# we move tc
n’ with probability e —hm)/T

[l Temperature can be reduced.
63

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Tabu lists

To prevent cycling we can maintair tabu list of thek
last nodes visited.

Don’t allow a node that is already on the tabu list.
If k =1, we don’t allow a node to the same value.

We can implement it more efficiently than as a list of
complete nodes.

It can be expensive K is large.
64

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Parallel Searc

ldea: maintaink nodes instead of one.
At every stage, update each node.
Whenever one node is a solution, it can be reported.

Like k restarts, but usdstimes the minimum number c
steps.

65

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

[]

I N O B

Beam Searc

Like parallel search, witk nodes, but you choose tlke
best out of all of the neighbors.

Whenk = 1, it is hill climbing.
Whenk = oo, it Is breadth-first search.
The value ok lets us limit space and parallelism.

Randomness can also be added.

66

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Stochastic Beam Sear

Like beam search, but you probabilistically chooseklr
nodes at the next generation.

The probability that a neighbor Is chosen is proportio
to the heuristic value.

This maintains diversity amongst the nodes.
The heuristic value reflects the fithess of the node.

Like asexual reproduction: each node gives its muta
and the fittest ones survive. 67

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Genetic Algorithm:

L] Like stochastic beam search, but pairsiofies are
combined to create the offspring:
L] For each generation:

|1 Randomly choose pairs of nodes where the fittest
iIndividuals are more likely to be chosen.

L] For each pair, perform a cross-over: form two
offspringseach taking different parts of their parer

[| Mutate some values

L] Report best node found. 68

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Given two nodes:
Xir=a, Xo=ay,..., Xm= an
X1 =Db1,Xo=Dbo,..., Xn=bn
Selecti at random.

Form two offsprings:

Note that this depends on an ordering of the variable

... : 69
Many variations are possible.

Ll
[]
H

http://www.cs.ubc.ca/spider/poole/ci.html

Example: Crossword Puzz

Words:

1 2
3

ant, big, bus, car, has
book, buys, hold,
lane, year

beast, ginger, search,

symbol, syntax

70

]

http://www.cs.ubc.ca/spider/poole/ci.html

Constraint satisfaction revisited

A Constraint Satisfaction problem consists of:

a set of variables

a set of possible values, a domain for each variable

A set of constraints amongst subsets of the variables
(relations)

Theam isto find a set of assignments that satisfies all
constraints, or to find all such assignments.

71

http://www.cs.ubc.ca/spider/poole/ci.html

Example: crossword puzzle

2

at, be, he, it, on,
eta, hat, her, him,
one,

desk, dove, easy,
else, help, kind,
soon, this,

dance, first, fuels,
given, haste,
loses, sense,
sound, think,

usage

72

jl:ID

http://www.cs.ubc.ca/spider/poole/ci.html

Dual Representations

Two ways to represent the crossword as a CSP

1 First representation:

nodes represent the positions 1 to 6
domains are the words

constraints specify that the letters on the intersections
must be the same.

1 Dual representation:

nodes represent the intersecting squares

domains are the letters

73
constraints specify that the words must fit =

iy

http://www.cs.ubc.ca/spider/poole/ci.html

Representations for iImage Interpretation

1 First representation:

nodes represent the chains and regions
domains are the scene objects

constraints correspond to the intersections and
adjacency

] Dual representation:

nodes represent the intersections

domains are the intersection labels

constraints specify that the chains must have same
: 74
marking

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Arc Consistency for non-binary relations

L] Eachrédation R(Xy, ..., Xk) converted into k hyperarcs:

(X1, R(X1, ..., X))

(Xk, R(X1, ..., Xx))

L]l Hyperarc (X, R(Xq, ..., X)) is arc consistent if

]
]

for every v; € domain(X;)

there existsv; € domain(Xy), ...

Vi_1 € domain(Xjy1), Vir1 € domain(Xj.1) ...
Vk € domain(X)

such that R(Xq, ..., Xk) IStrue.

75

jDD

http://www.cs.ubc.ca/spider/poole/ci.html

Variable Elimination

L] ldea: eliminate the variables one-by-one passing their
constraints to their neighbours

[| Toediminate avariable X;:
L1 Join all of therelationsin which X; appears.

L1 Project the join onto the other variables, forming a
new relation.

[| Remember which values of X; are associated with the
tuples of the new relation.

1 Replacethe old relations containing X; with the new
relation. 0

http://www.cs.ubc.ca/spider/poole/ci.html

Variable elimination (cont.)

When there isa single variable remaining, if it has no
values, the network was inconsi stent.

The solutions can be computed from the remembered
mappings.

The variables are eliminated according to some
elimination ordering

Different elimination oderings result in different size

relations being generated. .

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Example network

A

A<D
A#B D

B E-Aisodd @
C234 3

B<E

- (easadegren(easy>
C

EZD D<C

78

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Example: arc-consistent network

jDD

http://www.cs.ubc.ca/spider/poole/ci.html

Example: eliminating C

D E

80

3 3

O AN M
@ < <
o

A

O

.M_

LLI <t AN M
O N < <
LLI

S

O

.r1._

r4 : 7TD,EN3

2
2
2
2

— new constraint

o M

< <

rnear2 | C D E

3 :

http://www.cs.ubc.ca/spider/poole/ci.html

Resulting network after eliminating C

jl:lD

http://www.cs.ubc.ca/spider/poole/ci.html

Stochastic local search for CSPs
L1 Thefollowing can be used to solve CSPs:

L1 hill climbing on the assignments.

| Choose the best variable then the best value.
| Choose the best variable-value pair

Best: satisfies the most constraints

L] random assignments of values.

'] random walks

L] A mix works even better.

82

jDI:J

http://www.cs.ubc.ca/spider/poole/ci.html

Evaluating Algorithms

[Summary statistics such as mean or median of run
times are often not useful in comparing algorithms.

L] Theinformation about an algorithm performance can be
determined from a runtime distribution.

L] A runtime distribution specifies the proportion of the
Instances that have arunning time less than any

particular run time.
83

]

http://www.cs.ubc.ca/spider/poole/ci.html

