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Chapter 8: Actions and Planning

• Lecture 1 Actions, planning and the robot planning

domain

• Lecture 2 The STRIPS representation

• Lecture 3 The situation calculus.

• Lecture 4 Planning, forward and resolution planning.

• Lecture 5 The STRIPS planner.

• Lecture 6 Regression planner.

⇐H © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑H⇒1

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 8, Lecture 1, Page 1

Actions and Planning

➤ Agents reason in time

➤ Agents reason about time

Time passes as an agent acts and reasons.

Given a goal, it is useful for an agent to think about what it

will do in the future to determine what it will do now.
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Representing Time
Time can be modeled in a number of ways:

Discrete timeTime can be modeled as jumping from one

time point to another.

Continuous timeYou can model time as being dense.

Event-based timeTime steps don’t have to be uniform; you

can consider the time steps between interesting events.

State spaceInstead of considering time explicitly, you can

consider actions as mapping from one state to another.

You can model time in terms ofpoints or intervals.
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Time and Relations

When modeling relations, you distinguish two basic types:

➤ Static relationsare those relations whose value does not

depend on time.

➤ Dynamic relationsare relations whose truth values

depends on time. Either

➣ derived relationswhose definition can be derived

from other relations for each time,

➣ primitive relationswhose truth value can be

determined by considering previous times.
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The Delivery Robot World
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Modeling the Delivery Robot World

Individuals: rooms, doors, keys, parcels, and the robot.

Actions:

➤ move from room to room

➤ pick up and put down keys and packages

➤ unlock doors (with the appropriate keys)

Relations: represent

➤ the robot’s position

➤ the position of packages and keys and locked doors

➤ what the robot is holding
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☞

☞

☞

6

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 8, Lecture 1, Page 6

Example Relations

➤ at(Obj, Loc) is true in a situation if objectObj is at
locationLoc in the situation.

➤ carrying(Ag, Obj) is true in a situation if agentAg is
carryingObj in that situation.

➤ sitting_at(Obj, Loc) is true in a situation if objectObj is
sitting on the ground (not being carried) at locationLoc

in the situation.

➤ unlocked(Door) is true in a situation if doorDoor is
unlocked in the situation.

➤ autonomous(Ag) is true if agentAg can move
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autonomously. This is static.

➤ opens(Key, Door) is true if keyKeyopens doorDoor.

This is static.

➤ adjacent(Pos1, Pos2) is true if positionPos1 is adjacent

to positionPos2 so that the robot can move fromPos1 to

Pos2 in one step.

➤ between(Door, Pos1, Pos2) is true ifDoor is between

positionPos1 and positionPos2. If the door is unlocked,

the two positions are adjacent.
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Actions

➤ move(Ag, From, To): agentAg moves from location

From to adjacent locationTo. The agent must be sitting

at locationFrom.

➤ pickup(Ag, Obj) agentAgpicks upObj. The agent must

be at the location thatObj is sitting.

➤ putdown(Ag, Obj) the agentAg puts downObj. It must

be holdingObj.

➤ unlock(Ag, Door) agentAg unlocksDoor. It must be

outside the door and carrying the key to the door.
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Initial Situation

sitting_at(rob, o109).

sitting_at(parcel, storage).

sitting_at(k1, mail).

Static Facts

between(door1, o103, lab2).

opens(k1, door1).

autonomous(rob).
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Derived Relations

at(Obj, Pos) ← sitting_at(Obj, Pos).

at(Obj, Pos) ← carrying(Ag, Obj) ∧ at(Ag, Pos).

adjacent(o109, o103).

adjacent(o103, o109).

· · ·
adjacent(lab2, o109).

adjacent(P1, P2) ←
between(Door, P1, P2) ∧
unlocked(Door).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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STRIPS Representation

➤ State-based view of time.

➤ The actions are external to the logic.

➤ Given a state and an action, the STRIPS representation is

used to determine

➣ whether the action can be carried out in the state

➣ what is true in the resulting state
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STRIPS Representation: Idea

➤ Predicates areprimitive or derived.

➤ Use normal rules for derived predicates.

➤ The STRIPS representation is used to determine the truth

values of primitive predicates based on the previous state

and the action.

➤ Based on the idea that most predicates are unaffected by

a single action.

➤ STRIPS assumption:Primitive relations not mentioned

in the description of the action stay unchanged.
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STRIPS Representation of an action

The STRIPS representationfor an action consists of:

preconditionsA list of atoms that need to be true for the

action to occur

delete listA list of those primitive relations no longer true

after the action

add list A list of the primitive relations made true by the

action
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☞

☞

☞

14

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 8, Lecture 2, Page 4

STRIPS Representation of “pickup”

The actionpickup(Ag, Obj) can be defined by:

preconditions[autonomous(Ag), Ag 6= Obj, at(Ag, Pos),

sitting_at(Obj, Pos)]
delete list [sitting_at(Obj, Pos)]
add list [carrying(Ag, Obj)]
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STRIPS Representation of “move”

The actionmove(Ag, Pos1, Pos2) can be defined by:

preconditions[autonomous(Ag), adjacent(Pos1, Pos2, S) ,

sitting_at(Ag, Pos1)]
delete list [sitting_at(Ag, Pos1)]
add list [sitting_at(Ag, Pos2)]
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Example Transitions



sitting_at(rob, o109).

sitting_at(parcel, storage).

sitting_at(k1, mail).




move(rob, o109, storage)−→




sitting_at(rob, storage).

sitting_at(parcel, storage).

sitting_at(k1, mail).




pickup(rob, parcel)−→




sitting_at(rob, storage).

carrying(rob, parcel).

sitting_at(k1, mail).



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Situation Calculus

• State-based representation where the states are denoted

by terms.

• A situation is a term that dentotes a state.

• There are two ways to refer to states:

init denotes the initial state

do(A, S) denotes the state resulting from doing

actionA in stateS, if it is possible to doA in S.

• A situation also encodes how to get to the state it denotes.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒18
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Example States

• init

• do(move(rob, o109, o103), init)

• do(move(rob, o103, mail),

do(move(rob, o109, o103),

init)).

• do(pickup(rob, k1),

do(move(rob, o103, mail),

do(move(rob, o109, o103),

init))).

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒19
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Using the Situation Terms

• Add an extra term to each dynamic predicate indicating

the situation.

• Example Atoms:

at(rob, o109, init)

at(rob, o103, do(move(rob, o109, o103), init))

at(k1, mail, do(move(rob, o109, o103), init))

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒20
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Axiomatizing using the Situation Calculus

• You specify what is true in theinitial state using axioms

with init as the situation parameter.

• Primitive relationsare axiomatized by specifying what

is true in situationdo(A, S) in terms of what holds in

situationS.

• Derived relationsare defined using clauses with a free

variable in the situation argument.

• Static relationsare defined without reference to the

situation.

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒21
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Initial Situation

sitting_at(rob, o109, init).

sitting_at(parcel, storage, init).

sitting_at(k1, mail, init).

Derived Relations

adjacent(P1, P2, S) ←
between(Door, P1, P2) ∧
unlocked(Door, S).

adjacent(lab2, o109, S).

· · ·

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒22
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When are actions possible?

poss(A, S) is true if actionA is possible in stateS.

poss(putdown(Ag, Obj), S) ←
carrying(Ag, Obj, S).

poss(move(Ag, Pos1, Pos2), S) ←
autonomous(Ag) ∧
adjacent(Pos1, Pos2, S) ∧
sitting_at(Ag, Pos1, S).

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒23
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Axiomatizing Primitive Relations

Example: Unlocking the door makes the door unlocked:

unlocked(Door, do(unlock(Ag, Door), S)) ←
poss(unlock(Ag, Door), S).

Frame Axiom: No actions lock the door:

unlocked(Door, do(A, S)) ←
unlocked(Door, S) ∧
poss(A, S).

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒24

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 8, Lecture 3, Page 8

Example: axiomatizingcarried

Picking up an object causes it to be carried:

carrying(Ag, Obj, do(pickup(Ag, Obj), S)) ←
poss(pickup(Ag, Obj), S).

Frame Axiom: The object is being carried if it was being

carried before unless the action was to put down the object:

carrying(Ag, Obj, do(A, S)) ←
carrying(Ag, Obj, S) ∧
poss(A, S) ∧
A 6= putdown(Ag, Obj).

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒25
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More General Frame Axioms

The only actions that undositting_at for objectObj is when

Obj moves somewhere or when someone is picking upObj.

sitting_at(Obj, Pos, do(A, S)) ←
poss(A, S) ∧
sitting_at(Obj, Pos, S) ∧
∀Pos1 A 6= move(Obj, Pos, Pos1) ∧
∀Ag A 6= pickup(Ag, Obj).

The last line is equivalent to:

∼∃Ag A= pickup(Ag, Obj)

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒26
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which can be implemented as

sitting_at(Obj, Pos, do(A, S)) ←
· · · ∧ · · · ∧ · · · ∧
∼is_pickup_action(A, Obj).

with the clause:

is_pickup_action(A, Obj) ←
A = pickup(Ag, Obj).

which is equivalent to:

is_pickup_action(pickup(Ag, Obj), Obj).

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒27
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STRIPS and the Situation Calculus

• Anything that can be stated in STRIPS can be stated in

the situation calculus.

• The situation calculus is more powerful. For example,

the “drop everything” action.

• To axiomatize STRIPS in the situation calculus, we can

use holds(C, S) to mean thatC is true in situationS.

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑⇒28
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holds(C, do(A, W)) ←
preconditions(A, P) ∧ The preconditions of

holdsall(P, W) ∧ of A all hold inW.

add_list(A, AL) ∧ C is on the

member(C, AL). addlist ofA.

holds(C, do(A, W)) ←
preconditions(A, P) ∧ The preconditions of

holdsall(P, W) ∧ of A all hold inW.

delete_list(A, DL) ∧ C isn’t on the

notin(C, DL) ∧ deletelist ofA.

holds(C, W). C held beforeA.

⇐ © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ⇑29
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Planning

Given

➤ an initial world description

➤ a description of available actions

➤ a goal

a plan is a sequence of actions that will achieve the goal.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Example Planning

If you want a plan to achieve Rob holding the keyk1 and

being ato103, you can issue the query

?carrying(rob, k1, S) ∧ at(rob, o103, S).

This has an answer

S= do(move(rob, mail, o103),

do(pickup(rob, k1),

do(move(rob, o103, mail),

do(move(rob, o109, o103), init)))).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Forward Planner

➤ Search in the state-space graph, where the nodes

represent states and the arcs represent actions.

➤ Search from initial state to a state that satisfies the goal.

➤ A complete search strategy (e.g.,A∗ or iterative

deepening) is guaranteed to find a solution.

➤ Branching factor is the number of legal actions. Path

length is the number of actions to achieve the goal.

➤ You usually can’t do backward planning in the state

space, as the goal doesn’t uniquely specify a state.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Planning as Resolution

➤ Idea: backward chain on the situation calculus rules or

the situation calculus axiomatization of STRIPS.

➤ A complete search strategy (e.g.,A∗ or iterative

deepening) is guaranteed to find a solution.

➤ When there is a solution to the query with situation

S= do(A, S1), actionA is the last action in the plan.

➤ You can virtually always use a frame axiom so that the

search space is largely unconstrained by the goal.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Goal-directed searching

➤ Given a goal, you would like to consider only those

actions that actually achieve it.

➤ Example:

?carrying(rob, parcel, S) ∧ in(rob, lab2, S).

the last action needed is irrelevant to the left subgoal.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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STRIPS Planner
➤ Divide and conquer: to create a plan to achieve a

conjunction of goals, create a plan to achieve one goal,

and then create a plan to achieve the rest of the goals.

➤ To achieve a list of goals:

➣ choose one of them to achieve.

➣ If it is not already achieved

➢ choose an action that makes the goal true

➢ achieve the preconditions of the action

➢ carry out the action

➣ achieve the rest of the goals.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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STRIPS Planner Code

achieve_all(Gs, W1, W2) is true ifW2 is the world resulting%%%%%%%%

from achieving every element of the listGsof goals from%%%%%%%%%

the worldW1.%%

achieve_all([ ], W0, W0).

achieve_all(Goals, W0, W2) ←
remove(G, Goals, Rem_Gs) ∧
achieve(G, W0, W1) ∧
achieve_all(Rem_Gs, W1, W2).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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achieve(G, W0, W1) is true ifW1 is the resulting world%%%%%%%

after achieving goalG from the worldW0.%%%%%%

achieve(G, W, W) ←
holds(G, W).

achieve(G, W0, W1) ←
clause(G, B) ∧
achieve_all(B, W0, W1).

achieve(G, W0, do(Action, W1)) ←
achieves(Action, G) ∧
preconditions(Action, Pre) ∧
achieve_all(Pre, W0, W1).

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Example of STRIPS-planning (1)

Query:

?achieve_all([carrying(rob, parcel), sitting_at(rob, lab2)], init, S)

Sequence of actions transforming initial state into goal state:

do(move(rob, o103, lab2),

do(unlock(rob, door1),

do(move(rob, mail, o103),

do(pickup(rob, k1, mail),

do(move(rob, o103, mail),

do(move(rob, o109, o103),

do(move(rob, storage, o109),

do(pickup(rob, parcel, storage),

do(move(rob, o109, storage),

init))))))))).

second goal

first goal

38



Example of STRIPS-planning (2)

Query (subgoals in reversed order):

?achieve_all([sitting_at(rob, lab2), carrying(rob, parcel)], init, S)

Sequence of actions transforming initial state into goal state:

do(pickup(rob, parcel, storage),

do(move(rob, o109, storage),

do(move(rob, o103, o109),

do(move(rob, lab2, o103),

do(move(rob, o103, lab2),

do(unlock(rob, door1),

do(move(rob, mail, o103),

do(pickup(rob, k1, mail),

do(move(rob, o103, mail),

do(move(rob, o109, o103),

init))))))))).

second goal

undoes 

first goal!

first goal
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Undoing Achieved Goals

Example: consider trying to achieve

[carrying(rob, parcel), sitting_at(rob, lab2)]
Example: consider trying to achieve

[sitting_at(rob, lab2), carrying(rob, parcel)]
➤ The STRIPS algorithm, as presented, is unsound.

➤ Achieving one subgoal may undo already achieved

subgoals.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999

☞

☞

☞

40

http://www.cs.ubc.ca/spider/poole/ci.html


Computational Intelligence Chapter 8, Lecture 5, Page 5

Fixing the STRIPS Algorithm

Two ideas to make STRIPS sound:

➤ Protect subgoalsso that, once achieved, until they are

needed, they cannot be undone. Letremovereturn

different choices.

➤ Reachieve subgoalsthat have been undone.

➣ Protecting subgoals makes STRIPS incomplete.

➣ Reachieving subgoals finds longer plans than

necessary.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Does protecting always work?

➤ Example Suppose the robot can only carry one item at a

time. Consider the goal:

sitting_at(rob, lab2) ∧ carrying(rob, parcel)

➤ We cannot consider the subgoals in isolation!

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Regression

➤ Idea: don’t solve one subgoal by itself, but keep track of

all subgoals that must be achieved.

➤ Given a set of goals:

➣ If they all hold in the initial state, return the empty

plan

➣ Otherwise, choose an actionA that achieves one of

the subgoals. This will be the last action in the plan.

➣ Determine what must be true immediately beforeA

so that all of the goals will be true immediately after.

Recursively solve these new goals.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Regression as Path Finding

➤ The nodes are sets of goals. Arcs correspond to actions.

➤ A node labeled with goal setG has a neighbor for each

actionA that achieves one of the goals inG.

➤ The neighbor corresponding to actionA is the node with

the goalsGA that must be true immediately before the

actionA so that all of the goals inG are true immediately

afterA. GA is the weakest preconditionfor actionA and

goal setG.

➤ Search can stop when you have a node where all the

goals are true in the initial state.

© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1999
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Weakest preconditions

wp(A, GL, WP) is true ifWP is the weakest precondition

that must occur immediately before actionA so every element

of goal listGL is true immediately afterA.

For the STRIPS representation (with all predicates primitive):

➤ wp(A, GL, WP) is falseif any element ofGL is on delete

list of actionA.

➤ OtherwiseWP is

preconds(A) ∪ {G ∈ GL : G 6∈ add_list(A)}.
wherepreconds(A) is the list of preconditions of actionA

andadd_list(A) is the add list of actionA.
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Weakest Precondition Example

The weakest precondition for

[sitting_at(rob, lab2), carrying(rob, parcel)]
to be true aftermove(rob, Pos, lab2) is that

[autonomous(rob),

adjacent(Pos, lab2),

sitting_at(rob, Pos),

carrying(rob, parcel)]
is true immediately before the action.
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A Regression Planner
% solve(GL, W) is true if every element of goal listGL is true
% in worldW.

solve(GoalSet, init) ←
holdsall(GoalSet, init).

solve(GoalSet, do(Action, W)) ←
consistent(GoalSet) ∧
choose_goal(Goal, GoalSet) ∧
choose_action(Action, Goal) ∧
wp(Action, GoalSet, NewGoalSet) ∧
solve(NewGoalSet, W).
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Regression Search Space Example

[carrying(rob,parcel), sitting_at(rob,lab2)]

pickup(rob,parcel)
move(rob,P,lab2)

[sitting_at(parcel,lab2), sitting_at(rob,lab2)]

[carrying(rob,parcel), sitting_at(rob,P), adjacent(P,lab2)]
=

[carrying(rob,parcel), sitting_at(rob,o103), unlocked(door1)]

[carrying(rob,parcel), sitting_at(rob,o103), carrying(rob,k1)]

unlock(rob,door1)
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