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Chapter 8: Actions and Planni

Lecture 1 Actions, planning and the robot planning
domain

Lecture 2 The STRIPS representation

Lecture 3 The situation calculus.

Lecture 4 Planning, forward and resolution planning.
Lecture 5 The STRIPS planner.

Lecture 6 Regression planner.
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Actions and Plannin

L1 Agents reason in time
L1 Agents reason about time

Time passes as an agent acts and reasons.

Given a goal, it is useful for an agent to think about what
will do in the future to determine what it will do now.
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Representing Tim

Time can be modeled in a number of ways:

Discrete timeTime can be modeled as jumping from on
time point to another.

Continuous timeYou can model time as being dense.

Event-based timelime steps don’t have to be uniform; y
can consider the time steps between interesting evel

State spacdnstead of considering time explicitly, you ce
consider actions as mapping from one state to anoth

You can model time in terms (points or intervals. >

Im
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Time and Relation

When modeling relations, you distinguish two basic types

[ ] Static relationsare those relations whose value does
depend on time.

[1 Dynamic relationsare relations whose truth values
depends on time. Either

L1 derived relationswhose definition can be derived
from other relations for each time,

L1 primitive relations whose truth value can be
determined by considering previous times. 4

Im
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The Delivery Robot Worl
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Modeling the Delivery Robot Worl

Individuals: rooms, doors, keys, parcels, and the robot.

Actions:

| move from room to room

pick up and put down keys and packages
unlock doors (with the appropriate keys)

Relations: represent

the robot’s position

the position of packages and keys and locked do
what the robot is holding 6
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Example Relation

L] at(Obj, Loc) is true in a situation if objedDbj is at
locationLoc in the situation.

L] carrying(Ag, Obj) is true in a situation if agerigis
carryingObj in that situation.

L] sitting at(Obj, Loc) is true in a situation if objedDbj is
sitting on the ground (not being carried) at locatlarc
In the situation.

L] unlockedDoor) is true in a situation if dooDoor is
unlocked in the situation.

[] autonomougAg) is true if agentAg can move

Im


http://www.cs.ubc.ca/spider/poole/ci.html

autonomously. This is static.

opengKey, Door) is true if keyKeyopens dooboor.
This Is static.

adjacentPos;, Pos) is true if positionPogs is adjacent
to positionPo so that the robot can move froRos to
P03 in one step.

betweeDoor, Pos,, Pos) Is true if Door Is between
positionPos and positionPos. If the door is unlocked.
the two positions are adjacent.

Im
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L] move&Ag, From, To): agentAg moves from location
From to adjacent locatioiio. The agent must be sitting
at locationFrom.

L1 pickup(Ag, Obj) agentAgpicks upObj. The agent mu:
be at the location thadbj is sitting.

L] putdowrfAg, Obj) the agenfAg puts downObj. It must
be holdingOb.

L1 unlock(Ag, Door) agentAg unlocksDoor. It must be
outside the door and carrying the key to the doore

C
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Initial Situation

sitting_at(rob, 0109).
sitting at(parcel, storage.
sitting at(k1, mail).

Static Fact

betweexdoorl, 0103 lab2).
opensgkl, doorl).
autonomougob).

10
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Derived Relation

at(Obj, Pog <« sitting at(Obj, Pos).

at(Obj, Pog <« carrying(Ag, Obj) A at(Ag, Pos).
adjacentol09, 0103).

adjacentol103 0109).

adjacentlab2, 0109).

adjacentPq, P2) «
betweeDoor, P1, P>) A
unlockedDoor).

11
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STRIPS Representatic

State-based view of time.
The actions are external to the logic.

Given a state and an action, the STRIPS representat
used to determine
[ ] whether the action can be carried out in the state

L1 what is true in the resulting state

12
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STRIPS Representation: |Id

Predicates ar primitive or derived.
Use normal rules for derived predicates.

The STRIPS representation is used to determine the
values of primitive predicates based on the previous
and the action.

Based on the idea that most predicates are unaffecte
a single action.

STRIPS assumptionPrimitive relations not mentione
in the description of the action stay unchanged. "

C
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STRIPS Representation of an ac

The STRIPS representatiofor an action consists of:

preconditionsA list of atoms that need to be true for the
action to occur

delete listA list of those primitive relations no longer tru
after the action

add list A list of the primitive relations made true by the

action
14

Im


http://www.cs.ubc.ca/spider/poole/ci.html

STRIPS Representation of “picku

The action pickup/Ag, Obj) can be defined by:

preconditions[autonomougAg), Ag % Obj, at(Ag, Pos),

sitting at(Obj, Po9]
delete list [sitting_at(Obj, Po9]
add list [carrying(Ag, Ob))]

15
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STRIPS Representation of “mo

The action movéAg, Pos, Pos) can be defined by:

preconditions[autonomou@Ag), adjacentPos, Pos, S) ,
sitting at(Ag, Pos))]

delete list [sitting at(Ag, Pog)]
add list [sitting at(Ag, Pos)]

16
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Example Transitio

sitting_at(rob, 0109).

R~

sitting at(parcel, storage.

sitting at(k1, mail).

' sitting at rob, storage.
moverob, 0109, storage Qal 9
—

-
Ry~

sitting_at(parcel, storage.

- sitting_at(k1, mail).
sitting _at(rob, storage.

pickup(rob, parcel) g_ ( 9

—> carrying(rob, parcel).

sitting at(k1, mail).

]
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Computational Intelligence Chapter 8, Lecture 3, Page 1

Situation Calculu

e State-based representation where the states are denojg
by terms.

e A situation is a term that dentotes a state.
e There are two ways to refer to states:

Init denotes the initial state

do(A, S) denotes the state resulting from doing
actionAin stateS, if it is possible to dAA In S.

e A situation also encodes how to get to the state it denog

. N 18
© David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ =}
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Computational Intelligence Chapter 8, Lecture 3, Page 2

Example State

INit
do(moverob, 0109, 0103), init)

do(moverob, 0103 mail),
do(moverob, 0109, 0103,
Init)).

do(pickup(rob, k1),
do(moverob, 0103 mail),
do(moverob, 0109, 0103,

init))).

. N 19
<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ =}


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence Chapter 8, Lecture 3, Page 3

Using the Situation Ter

e Add an extra term to each dynamic predicate indicatin
the situation.

e Example Atoms:
at(rob, 0109, init)
at(rob, 0103 do(moverob, 0109 0103, init))

at(kl, mail, do(move&rob, 0109, 0103), init))

0
<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ 3
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Computational Intelligence Chapter 8, Lecture 3, Page 4

Axiomatizing using the Situation Calcul

e You specify what is true in th initial state using axioms
with init as the situation parameter.

e Primitive relationsare axiomatized by specifying what
IS true in situatiordo(A, S) in terms of what holds in
situationS.

e Derived relationsare defined using clauses with a free
variable in the situation argument.

e Static relationsare defined without reference to the
situation.

1
<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ 3
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Computational Intelligence Chapter 8, Lecture 3, Page 5

Initial Situation

sitting_at(rob, 0109, init).

sitting_at(parcel, storage init).

sitting at(k1, mail, init).
Derived Relation

adjacentPq, P2, S) «
betweeDoor, P41, P2) A
unlockedDoor, S).

adjacentlab2, 0109, 5).

2
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Computational Intelligence Chapter 8, Lecture 3, Page 6

When are actions possibl

POSSA, S) Is true If actionA is possible in stat&.

possputdowrfAg, Ob)), S) «
carrying(Ag, Obj, S).

possmove&Ag, Pos, P0$), S) <«
autonomou@Ag) A
adjacentPos, Po, S) A
sitting at(Ag, Pos, S).

3
<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ 3
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Computational Intelligence Chapter 8, Lecture 3, Page 7

Axiomatizing Primitive Relation

Example: Unlocking the door makes the door unlocked:

unlockedDoor, do(unlock(Ag, Door), S)) «
possunlock(Ag, Door), S).
Frame Axiom: No actions lock the door:
unlockedDoor, do(A, S)) <«

unlockedDoor, S) A
POSSKA, S).

4
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Computational Intelligence Chapter 8, Lecture 3, Page 8

Example: axiomatizingarried

Picking up an object causes it to be carried:

carrying(Ag, Obj, do(pickup(Ag, Obj), S)) <«
posspickupAg, Ob)), S).

Frame Axiom: The object is being carried if it was being

carried before unless the action was to put down the objec

carrying(Ag, Obj, do(A, S)) <«
carrying(Ag, Obj, S A
POSSA, S A
A #£ putdowr{Ag, Obj).

)
<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ 3
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Chapter 8, Lecture 3, Page 9

Computational Intelligence

More General Frame AxIo

The only actions that undsitting_at for objectObj is when
Obj moves somewhere or when someone is picking@pbp

sitting at(Obj, Pos do(A, S)) <«
POSSA, S A
sitting at(Obj, Pos S) A
VPos A # moveObi, Pos Pos) A
VAg A# pickupAg, Obj).

The last line is equivalent to:

~3Ag A= pickup(Ag, Obj)

6
<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ 3


http://www.cs.ubc.ca/spider/poole/ci.html

Computational Intelligence

which can be implemented as

sitting at(Obj, Pos do(A, S)) <«
e A c e A e A

~Is_pickup action(A, Ob)).
with the clause:

IS_pickup action(A, Obj) <«
A = pickup(Ag, Obj).

which is equivalent to:

is_pickup action(pickup(Ag, Obj), Obj).

Chapter 8, Lecture 3, Page 10

7
<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ 3
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Computational Intelligence Chapter 8, Lecture 3, Page 11

STRIPS and the Situation Calcu

e Anything that can be stated in STRIPS can be stated |
the situation calculus.

e The situation calculus is more powerful. For example,
the “drop everything” action.

e To axiomatize STRIPS in the situation calculus, we ca
use hold9C, S) to mean thaC is true in situatiort.

8
<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘"‘ 3
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Computational Intelligence Chapter 8, Lecture 3, Page 12

holdgC, do(A, W)) «

preconditiongA, P) A The preconditions of

holdsall(P, W) A of Aall hold inW.
add list(A, AL) A C is on the
membe(C, AL). addlist ofA.

holdqC, do(A, W)) «
preconditiongA, P) A The preconditions of
holdsall(P, W) A of Aall hold inW.
deletelist(A,DL) A Cisn’t on the
notin(C, DL) A deletelist ofA.
hold9C, W). C held beforeA.

9
<= © David Poole, Alan Mackworth, Randy Goebel, and Oxford University Press 1998 ‘nz
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Given

L] an initial world description

1 a description of available actions
L] agoal

a plan is a sequence of actions that will achieve the goal

30
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Example Plannin

If you want a plan to achieve Rob holding the kelyand
being atol03, you can issue the query

?carrying(rob, k1, S) A at(rob, 0103 S).
This has an answer

S = do(moverob, mail, 0103,
do(pickup(rob, k1),
do(moverob, 0103 mail),
do(moverob, 0109, 0103), init)))).

31
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Forward Planne

L1 Search in the state-space graph, where the nodes
represent states and the arcs represent actions.

L] Search from initial state to a state that satisfies the g

L1 A complete search strategy (e.&* or iterative
deepening) is guaranteed to find a solution.

L1 Branching factor is the number of legal actions. Path
length is the number of actions to achieve the goal.

L] You usually can’t do backward planning in the state
space, as the goal doesn’t uniquely specify a state. _

[]
i
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Planning as Resolutic

] Idea: backward chain on the situation calculus rules
the situation calculus axiomatization of STRIPS.

L1 A complete search strategy (e.4% or iterative
deepening) is guaranteed to find a solution.

L1 When there is a solution to the query with situation
S=do(A, &), actionA is the last action in the plan.

L] You can virtually always use a frame axiom so that th
search space is largely unconstrained by the go?%l.

C
[]
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Goal-directed searchi

1 Given a goal, you would like to consider only those
actions that actually achieve it.

L1 Example:
?carrying(rob, parcel, S) A in(rob, lab2, S).

the last action needed is irrelevant to the left subgoal

34
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STRIPS Planne

| Divide and conquer: to create a plan to achieve a
conjunction of goals, create a plan to achieve one go
and then create a plan to achieve the rest of the goal

L] To achieve a list of goals:
[ ] choose one of them to achieve.

L] Ifitis not already achieved

choose an action that makes the goal true
achieve the preconditions of the action
carry out the action

L] achieve the rest of the goals.

35
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STRIPS Planner Coc

Wechieveall (Gs Wi, W») Is true iIfWs is the world resultin
WBrom achieving every element of the IGis of goals from
%the worldW;.

achieveall ([ ], Wo, Wo).

achieveall (Goals Wy, Wh) <«
removeéG, Goals Rem Gs) A
achieveG, Wp, Wh) A

achieveall (Rem Gs Wy, W>). ”

Im
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WachieveéG, Wp, Wy) is true if Wy is the resulting world
M fter achieving goal from the worldW.

achieveG, W, W) <«
holdg G, W).
achieveG, Wp, Wp) <«
claus€G, B) A
achieveall (B, Wp, W1).
achieveG, Wy, do(Action, Wp)) <«
achievegAction G) A
preconditiongAction Pre) A
achieveall (Pre, Wp, W1).

37
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Example of STRIPS-planning (1)
Query:

?achieve_all([carrying(rob, parcel), sitting_at(rob, lab2)], init, S)

Sequence of actions transforming initial state into goal state:

do(move(rob, 0103, lab2), \
do(unlock(rob, doorl),
do(move(rob, mail, 0103),
do(pickup(rob, k1, mail), ¥ second goal
do(move(rob, 0103, mail),
do(move(rob, 0109, 0103),

do(pickup(rob, parcel, storage),
do(move(rob, 0109, storage), first goal

Init)))))))).
38



Example of STRIPS-planning (2)

Query (subgoals in reversed order):

?achieve_all([sitting_at(rob, lab2), carrying(rob, parcel)], init, S)

Sequence of actions transforming initial state into goal state:

do(pickup(rob, parcel, storage),

do(move(rob, 0109, storage), second goal
do(move(rob, 0103, 0109), undoes
do(move(rob, lab2,0103), first goal!
______ do(move(rob, 0103, lab2), )

do(unlock(rob, doorl),
do(move(rob, mail, 0103),
do(pickup(rob, k1, mail), > first goal
do(move(rob, 0103, mail),
do(move(rob, 0109, 0103),
Init))))))))). /

39



Undoing Achieved Goa

Example: consider trying to achieve

[carrying(rob, parcel), sitting at(rob, lab2)]
Example: consider trying to achieve

[sitting_at(rob, lab2), carrying(rob, parcel]
[l The STRIPS algorithm, as presented, is unsound.
1 Achieving one subgoal may undo already achieved

subgoals.
40
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Fixing the STRIPS Algorith

Two Ideas to make STRIPS sound:

L1 Protect subgoalso that, once achieved, until they ari
needed, they cannot be undone. teghovereturn
different choices.

[1 Reachieve subgoalthat have been undone.

L] Protecting subgoals makes STRIPS incomplete.

[ 1 Reachieving subgoals finds longer plans than

necessarly. »

Im
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Does protecting always wor

L] Example Suppose the robot can only carry one item
time. Consider the goal:

sitting _at(rob, lab2) A carrying(rob, parcel

L] We cannot consider the subgoals in isolation!

42
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Regressio

L] Idea: don't solve one subgoal by itself, but keep trac
all subgoals that must be achieved.

L] Given a set of goals:

L] If they all hold in the initial state, return the empty
plan

] Otherwise, choose an actidrthat achieves one of
the subgoals. This will be the last action in the ple

L] Determine what must be true immediately befare
so that all of the goals will be true immediately aft
Recursively solve these new goals. *

C
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Regression as Path Findi

The nodes are sets of goals. Arcs correspond to acti

A node labeled with goal s€& has a neighbor for each
actionA that achieves one of the goals@

The neighbor corresponding to actidns the node with
the goaldGa that must be true immediately before the
actionA so that all of the goals is are true immediate|
afterA. Gp Is the weakest preconditiorfor actionA and
goal selG.

Search can stop when you have a node where all the
goals are true In the initial state. 44
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Weakest preconditio

wp(A, GL, WP) is true if WP Is the weakest precondition
that must occur iImmmediately before actiArso every elemel
of goal listGL is true immediately afteA.

For the STRIPS representation (with all predicates primit
L] wp(A, GL, WP) is falseif any element ofGL is on delete
list of actionA.
L] OtherwiseWPis
precondgA) U {G € GL : G ¢ add list(A)}.
whereprecondsA) is the list of preconditions of actiof
andadd list(A) is the add list of actio\. 45
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Weakest Precondition Examg

The weakest precondition for
[sitting at(rob, lab2), carrying(rob, parcel]
to be true aftemoverob, Pos lab?2) is that

[autonomougob),
adjacentPos lab2),
sitting_at(rob, Pos),

carrying(rob, parcel)]

IS true Immediately before the action.

46
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A Regression Plann

% solvegGL, W) is true if every element of goal li€L Is true
% in world W.
solvgGoalSetinit) <«
holdsall(GoalSetinit).
solvgGoalSet do(Action, W)) <«
consistentGoalSej A
choosegoal(Goal, GoalSej A
chooseaction(Action, Goal) A
wp(Action GoalSef NewGoalSeta
solvgNewGoalSetW).

47
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Regression Search Space Exa

[carrying(rob,parce), sitting_afrob,lab?)]

pickugrob,parce) *
/ movérob,P,lab?

[sitting_a(parcel,lab3, sitting_afrob,lab2)]

\
[carrying(rob,parce), sitting_afrob,P), adjacen(P,lab2)]

[carrying(rob,parce), sitting_atrob,0103, unlockeddoorl)]

unlocKrob,door))

[carrying(rob,parce), sitting_afrob,0103, carrying(rob,#1)]

C
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