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Supervised Learning of Concepts
from Cases

• Special kind of case-based reasoning (CBR)

Given a set of positive and negative examples for an unknown class, what
is a conceptual description for that class?

case1
case2

case3
case4 case5

case6
case7

• Special kind of case-based problem solving where the problem is
to determine class membership in a binary classification task.

concept description C

object1 C object2 C object3 ¬C object4 C object5 ¬C object6 C object7 ¬C

case database

object ?
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Applications of Concept Formation
Compare to Neural Network (NN) learning tasks:
NNs are trained to recognize complex patterns such as

-  handwritten characters
-  earthquake threat in seismological signals
-  faces
-  etc.

Cases-based concept formation solves similar tasks on a logical basis
instead of numerical values.
Examples:
Learning conceptual descriptions for

-  market situations suitable for investment
-  credit worthiness of customers
-  complex visual structures

Basic idea of case-based concept formation: Look for combinations
of properties present in positive examples and absent in negative
examples.



2

3

History of Concept Formation

Early work in AI has dealt mostly with models of human concept
formation.

Being able to generalize from past experiences and predict the future
is considered one of the hallmarks of intelligence.

Example:
E.B. Hunt, C.I. Hovland: Programming a Model of Concept Formulation. In:
Feigenbaum & Feldman (Eds.), Computers and Thought, McGraw-Hill 1963

Typical approach of humans:
• Consider individual attributes first, consider combinations later
• Use basic relations between attributes, e.g. EQUAL, GREATER
• Decide for one concept hypothesis at a time
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Experiment 1
What concepts describe the positive examples?

Positive
examples:

Negative
examples:

Three solutions: { (colour: red) (shape: polygon) }
{ (colour: red) (size: small) }
{ (colour: red) (shape: polygon) (size small) }
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Experiment 2
What concept describes the positive examples?

Positive
examples:

Negative
examples:

Solution: { (size: small) (colour&shape: red-polygon green-oval) }
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Learning Structures from Examples
Winston, Learning Structural Descriptions from Examples (1975) 

a2 a3

a1 (on a1 a2) (on a1 a3)
(parts a [a1 a2 a3])
(inst a1 brick) (inst a2 brick) (inst a3 brick)
(inst a arch)
(not (touch a2 a3))

Example of an arch:

Example of a non-arch:

b1

b2

b3

(on b1 b2) (on b2 b3)
(parts b [b1 b2 b3])
(inst b1 brick) (inst b2 brick) (inst b3 brick)
(inst b non-arch)
(not (touch b1 b3))

Obtain a general description of an arch from examples and counter-examples
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Generalisation and Specialisation
Examples

(on a1 a2) (on a1 a3)
(parts a [a1 a2 a3])
(inst a1 brick) 
(inst a2 brick) 
(inst a3 brick)
(inst a arch)
(not (touch a2 a3))

Generalisation:

(if (parts ?x [?x1 ?x2 ?x3])
(inst ?x arch))

(if (parts ?x [?x1 ?x2 ?x3])
(inst ?x arch))

Specialisation:

(if (and (parts ?x [?x1 ?x2 ?x3])
(on ?x1 ?x2)
(on ?x2 ?x3)
(not (touch ?x2 ?x3))

(inst ?x arch))
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Generalisation and Specialisation
Rules

Variabilisation:
constants  =>  variables brick1  =>  ?x
is-a hierarchy generalisation:
class  =>  parent class brick  =>  polyeder  =>  object

glued(x, y)  => attached(x, y)
Disjunctive generalisation:
expr1  =>  expr1 V expr2 (on ?x ?y)  =>  (on ?x ?y) v (above ?x ?y)

Conjunctive generalisation:
expr1 ∧ expr2  =>  expr1 (on ?x table) ∧ (red ?x)  =>  (on ?x table)

GENERALISATION

SPECIALISATION

Inverse of generalisation operations
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Characteristics of
Concept Formation

So far, the examples have shown several characteristics of
concept formation:

• Few examples may suffice
• There may be several solutions
• Relevant attributes may not be obvious
• It may be necessary to consider combinations of attributes
• The complexity of the task depends on the description language  

Compare to Pattern Recognition and classification in feature space:
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Version Space Learning (VSL)
M. Genesereth, N. Nilsson: Logical Foundations of Artificial Intelligence
Morgan Kaufmann, 1987
T.M. Mitchell: Generalization as Search. Artificial Intelligence 18, 1982, 203-226

Basic idea:
For given positive and negative examples, represent the space of
consistent concepts by two boundaries:

• The general boundary contains all concepts which cannot be
further generalized without becoming inconsistent (i.e. including
negative examples).

• The specific boundary contains all concepts which cannot be
further specialized without becoming inconsistent (i.e. excluding
positive examples).

For each example, adjust the general and specific boundary accordingly. 
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Example: Learning to Classify Mushrooms

Learn from positive and negative examples to distinguish poisonous
and nonpoisonous mushrooms.

Mushroom description:
Colour {Red, Grey}
Size {Small, Large}
Shape {rOund, Elongated}
Environment {Humid, Dry}
Height {loW, hIgh}
Texture {sMooth, roUgh}
Class {Poisonous, Nonpoisonous}

Note simple attribute language for the
sake of an easy example. VSL can
deal with much richer languages.
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Initialization of Mushroom Version Space
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Example1 {R} {S} {O} {H} {W} {M} P
Example2 {R} {S} {E} {H} {W} {M} P
Example3 {G} {L} {E} {H} {W} {U} ¬P
Example4 {R} {S} {E} {H} {I} {U} P

Initially, the general boundary GB contains the concept hypothesis
which includes all possible examples:

GB = { [ { R, G}, {S, L}, {O, E}, {H, D}, {W, I}, {M, U} ] }

Initially, the specific boundary SB contains the concept hypothesis
which excludes all possible examples:

SB = { [ { }, { }, { }, { }, { }, { } ] }

Training data presented incrementally:
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Learning Procedure for Mushrooms

GB(0) = { [{ R, G}, {S, L}, {O, E}, {H, D}, {W, I}, {M, U}] }

Example1: [{R}, {S}, {O}, {H}, {W}, {M}] positiv

SB(0) = { [ { }, { }, { }, { }, { }, { } ] }
SB(1) = { [{R}, {S}, {O}, {H}, {W}, {M}] }

GB(1) = { [{ R, G}, {S, L}, {O, E}, {H, D}, {W, I}, {M, U}] }

SB(2) = { [{R}, {S}, {O, E}, {H}, {W}, {M}] }

GB(2) = { [{ R, G}, {S, L}, {O, E}, {H, D}, {W, I}, {M, U}] }
GB(3) = { [{ R}, {S, L}, {O, E}, {H, D}, {W, I}, {M, U}],

[{ R, G}, {S}, {O, E}, {H, D}, {W, I}, {M, U}],
[{ R, G}, {S, L}, {O, E}, {H, D}, {W, I}, {M}] }

SB(3) = { [{R}, {S}, {O, E}, {H}, {W}, {M}] }
SB(4) = { [{R}, {S}, {O, E}, {H}, {W, I}, {M, U}] }

GB(4) = { [{ R}, {S, L}, {O, E}, {H, D}, {W, I}, {M, U}],
[{ R, G}, {S}, {O, E}, {H, D}, {W, I}, {M, U}] }

Example2: [{R}, {S}, {E}, {H}, {W}, {M}] positiv
Example3: [{G}, {L}, {E}, {H}, {W}, {U}] negativ
Example4: [{R}, {S}, {E}, {H}, {I}, {U}] positiv

more specific

more general

version space
after 4 examples

initial version space
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Candidate Elimination Algorithm
Initialize SB to the empty concept and SG to the most general concept
For each training example E do:
If E is a positive example then:

Remove from GB any hypothesis inconsistent with E
For each hypothesis H in SB that is not consistent with E do:

Remove H from SB
Add to SB all minimal generalizations H´ of H such that

H´ is consistent with E and
some member of GB is more general than H´

Remove from SB any hypothesis that is more general
than another hypothesis in SB

else if E is a negative example:
Remove from SB any hypothesis consistent with E
For each hypothesis H in GB that is consistent with E do:

Remove H from G
Add to GB all minimal specializations H´ of H such that

H´ is inconsistent with E and
some member of SB is more specific than H´ .

Remove from GB any hypothesis that is less general
than another hypothesis in GB
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Properties of the Version Space

• The version space consists of all hypotheses (potential concept
descriptions) equal to or less general than the concepts of the
general boundary and equal to or more general than the concepts of
the specific boundary.

• A consistent version space contains all hypotheses which subsume
all positive examples and do not subsume any negative examples.

• To establish a version space, hypotheses must be partially ordered
in a specialization lattice.

• After learning, all hypotheses of the version space are candidates
for a concept definition of the class in question.

• If learning causes the concepts of the general boundary to become
more special than the specific boundary, the version space
collapses: no possible concept descriptions exist for the examples.

• A single "outlier" may cause a version space to collaps.
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Learning Structured Objects

Example:

Your house-keeping robot
learns to lay a table

Example:

An image analysis program
learns to recognize
balconies or window arrays

Learning conceptual
descriptions of structured
objects requires an expressive
description language

Examples are
presented in
terms of sets of
components in
annotated
images
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Learning "Entrances"

Annotated training image with four positive examples of "Entrance" 
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Concept Description with an
Expressive Representation Language

ENTRANCE
Aggregate Width = [184..216] cm
Aggregate Height = [299..366] cm
Shape = { Quadratic }
Colour = {gray, green, yellow}
Has-Parts = [3..4]

door = [1..1]
stairs = [1..1]
canopy = [0..1]
railing = [0..1]
sign = [0..1]

BelowNeighbourOf (stairs011) [0..2] (door012)
AboveNeighbourOf (door012)  [0..2] (stairs011)

Example of a learnt concept description of "Entrance"

Attributes with ranges
of real values

Attributes with sets of
symbolical values

Attributes with ranges
of integer values

Symbolic spatial relations
between parts

distance range
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General-Specific Ordering
There must be a (partial) generalization order between concept hypotheses
in order to determine the general boundary GB and the specific boundary SB
of the version space.

C1 = (A11 V11) ∧  .. ∧ (A1K V1K) ∧ (R11 V(A1r1) V(A2r1)) ∧ .. ∧ (R1L V(A1rL) V(A2rL))

C2 = (A21 V21) ∧  .. ∧ (A2M V2M) ∧ (R21 V(A2s1) V(A2s1)) ∧ .. ∧ (R2N V(A2rN) V(A2rN))
C1 and C2 are two concepts with attribute-value pairs (A V) and relations
(R V(A) V(A´)). C1 is more general than C2 (written C1 ≥ C2) if for each (A2m
V1k) and (R2n V(A2n) V(A´2n)) in C2 there is a corresponding (A1k V1k) and
(R1l V(A1l) V(A´1l)) in C1 such that

A1k ≥ A2m and V1k ≥ V1k, and
R1l ≥ R2n and V(A1l) ≥ V(A2n) and V(A´2n) ≥ V(A´1l)

If neither C1 ≥ C2 nor C2 ≥ C1, there is no generalization order between C1
and C2.

When is one attribute more general than another attribute?
When is one value more general than another value?
When is one relation more general than another relation?
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General-Specific Ordering of
Attribute Values (1)

Set-valued attributes:

Example: {green, gray, yellow} > {gray, yellow}

Generalize V1 to V3 for inclusion of V2:

Example: V1 = {green, gray, yellow}  V2 = {blue}  V3 = {green, gray, yellow, blue}

Specialize V1 to V3 for exclusion of V2:

Example: V1 = {green, yellow}  V2 = {green, blue}  V3 =  {yellow}

 V1 ≥ V2  iff V1 ⊇ V2

 V3 = V1 ∪ V2

 V3 = V1 \ V2
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General-Specific Ordering of
Attribute Values (2)

Real-valued range attributes:

Example: [1.2 ,, 2.0] > [1.3 .. 1.8]

Generalize V1= [l1 .. u1] to V3 = [l3 .. u3] for inclusion of V2 = [l2 .. u2]
V1
V2
V3

Specialize V1= [l1 .. u1] to V3 = [l3 .. u3] for exclusion of V2 = [l2 .. u2]
V1
V2
V3

 V1 ≥ V2  iff V1 ⊇ V2

Scalar-valued range attributes are treated analogously.

separated subranges are tested
as individual hypotheses
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General-Specific Ordering of
Relational Values

Relations are treated similar to attributes, except that values are pairs of
attribute values.

Example:
(R  V(A1)  V(A2)) = (EQUAL  V(Width)  V(Height))
(Width  [120 .. 200] )
(Height  [180 .. 300] )

The relation constrains
possible values of width
and height to equal values
in the range [180 .. 200]

Relations may have a generalization order. Let R1 and R2 be two
relations between the same pair of attributes.

Example:
R1 = ALMOST-EQUAL
R2 = EQUAL
=> R1 > R2

 R1 ≥ R2  iff R1 ⊇R2
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Concept Selection from Version Space

VSL does not offer a criterion for selecting a final concept from version
space.

Concepts from the GB are as permissive as possible while excluding all
negative examples.

Concepts from the SB are as restrictive as possible while including all
positive examples.

A good compromise seems to be the conjunction of all concepts of the GB.
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Learnt Concept for Window Array

Aggregate Width = [549..INF] cm
Aggregate Height = [0..199] cm
Parts Width = [0..INF] cm
Parts Height = [0..INF] cm
Parts Top-Left-X Variance = [132..INF] cm
Parts Top-Left-Y Variance = [0..32] cm
Parts Bottom-Right-X Variance = [116..INF] cm
Parts Bottom-Right-Y Variance = [0..8] cm
Has-Parts = [3..INF]  window = [3..INF]  door = [0..0]
Part-Of = [1..1]  facade = [0..1]  roof = [0..1]
Fuzzy-Equal (top-left-y)
Fuzzy-Equal (bottom-right-y)
Fuzzy-Equal (parts-height)
Fuzzy-Equal (parts-distance-x)
Value-Equal (parts-type)

Version space learnt from 13 positive and 200 negative examples.
Concept hypothesis constructed by conjunction of all hypotheses in the
general boundary:
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Summary of Version Space Learning

• VSL is a logic-based method for determining all possible concept
descriptions based on positive and negative examples.

• Concepts must be described in a description language which allows to
establish a generalization hierarchy.

• VSL may be extended for structured objects.

• The version space may collapse if erroneous examples are introduced.

• Probabilistic learning models compete.


