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Data Mining

Data mining means analyzing large data sets to identify and
establish new patterns or relationships which in the end prove valid,
comprehensible and useful.

Classical Statistics

Machine Learning

Pattern Recognition

Data Mining und Knowledge Discovery (DMKD)
becomes part of AI (1990)

Data Mining: 
Analysis, generation of hypotheses

Knowledge Discovery: 
Evaluation and interpretation of hypotheses

Sources: Görz et al. (Eds.): Handbuch der künstlichen Intelligenz (3. Aufl.), Oldenbourg, 2000
Maimon & Rokach (Eds.): The Data Mining and Knowledge Discovery Handbook,
Springer 2005
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Data Mining Examples
Example 1: Analysis of purchases in a supermarket

customer1 pizza beer cheese bread chips
customer2 milk bread ham cigaretts
customer3 yoghurt sugar flour cornflakes napkins
customer4 shampoo beer chips newspaper pizza
xustomer5 chips coffee beer pizza cream
customer6 jam rolls butter beer
...

If pizza and beer are in one purchase, it is likely that
chips are also in that purchase.

Example 2:  Monday is a likely day for error-prone production 
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Why is Data Mining a Problem?

"There has always been a considerable number of people who busy
themselves examining the last thousand numbers which have appeared
on a roulette wheel, in search of some repeating pattern. Sadly enough,
they have usually found it."

"The geographic density of stork nests is positively correlated with the
birth rate of humans."

• Large data volume prohibits discovery of interesting relationships
through human inspection or exhaustive search.

• It is difficult to discover something when you don´t know what to
look for.

• It is easy to deceive yourself in discovering something which you
expect.
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Structure of Data Mining and
Knowledge Discovery

Understand application domain and
determine goals

Obtain and integrate data, perform
preliminary analysis, visualize data

Choose data mining procedure

Transform data for
data mining procedure

Determine procedural parameters

Determine results,
clean and evaluate results
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Requirements for Association Rules

Determine rules X -> Y in transactions T where:

minimal support

minimal confidence

Typical values:  smin = 0,01   cmin = 0,5 

{beer, pizza} -> {chips} will be established if
- at least 1% of all customers have bought beer, pizza, and chips, and
- at least 50% of the beer and pizza customers have also bought chips. 

 
s(r) :=

t ∈T X∪ Y ∈t}{
T

≥ smin

 

c(r) :=
t ∈T X∪ Y ∈t}{

t ∈T X ∈t}{ ≥ cmin
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Finding Association Rules (1)

Possible association rules may be ordered: 

a -> q c = |aq| / |a|   s = |aq| / |T|

?? ≥

ab -> q c = |abq| / |ab|   s = |abq| / |T|

refining a premise

a -> q c = |aq| / |a|   s = |aq| / |T|

≥ ≥

a -> bq c = |abq| / |a|   s = |abq| / |T|

refining a consequent

• A rule search based on successive refinements can be pruned by
prescribing confidence cmin and support smin.

• Pruning by support can be done without distinguishing between
premise and consequence.
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Finding Association Rules (2)
Phase 1: Find frequent itemsets (s ≥ smin )
Phase 2: Determine association rules in frequent itemsets (c ≥ cmin )

Efficient procedure for Phase 1:
To obtain frequent (k+1)-sets from k-sets, first consider all pairs of
k-sets with (k-1) common items since both are frequent.

Efficient procedure for Phase 2:
Itemsets with sufficient support are transformed into rules by beginning
with 1-item consequences and shifting additional items from the premise
to the consequence until the confidence falls below the threshold.

ab -> c c = |abc| / |ab| s = |abc| / |T|

≥ =

a -> bc c = |abc| / |a| s = |abc| / |T|

Closure under Support:
Given two itemsets X and Y with X ⊆  Y, then s(X) ≥ s(Y).
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APRIORI Algorithm
proc APRIORI(I, T, smin, cmin)

L := FREQUENT-SETS(I, T, smin)
R := RULES(L, cmin)
return R

proc FREQUENT-SETS(I, T, smin)
C1 :=      { {i} }
L1 := PRUNE(C1)

Ck+1 := CANDIDATES(Lk)
Lk+1 := PRUNE(Ck+1, T)
k := k+1

return j=2..k{ Lj }

 while Lk ≠ ∅

 i∈I

proc RULES(L, cmin)

 

R := ∅
forall l∈L, k := l ≥ 2

        H1 := i∈I i{ }}{ ,  m:= 1

        loop
              forall h∈Hm

              if 
s(lk )

s(lk \h)
≥ cmin

              then add lk \h→ h to R
              else Hm := Hm \ h{ }

while m ≤ k-2
Hm+1 := CANDIDATES(Hm)
m := m+1

return R
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Example for APRIORI Algorithm

T: abcd abf abce abch aci bci cgh de      cmin = 0.8   smin = 3/8

FREQUENT-SETS:
C1: a b c d e f g h i C2: ab ac bc C3: abc
s: 5 5 6 2 2 1 1 2 2 s: 4 4 4 s: 3
L1: a b c L2: ab ac bc L3: abc

RULES:
ab: H1 = ab c(a->b) = s(ab)/s(a) = 4/5 = 0.8

c(b->a) = s(ab)/s(b) = 4/5 = 0.8
ac: H1 = ac c(a->c) = s(ac)/s(a) = 4/5 = 0.8

c(c->a) = s(ac)/s(c) = 4/6 = 0.66
bc: H1 = bc c(b->c) = s(bc)/s(b) = 4/5 = 0.8

c(c->b) = s(bc)/s(c) = 4/6 = 0.66
abc: H1 = abc c(ab->c) = s(abc)/s(ab) = 3/4 = 0.75

c(ac->b) = s(abc)/s(ac) = 3/4 = 0.75
c(bc->a) = s(abc)/s(bc) = 3/4 = 0.75

 H2 = ∅
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Limits of Support and Confidence

A rule X -> Y expresses a causality which may not be justified
even if s ≥ smin and c ≥ cmin.

Example:
smin = 0,01   cmin = 0,5
70% of all customers buy bread
2% of all customers buy soap (independently of bread)
s(soap -> bread) ≈ 0,02*0,7 = 0,014   
c(soap -> bread) ≈ 0,02*0,7/0,02 = 0,7

Customers who buy soap typically also buy bread   (???)

To avoid meaningless rules, postprocessing is required.
Heuristics for discarding X -> Y:
P(XY) ≈ P(X)*P(Y) premise and consequence are statistically independent
P(Y) ≥ cmin influence of premise on consequence is negligible

But support and confidence remain essential for the derivation process. 
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Measures of Interestingness

To select interesting rules from those with sufficient confidence and support,
several measures of interestingness have been proposed.

The Kullbach-Leibler Divergence (KLD) measures the "distance" between a
distribution p(xi) and its approximation q(xi) in terms of entropy:

 

KLD(p,q) = p(xi
i=1..N
∑ ) log2

1
q(xi)

− p(xi
i=1..N
∑ ) log2

1
p(xi)

= p(xi
i=1..N
∑ ) log2

p(xi)
q(xi)

For a rule A -> B, KLD can measure the information gain of B from A by
comparing the distributions p(y|x=A) with p(y) where y    {B, ¬B}.∈

 
KLD(p(y | x = A),p(y)) = p(y

y∈ B,¬B{ }
∑ | x = A)log2

p(y | x = A)
p(y)
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Data Mining of Structured Data
Instead of unstructured symbols, items may be structured and embedded in
a taxonomy.

Pizza

Made-by: Ristorante
Cover: Prociutto
Price: 2,49 EUR

Fast Food

Made-by: Wagner
Cover: Salame
Price: 2,69 EUR

Snacks

Chips Peanuts

Food Drinks

Beer

Soft Drinks

Made-by: Holsten
Type: Pilsner
Size: 0,5 l
Price: 0,98 EUR

• • •

Alcoholics

Wine

• • •
Made-by: Jever
Type: Pilsner
Size: 0,3 l
Price: 0,79 EUR

• Itemsets may be composed of items from different levels, but a more
general item in an itemset precludes the presence of its specializations.

• Support at higher levels may be computed from support at lower levels.
• A domain-dependent measure of interestingness may be required to select

useful itemsets and rules.

aliments
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Discovering Clusters in Data

"Clusters" of data objects are hypothetical classes based on similarities
and distances. Data objects should be as similar as possible within
clusters and as distinct as possible between clusters.

age

incomecriminality
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oo o
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Cluster 1:  age 15 - 25, low income, high criminality  ("youth criminality")
Cluster 2:  age 45 - 55, high income, high criminality ("white-collar criminality")

Data objects are viewed as points in a multi-dimensional feature space.
Similarity of data is judged by distance measures. 

"Understanding our world requires conceptualizing the similarities and
differences between the entities that compose it."  Tyron & Bailey 1970
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Main Problems of Clustering

• Determine useful features of data objects
Is e.g. body size a useful feature for social clustering?

• Collect representative data
Clusters from statitically biased samples may be misleading

• Determine similarity measure
What is the "distance" between e.g. male and female? How does it
compare to e.g. age or income distances?

• Determine granularity or cluster number

• Determine clusters
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Distance Measures

A valid distance measure between two data objects xi and xj must satisfy
•  d(xi, xj) ≥ 0
•  d(xi, xj) = d(xj, xi)
•  xi = xj   =>  d(xi, xj) = 0

A distance measure is a metric if
•  d(xi, xk) ≤ d(xi, xj) + d(xj, xk)
•  d(xi, xj) = 0   =>  xi = xj

Distance measures depend on the data types of the featureswhich must
be compared:

• Continuous-valued
• Discrete-valued 
• Binary-valued
• Symbol-valued
• Ordinal-valued
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Distance for Numeric Features (1)
xi and xj are continuous-valued N-dimensional data objects

Weighted distance:  d(xi, xj) = w1 |xi1-xj1|g + w2 |xi2-xj2|g + ... wN |xiN-xjN|g  

For w1 ... wN = 1 we have
g = 1: Manhattan metric
g = 2: Euclidean metric
g -> ∞: Chebychev metric

(emphasizes the dimension with largest distance)

xi and xj are discrete-valued N-dimensional data objects
Example:   number-of-children    {0, 1, 2, ... }

All distance measures for continuous-valued features can be in
principle applied.
Sometimes distances at large values are less important than at small
small values:

 
d(xik ,xjk ) =

| xik − xjk |
xik + xjk

for x > 0
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Distance for Numeric Features (2)
xi and xj are continuous-valued N-dimensional data objects,
viewed as vectors xi and xj

If the angle between xi and xj is significant for the distance, rather than the
magnitude of each vector, the cosine distance is appropriate:

 
d(xi,xj) = 1−

xi
T xj

xi xj

= 1− cosα ij o

o

xk1

xk2
xk3

xj

xi

Example:
Scale invariant decription of shape by bounding box [x, y, z]

a
b

c

sa
sb

sc
x1: x2: d(x1, x2) = 0

αij
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Distance for Binary Features

xi and xj are binary-valued N-dimensional data objects

Distance is determined by counting equal and unequal 0 and 1 features.

For symmetric binary features, 0 and 1 are equally valued:  

 
d(xi,xj) =

|unequal features|
N

Hamming distance

For asymmetric binary features, 0 is often considered less valued, and
features where both objects are 0 are ignored:
q = |equal 0,0 features|   r = |equal 1,1 features|
s = |unequal 0,1 features|   t = |unequal 1,0 features|

 
d(xi,xj) =

s + t
r + s + t
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Distance for Nominal Features
xi and xj are symbol-valued N-dimensional data objects

Examples: colour    {red, green, blue, black, white}
 sex     {male, female}

∈
∈

1. Matching distance
 
d(xi,xj) =

N− m
N

m = number of matches

2. Transformation to binary features
A k-valued nominal feature is transformed into k binary features.

red    {T, F}, green    {T, F}, blue    {T, F}, ...∈ ∈ ∈

∈Example: colour    {red, green, blue, black, white}

After transformation, distance measures for bianry features can 
be applied.
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Distance Metrics for
Mixed-typed Features

Distances between features of different types can be combined by first
normalizing the typed distance measures to the range [0 .. 1] and then
using a distance measure for numeric values.

Normalization of continuous-valued feature distance:

 
d(xik ,xjk ) =

| xik − xjk |
max xk − minxk

⎛

⎝
⎜

⎞

⎠
⎟

g

The problem of combining "apples with pears" cannot be solved
satisfactorily, not only for different data types but generally for features
belonging to different semantic categories.
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K-means Clustering

Example:
K-means clustering with k = 3

A Initialize cluster centers
B Assign data objects to nearest cluster

centers
C New cluster centers are the mean of

assigned data objects
D Repeat steps B to D until no more

changes occur
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• Most popular clustering algorithm
• Searches for local minimum of sum of Euclidean sample distances to

cluster centers
• Guaranteed convergence in a finite number of steps
• Requires initialization of fixed number of clusters k
• May converge to local minimum
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EM-Algorithm

Basic idea of EM-algorithm:

Initially one has
•  data with missing values, e.g. unassigned cluster memberships
•  distribution models, e.g. rule to assign to nearest-distance cluster means

Iterate the two steps:
E-Step: Compute expected distribution parameters based on data

(initially by random choice)
M-Step: Maximize likelihood of missing values based on distribution

parameters

K-means clustering is a special case of the Expectation-Maximization (EM)
algorithm.
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Example for Expectation Maximization
Consider the problem of fitting 3 straight lines to data, not knowing which
data belong to which line.
(Example by Anna Ergorova, FU Berlin)

Algorithm:
A Select 3 random lines initially
B Assign data points to each line by minimum distance criterion
C Determine best-fitting straight line for assigned data points
D Repeat B to D until no further changes occur

1. Iteration (after B) 1. Iteration (after C) 6. Iteration (after B)
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Agglomerative Clustering

A Initially, all data objects are distinct clusters
B Merge cluster pair with nearest distance
C Enter new cluster into cluster tree
D Repeat steps B to D until all clusters are merged

t• • •• • •• • ••
• • ••

• •
• •

•
Example:
Clustering of 1-dimensional data objects

possible partitioning
into 2 clusters

possible partitioning
into 3 clusters

• Data are incrementally combined to clusters
• A cluster tree is generated
• Final partitioning into clusters is left to the user
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Distance Measures for Clusters
Intra-cluster distance can be measured by
• the average distance
• the maximum distance
between cluster members and cluster center.
(Refer to the distance measures introduced earlier)

Inter-cluster distance can be measured by
• the smallest distance between elements of two distinct clusters

("single-link clustering")
• the largest distance between elements of two distinct clusters

("complete-link clustering")
• the average distance between elements of two distinct clusters

("average-link clustering")

What are the effects of the different inter-cluster distance measures on the
results of agglomerative clustering?


