

Example for APRIORI Algorithm

T: abcd abf abce abch aci bci cgh de c _{min} = 0.8 s _{min} = 3/8		
FREQUE C ₁ : a s: 5 L ₁ : a	NT-SETS: b c d 5 6 2 b c	e f g h i C_2 : ab ac bc C_3 : abc 2 1 1 2 2 s: 4 4 4 s: 3 L_2 : ab ac bc L_3 : abc
RULES: ab:	H ₁ = ab	c(a->b) = s(ab)/s(a) = 4/5 = 0.8 c(b->a) = s(ab)/s(b) = 4/5 = 0.8
ac:	H ₁ = ac	c(a->c) = s(ac)/s(a) = 4/5 = 0.8 c(c->a) = s(ac)/s(c) = 4/6 = 0.66
bc:	H ₁ = bc	c(b->c) = s(bc)/s(b) = 4/5 = 0.8 c(c->b) = s(bc)/s(c) = 4/6 = 0.66
abc:	H ₁ = abc	c(ab->c) = s(abc)/s(ab) = 3/4 = 0.75 c(ac->b) = s(abc)/s(ac) = 3/4 = 0.75 c(bc->a) = s(abc)/s(bc) = 3/4 = 0.75
	$H_2 = \emptyset$	

Distance Metrics for Mixed-typed Features Distances between features of different types can be combined by first normalizing the typed distance measures to the range [0 .. 1] and then using a distance measure for numeric values. Normalization of continuous-valued feature distance: $d(x_{ik}, x_{jk}) = \left(\frac{|x_{ik} - x_{jk}|}{\max x_k - \min x_k}\right)^9$ The problem of combining "apples with pears" cannot be solved satisfactorily, not only for different data types but generally for features belonging to different semantic categories.

20

