

Reasoning Methods for Image Sequence Interpretation

Bernd Neumann

Cognitive Systems Laboratory Hamburg University Germany

neumann@informatik.uni-hamburg.de http://kogs-www.informatik.uni-hamburg.de

Contents

- Scope of tutorial
- Historical examples of high-level motion interpretation
- Relational matching
- Rule-based interpretation
- Description Logics
- Image interpretation as deduction
- Logics of image interpretation
- Image interpretation as configuration
- Signal-symbol interface
- Navigating in hallucination space
- Bayes Nets
- Conclusions

Reasoning Methods for Image Sequence Interpretation

Scope of tutorial

Some application scenarios for high-level image sequence interpretation

- video tapes monitoring nuclear power plants
- street traffic observations (long history)
- soccer commentator
- cameras monitoring parking lots, railway platforms, supermarkets, ...
- smart room cameras
- autonomous robot applications
 (eg robot watchmen, playmate for children)

Characteristics of high-level image interpretation tasks

- interpretations typically involve several interrelated objects
- spatial and temporal relations are important
- interpretations may build on common sense knowledge
- application scenarios are highly diverse
- domains may be very large
- learning and adaptation may be required
- reliability and complexity management may become important issues
- economical application development requires generic approach

Context and task dependence

Interpretations may depend on

- domain context
- spatial context
- temporal context
- intentional context
- task context
- communicative context
- focus of attention
- a priori probabilities

Constructing an interpretation is <u>not</u> a mapping from image data into interpretation space.

High-level scene interpretation

29 november 2002

easoning Methods for Imag Sequence Interpretation

Historical examples

Early traffic scene analysis (Badler 75)

15 "snapshots" of a car leaving the driveway of a house

Sequence Interpretation

29 november 2002

Directional adverbials for motion description (Badler 75)

ACROSS **AFTER** AGAINST AHEAD-OF ALONG **APART** AROUND AWAY AWAY-FROM BACK **BACK-AND-FORTH** BACKWARD BEHIND BY

CLOCKWISE COUNTERCLOCKWISE DOWN FORWARD FROM IN **IN-THE-DIRECTION-OF** INTO INWARD OFF **OFF-OF** ON ONTO **ONWARD**

OUT **OUT-OF OUTWARD** OVER **SIDEWAYS** THROUGH TO **TO-AND-FRO** TOGETHER TOWARD UNDER UP **UP-AND-DOWN UPWARD** WITH

Reasoning Methods for Image Sequence Interpretation

Changing scene graph for car scene (Badler 75)

Demon representation of "ACROSS" motion (Badler 75)

A NEAR-TO relation with one side of an object is broken and replaced by a similar relation with the other side. There is an implicit sense of passage ABOVE the object.

Precondition 1 NEAR-TO(X S1). SUB-PART(Y S1) for some object Y and SUB-PART [chain] to object S1. FRONT or BACK or LEFT-SIDE or RIGHT-SIDE(Y S1). ACROSS remains active as long as NEAR-TO(X Y) and A BOVE(X Y) hold.

Precondition 2 NEAR-TO(X S2). SUB-PART(Y S2) for a SUB-PART [chain] to object S2. FRONT or BACK or LEFT-SIDE or RIGHT-SIDE(Y S2) where S1 \neq S2 and at least one of the ORIENTATION relations to S1 (from Precondition 1) no longer holds.

Postcondition SUBJECT X DIRECTION PCONS((ACROSS Y), DIRECTION)

Motion IS-A hierarchy (Tsotsos 79)

Left-ventricular motion PART-OF hierarchy (Tsotsos 79)

PART-OF structure supports part-whole reasoning in recognition process

Reasoning Methods for Image Sequence Interpretation

Model-based prediction for tracking a jointed moving object (Hogg 84)

The case of highly coordinated motion of parts

Posture curves + constraints represent coordinated motion of joints of walker.

Occurrence model for "overtake" (NAOS)

(OVERTAKE OBJ1 OBJ2 T1 T2) <=> (MOVE OBJ1 T1 T2) (MOVE OBJ2 T1 T2) (BEHIND OBJ1 OBJ2 T1 T3) (BESIDE OBJ1 OBJ2 T3 T4) (BEFORE OBJ1 OBJ2 T4 T2) (APPROACH OBJ1 OBJ2 T1 T3) (DIS-APPROACH OBJ1 OBJ2 T4 T2)

temporal constraint satisfaction for occurrence recognition

principled definition of primitive occurrences

29 november 2002

Reasoning Methods for Image Sequence Interpretation

Temporal relations

- observations provide begin and end time points of occurrences
- models express qualitative constraints on time points

Choice of convex time point algebra [Vila 94]

Unary temporal constraints:	$t_{min} \le t \le t_{max}$
Binary temporal constraints:	t ₁ ≥ t ₂ + c ₁₂

Convex interval relations may be expressed by inequalities:

```
I_1 during I_2 => I_2.tb \le I_1.tb
I_1.te \le I_2.te
```

There exist efficient techniques for incremental evaluation of convex time point algebra constraints.

Constraint propagation for occurrence verification (1)

Example: "two moving objects, one behind the other"

1. Initialize constraint net of occurrence model

2. Compute primitive events for scene

ID:	move1	ID:	behind1	
instance:	move	instance:	behind	
parts:	mv-ob = obj1	parts:	bh-ob1 = obj1	
	mv-tr = trj1		bh-obj2 = obj2	(and many more)
times:	mv-tb = 13	times:	bh-tb = 20	
	mv-te = 47		bh-te = 33	

Constraint propagation for occurrence verification (2)

3. Instantiate parts in occurrence model

propagate minima and maxima of time points through constraint net:

- minima in edge direction $t_{2min} = max \{t_{2min}, t_{1min} + c_{12}\}$
- maxima against edge direction

t_{1max}´= min {t_{1max}, t_{2max} - c₁₂}

Example: move1 in scene instantiates mv1 of model

Reasoning Methods for Image Sequence Interpretation

Relational Matching

Relational models

- relational models describe concepts (aggregates) in terms of parts (components) and relations between the parts
- interpretation is R-morphism (best partial match) between image and model(s)
- search for best partial match is based on "compatibility" of nodes and edges

Relational match using a compatibility graph

nodes of compatibility graph = pairs with compatible properties edges of compatibility graph = compatible pairs cliques in compatibility graph = compatible partial structures

Finding maximal cliques

clique = complete subgraph

Find maximal cliques in a given compatibility graph

Algorithms are available in the literature, e.g.

Bron & Kerbusch, Finding all Cliques of an Undirected Graph, Communications of the ACM, Vol. 16, Nr. 9, S. 575 - 577, 1973.

- Complexity is exponential relative to number of nodes of compatibility graph
- Efficient (suboptimal) solutions based on heuristic search

Relational matching with heuristic search

How useful is relational matching?

- relational structure captures basic high-level notions
- graceful degradation w.r.t. completeness and degree of match
- well-understood computional procedures
 - finding maximal cliques in compatibility graphs
 - heuristic search
 - constraint satisfaction
 - neural network implementations
- improvement by hierarchical matching
- differentiated compatibility measure required
 - fuzziness
 - compatibility vs. consistency
 - probabilities
- laws for temporal, spatial, physical relations
- uncertainty management
- no multi-level aggregate structure

Rule-based interpretation

Rule system OPS5

OPS5 ("Official Production System, Version 5")

- developed at CMU 1980 ...
- implementation language for successful XPS (XCON, XSEL a.o.)

CLIPS

- reimplementation of OPS5 in C for NASA
- freeware

JESS

- reimplementation of OPS5 in Java
- freeware

Rules in OPS5

Syntax of a rule in	OPS5:
<rule>::=</rule>	[P <rule-name> <antecedent>> <consequent>]</consequent></antecedent></rule-name>
<antecedent>::=</antecedent>	<condition>}</condition>
<condition> ::=</condition>	<pre><pattern> - <pattern></pattern></pattern></pre>
<pattern> ::=</pattern>	[<object> {^<attribute> <value>}]</value></attribute></object>
<consequent> ::=</consequent>	{ <action>}</action>
<action> ::=</action>	[MAKE <object> {^<attribute> <value>}] </value></attribute></object>
	[MODIFY <pattern-number> {^<attribute> <value>}]</value></attribute></pattern-number>
	[REMOVE <pattern-number>] </pattern-number>
	[VVRITE { <value>}]</value>

Example: "If there are 2 disks close to each other and with equal size, make them a wheel pair"

When is rule-based interpretation feasible?

- Successful applications for restricted domains
 - recognising airports (McKeown et al. 85)
 - classification of forestry in aerial images (Pinz 85)
 - 2D image analysis
- problems with degraded images
- domain knowledge and control not separated
 - free choice of interpretation strategy dependent on task and context
 - separation required for complexity management
- does not scale beyond say 1000 rules

Description Logics

Why a knowledge-based approach?

- interfacing to common-sense knowledge
- representing conceptual models with well-defined semantics
- exploiting validated inference procedures
- exploring a knowledge-based approach for a task which requires guess-work

Description Logics for knowledge-representation

Family of knowledge-representation formalisms

- object-centered, roles and features (binary relations)
- necessary vs. sufficient attributes
- inference services
 - □ subsumption check
 - □ consistency check
 - □ classification
 - □ abstraction
 - □ default reasoning
 - □ spatial and temporal reasoning
- guaranteed correctness, completeness, decidability and complexity properties
- highly optimized implementations (e.g. RACER)

Important aspects of DL development

- trade-off between expressiveness of terminology and complexity of reasoning services
- desirable features may easily lead to undecidability
- concrete domains must be incorporated to support spatial and temporal reasoning
- implementation must be highly optimized to be useful
- DL community must be pushed to deal with vision

Family of Description Logics

Representing N-ary Relations

instances of a relation are reified

Reasoning Methods for Image Sequence Interpretation

(min AN integer) (max AN integer)

(+ aexpr1 aexpr1*)

RACER concept language

C concept term CN concept name R role term RN role name C -> CN *top* *bottom* (not C) (and C1 Cn) (or C1 Cn) (some R C)	 concept definition (equivalent CN C) concept axioms (implies CN C) (implies C1 C2) (equivalent C1 C2) (disjoint C1 Ci) roles R -> RN 	concrete-domain concepts AN attribute name CDC -> (a AN) (an AN) (no AN) (min AN integer) (max AN integer (> aexpr aexpr) (>= aexpr aexpr) (< aexpr aexpr) (<= aexpr aexpr)
(all R C) (at-least n R) (at-most n R) (exactly n R) (at-least n R C) (at-most n R C)	(inv RN)	aexpr -> AN real (+ aexpr1 aexpr1* aexpr1 aexpr1 -> real AN
CDC		(* real AN) ³⁷

Image interpretation as deduction

Aerial image analysis as classification

Classification of changes using a description logic (Lange and Schroeder 95)

- Using the LOOM-classifier to determine the change concept which describes given evidence
- Bottom-up analysis of images, no hypothesis generation, no predictive control

29 november 2002

Reasoning Methods for Image Sequence Interpretation

Concepts and relations for airfield classification (1)

(defconcept road-object	
is (:and scene-object	necessa
(> has-length has-width)	sufficier
(:the has-material (:one-of concrete asphalt)	for class
	a roa
(defconcept runway	
is (:and road-object	
rectangle	<i>a</i> run
(:the has-length (:through 2150 4000))	
(>= has-width 45)	
(:at-least 1 has-connecting-driveway)	
(:all has-connecting-driveway (>= has-width 23))	nrocodu
	procedu
((?x) driveway and taxiway constraints)))	constra
(defrelation has-connecting-driveway	
is (:and has-neighbor	
(:domain road-object)	
(:range	
(:and road-object	
(:at-least 2 has-neighbor road-object)))))	imnortai
	rolotion
(defrelation has-neighbor	
:function ((x) (compute-neighboring-objects x))	must be
:characteristics (:symmetric :multiple-valued))	procedu

ary and nt conditions sifying d-object

iway

ural ints

nt geometrical has-neighbor implemented irally 40

Concepts and relations for airfield classification (2)

Image interpretation as deduction?

The classifier of a description logic carries out classifications automatically:

evidence => class (concept) membership

Problems:

- deduction of all possible partial interpretations
- no goal-oriented analysis
- partial evidence must be sufficient
- no comparative evaluation of conflicting interpretations

Support of hypothesize-and-test cycle is required !

Logics of image interpretation

Describing image interpretation in logical terms

Reiter & Mackworth 87, Matsuyama 1990, Schröder 99

Reasoning Methods for Image Sequence Interpretation

Image interpretation as (logical) model construction

An <u>interpretation</u> I = [D, φ , π] of a logical language maps - constant symbols of the language into elements of a real-world domain D - predicate symbols of the language into predicate functions over D

A model of some clauses is an interpretation where all predicates are true.

Image interpretation as model construction:

- establish mapping ϕ by assigning segmentation results to constant symbols
- establish mapping π by assigning computational procedures to predicate symbols
- find clauses for which predicates are true

Deciding whether a model exists is undecidable in FOPC! There may be infinitely many models!

(ist)

Finite model construction (Reiter & Mackworth 87)

- an image consists of regions and chains (edges)
- the image elements constitute all constant symbols of an interpretation (domain closure assumption)
- different constant symbols denote different image elements and vice versa (unique name assumption)
- Problem can be expressed in Propositional Calculus and solved as a constraint satisfaction problem (CSP)

For MAPSEE, scene interpretation amounts to finding a mapping π for predicates *road, river, shore, land, water.*

Logics of SIGMA (Matsuyama & Hwang 90)

Image interpretation is set of hypotheses which

- extend generic knowledge
- allow to deduce the observations

partial model construction

The number of existing objects must be limited for the interpretation procedure to terminate (e.g. no interpretations involving invisible objects).

Image interpretation as configuration

Image interpretation as a configuration problem

What is a configuration problem?

Construct an aggregate (a configuration) given

- generic descriptions of parts
- compatibility constraints between parts
- a concrete task description

Image interpretation may be viewed as constructing a "scene aggregate" which

- meets generic constraints and
- incorporates parts prescribed by the concrete task

Methods and tools of configuration technology may be exploited

Illustration of configuration

- <u>boxes</u> (frames) specify aggregate and component properties
- <u>has-part</u> relations bind components to aggregates
- <u>is-a</u> relations describe variants of entities
- <u>constraints</u> between entities (not shown) restrict choices and parameter combinations

Signal-symbol interface

Computing primitive occurrences

Geometric scene description (GSD)

The GSD is a quantitative object-level scene interpretation in terms of

- recognised objects and
- their (possibly time-varying) locations in the scene
- useful definition of input for HLV
- objects may only be roughly classified (e.g. "moving-object")
- high-level processes must be able to correct mistakes and fill in missing evidence

Primitive occurrences

A primitive occurrence is a conceptual entity with one or more objects for which a qualitative predicate is true over a time interval.

Primitive occurrences provide the raw material for high-level scene interpretations.

object A moves straight ahead		 ı
object B turns		
distance between objects A and B gets smaller		
object A nearby object B		•
29 november 2002	Reasoning Methods for Image Sequence Interpretation	F (

Perceptual primitives

Perceptual primitives are geometrical and photometrical attributes which can be immediately determined from a GSD.

For <u>object configurations</u>:

- objects provide reference features in terms of
 - locations (center of gavity, corners, surface markings, etc.)
 - lines (edges, surface markings, axes of minimal inertia, etc.)
 - orientations (inate, motion, viewer)
- perceptual primitives are measurements between reference features:
 - distance
 - angle
 - temporal derivatives thereof

Qualitative primitives

Qualitative primitives are predicates over perceptual primitives constant over some time interval.

- qualitatively constant values e.g. constant orientation, constant distance
- values within a certain range
 e.g. topological relations, degrees of nearness, typical speeds
- values smaller or larger than a threshold e.g. increase of distance, slowing down

Navigating in hallucination space

What is the space of interpretations?

Vision is controlled hallucination (Kender 1985?)

- interpretations must be consistent
 - consistency is standard inference service of DLs
 - consistency tolerates interpretations without any evidence (complete hallucination)
- interpretations must be context and task dependent "Is there something on the table?"

(after 30 min of processing)

"Yes, a gold-rim plate, 112.4 mm diameter, position 324.3 mm off left table border, 24.8 mm off upper table border, orientation indeterminate, height above table-top 12.6 mm, ..."

- interpretations must be "preferred"
 - aggregates vs. individual objects
 - most special concepts, basic categories, dissolved disjunctions
 - more likely vs. less likely interpretations

Aggregates as basic representational units

frame-like notation

DL concept expressions

Aggregates in taxonomical hierarchies

Interpretation steps

Bayes Nets

Probabilistic models for occurrences

Modelling probabilistic dependencies (causalities) and independencies between discrete events

- X_i random variable *models uncertain propositions about a scene*
- X_i = a hypothesis

Decomposition of joint probabilities:

 $P(X_1, X_2, X_3, \dots, X_n) = P(X_1 | X_2, X_3, \dots, X_n) \bullet P(X_2 | X_3, X_4, \dots, X_n) \bullet \dots \bullet P(X_{n-1} | X_n) \bullet P(X_n)$

Simplification in the case of statistical independence:

X independent of X_i

$$P(X | X_1, ..., X_{i-1}, X_i, X_{i+1}, ..., X_n) = P(X | X_1, ..., X_{i-1}, X_{i+1}, ..., X_n)$$

Joint probability of N variables may be simplified by ordering the variables according to their direct dependence (causality)

Causality graph

Conditional dependencies (causality relations) of random variables define partial order.

Representation as a directed graph:

 $P(X_1, X_2, X_3, ..., X_8) =$ $P(X_1 | X_2, X_3, X_4) \cdot P(X_2) \cdot P(X_3 | X_4, X_5) \cdot P(X_4 | X_6) \cdot P(X_5 | X_6) \cdot P(X_6 | X_7 X_8) \cdot P(X_7) \cdot P(X_8)$

> **Reasoning Methods for Image** Sequence Interpretation

Image interpretation with Bayes Nets

Constructing a Bayes Net:

- 1. Select discrete variables X_i relevant for domain
- 2. Establish partial order of variables according to causality
- 3. In the order of decreasing causality:
 - (i) Generate node X_i in net
 - (ii) As predecessors of X_i choose the smalles subset of nodes which are already in the net and from which X_i is causally dependent
 - (iii) determine a table of conditional probabilities for X_i

Computing expected values:

- 1. Compute $P(X_i)$, i = j, ..., k for the predecessors of a node X_m in the Bayes Net (recursively or from a priori knowledge or from image analysis uncertainty)
- 2. Compute $P(X_m) = P(X_m | X_j, ..., X_k) \cdot P(X_j) ... P(X_k)$

Example: Behaviour of pedestrians at traffic lights

Conditional probabilities for concrete values of random variables must be known to compute expected values

Examples:

P(X1 = enters_street	
X2 = car_comes,	X3 = red, X4 = inattentive, X5 = towards_street) = 0.8
P(X4 = inattentive) = 0.6	
P(X4 = attentive) = 0.4	Reasoning Methods for Image
29 november 2002	Sequence Interpretation

Bayes Net for hypotheses ranking

Probability of a successful interpretation step can be computed by

- Bayes Net along is-a structure
- conditional probabilities for evidence classification

Bayes Nets for taxonomical structures

- A, B, C, ...conceptsa, b, c, ...respective instances
- Basic idea:P(a b c) = P(c|b) P(b|a) P(a)if C á B á A

In general: The is-a structure of a set of concepts equals the Bayes Net structure of the corresponding instances iff the specialisations of each concept are disjoint.

If concepts are not is-a related but intersect, a Bayes Net along the is-a structure would not reflect the correlation between these concepts.

Reasoning Methods for Image Sequence Interpretation

Some insights

- . Generic high-level image sequence interpretation requires model-based approach
- Specialisation and aggregation hierarchies support efficient navigation in interpretation space
- Spatial, temporal and task context is modelled by instantiated high-level aggregates
- Temporal and spatial constraints require dedicated constraint satisfaction mechanisms
- Statistics of vision memory may feed Bayes Net for hypotheses ranking