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• Compositional Hierarchies for Scene Interpretation
-  Aggregates as Conceptual Units
-  Part-Whole Reasoning

• Logics of Scene Interpretation
-  Model Construction
-  Abduction

• Using Description Logics for Scene Interpretation

• Probabilistic Inferences
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Compositional Hierarchies for Scene Interpretation

At the core of scene interpretation:
Finding meaningful aggregates of entities in space and time
• object constellations

e.g. living room, laid table, parking ground, building facade
• activities, events, episodes

e.g. garbage collection, traffic situations, laying a table
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Aggregates as Conceptual Structures

aggregate name
parent concepts
external properties
parts
constraints between parts

Generic frame-based representation of an aggregate concept:

• aggregate name contains a symbolic ID
• parent concepts contains IDs of taxonomical parents
• external properties provide a description of the aggregate as a whole
• parts refer to the subunits out of which an aggregate is composed
• constraints specify which relations must hold between the parts 

Restriction:
No constraints between components
of different aggregates
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Conceptual Facade Hierarchy
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Occurrence Model for Placing a Cover

name: place-cover
parents: :is-a agent-activity
parts: pc-tp1 :is-a (transport with (tp-obj :is plate)) %transport of a plate

pc-tp2:is-a (transport with (tp-obj :is saucer)) %transport of a saucer
pc-tp3 :is-a (transport with (tp-obj :is cup)) %transport of a cup
pc-cv :is-a cover %cover configuration

properties: tb, te :is-a timepoint %begin and end timepoint of place-cover
constraints: pc-tp1.tp-ob = pc-cv.cv-pl %transport-plate object same as cover-plate

pc-tp2.tp-ob = pc-cv.cv-sc %transport-saucer object same as cover-saucer
pc-tp3.tp-ob = pc-cv.cv-cp %transport-cup object same as cover-cup
pc-cv.tb ≥ pc-tp1.te %cover begins after plate transport
pc-cv.tb ≥ pc-tp2.te %cover begins after saucer transport
pc-cv.tb ≥ pc-tp3.te %cover begins after cup transport
pc-tp3.tp-te ≥ pc-tp2.tp-te %cup transport ends after saucer transport
tb = pc-tp1.tb min pc-tp2.tb min pc-tp3.tb
te = pc-tp1.te max pc-tp2.te max pc-tp3.te
te ≤ tb + 80Δt %place-cover may not last more than 80 time units

place-cover

transport-plate transport-saucer transport-cup cover-configuration
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A Simple Model for Intention Recognition

name: intended-place-cover
parents: :is-a intended-action
parts: ipc-pc :is-a place-cover

ipc-ag :is-a agent with (ipc-ag.desire = ipc-pc.goal)
properties: tb, te :is-a timepoint
constraints: (temporal, spatial and other constraints on parts)

intended-action           

agent

goal-directed action

agent        

activity

desire

goal-directed action

activity

goal

If an action is known to be
goal-directed and an agent
performs such an action,
the agent is ascribed the
intention to attain the goal.

Intended actions may be described by aggregates which connect observable
actions with (unobservable) intentions of an actor.
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Situation Graph Trees

Situation Graph Tree - Situation Scheme - State Scheme - Action Scheme

(Nagel et al. 99)

name
state scheme

action scheme

name
state scheme

action scheme

name
state scheme

action scheme

name
state scheme

action scheme

name
state scheme

action scheme

refinement

temporal state
transition

situation
graph
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cross_0
agens(Agent)

traj_active(Agent)
note(cross(Agent))

proceed_to_intersection_2
speed(Agent,non_zero)

note(proceed_to_intersection(Agent,Lane))

start_in_front_of_intersection_2
speed(Agent,very_small)

note(start_in_front_of_intersection(Agent,Lane))

stop_in_front_of_intersection_2
speed(Agent,very_small)

note(stop_in_front_of_intersection(Agent,Lane))

wait_in_front_of_intersection_2
speed(Agent,zero)

note(wait_in_front_of_intersection(Agent,Lane))

drive_to_intersection_1
enter_lane(Lane)
on(Agent,Lane)

direction(Agent,Lane,straight)
note(drive_to_

intersection(Agent,Lane))

drive_on_intersection_1
crossing_lane(Lane)

on(Agent,Lane)
direction(Agent,Lane,straight)

note(drive_on_
intersection(Agent,Lane))

leave_intersection_1
exit_lane(Lane)
on(Agent,Lane)

direction(Agent,Lane,straight)
note(leave_

intersection(Agent,Lane))

self prediction
left corner: starting situation
right corner: ending situation

Example of Situation Graph Tree

Behavior of vehicles
on an intersection in
city traffic
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Scenarios

Scenario(vandalism_against_ticket_machine,
Physical_objects((p : Person),

(eq : Equipment, Name= “Ticket_Machine”) )
Components( (event s1: pmoves_close_to eq)

(state s2: pstays_at eq)
(event s3: pmoves_away_from eq)
(event s4: pmoves_close_to eq)
(state s5: pstays_at eq) )

Constraints( (s1 != s4) (s2 != s5)
(s1 before s2) (s2 before s3)
(s3 before s4) (s4 before s5) ) ) )

pmoves_
close_to eq

pmoves_
away_from eq

pmoves_
close_to eq

pstays_at 
eq

Notation as state transition graph:

initial
state

pstays_at 
eq

inter-
mediate

state

Scenario - Events - States  (Thonnat et al. 2006)
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Interpretation Steps
Aggregation
Inferring an aggregate from (incomplete) parts

Part-whole reasoning
Obtaining an interpretation at a higher abstraction level

Expansion
Inferring parts from an aggregate

Hypothesising occluded objects
Filling in for missing evidence
Predicting future events or reconstructing past events

Classification
Inferring objects from evidence

Specialisation
Assigning objects to specialised concepts along taxonomical hierarchies

Merging
Merging partial interpretations of a distributed interpretation process
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Logics of Image Interpretation

Scene interpretation can be formalised as:

• Partial Model Construction

Construct a partial mapping of the symbols of your formal
knowledge about the world into a real-world domain.

An interpretation is a partial instantiation of formal knowledge
consistent with evidence about the real-world domain.

• Abduction

Construct an explanation of real-world evidence from your
formal knowledge about the real-world domain.

An interpretation is an instantiation of formal knowledge which
allows to deduce the evidence.
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Scene Interpretation by Partial Model Construction

Given a knowledge base with
• general domain knowledge,
• specific context information,
• specific sensory evidence

construct a mapping of
• constant symbols into scene elements D,
• predicate and relation symbols into predicate and

relation functions over D

such that all predicates and relations are true.

• Operational semantics of low-level vision provide mapping into
primitive constant and predicate/relation symbols.

• Hypotheses need no evidence.

Clowes: "Vision is controlled hallucination"
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Compositional Hierarchies

A scene interpretation is a scene description in terms of instantiated
aggregate concepts consistent with evidence and context information.

real world

concepts context hypotheses evidence

constructed
interpretation

not all concepts
are important

not all evidence
is important
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Scene Interpretation as Configuration

SCENIC uses a
configuration system
framework for scene
interpretation

Segmentation and Tracking Unit 

Metric-symbolic Interface

High-Level Interpretation System (KONWERK))

Primitive symbolic
scene description

Geometric scene
description (GSD)

Scene interpretation

Image sequence

Hotz & Neumann 2005
Scene Interpretation as a Configuration Task
Künstliche Intelligenz, 3/2005, BöttcherIT
Verlag, Bremen, 59-65

Model Construction is also the basis of knowledge-based configuration



Cognitive Systems 
LaboratoryCSL

Experimental Results (1)

natural views = evidence
coloured shapes = hypotheses
boxes = expected locations

• "lay-dinner-for-2" hypothesis based on partial evidence
• predictions about future actions and locations
• high-level disambiguation of low-level classification
• influence of context

Intermediate state of interpretation after 51 interpretation steps:
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Experimental Results (2)

• alternative interpretation in terms of "dinner-for-one" and "cluttered-
table" (after backtracking)
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Scene Interpretation by Abduction

 Σ∪ Δ Γ

Shanahan, M. (2005): Perception as abduction: Turning sensor data into meaningful representation.
Cognitive Science 29, 104-134

Σ background knowledge
Γ evidence
Δ explanation

Compute Δ such that                         with 

Abduction focusses on evidence and does not provide additional
ramifications.

evidence

explanation

ramification ramification

ramification

explanation

ramification
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Abduction in Description Logics (DLs)

• Abduction has only recently been introduced as a "non-standard
inference service" in DLs.

• Growing interest in media interpretation for the Semantic Web.

First implementation in the commercial DL system RacerPro:  

Solve 
 
Σ∪Γ1∪ Δ Γ2

Σ = ABox + TBox
Γ1 = facts not needing an explanation
Γ2 = facts needing an explanation
Δ = explanation
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TBox for Table-Laying Domain

(implies plate dish)
(implies saucer dish)
(implies cup dish)
(implies napkin (or paper cloth))
(equivalent  cover

(and  configuration
(exactly  1  has-plate    plate)
(exactly  1  has-saucer saucer)
(exactly  1  has-cup      cup)
(atmost 1 has-napkin   napkin)))

(and saucer (near plate)))
(and cup (on saucer)))

(same-as   has-saucer o near   has-cup)

(X Y near) <=  (and (Z cover)
(Z X has-plate)(X plate)
(Z Y has-saucer)(Y saucer))

(X Y on) <= (and (Z cover)
(Z X has-cup)(X cup)
(Z Y has-saucer)(Y saucer))

DL-safe rules for 
representing constraints
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Providing Rules for Explanations

(equivalent  cover
(and  configuration

(exactly  1  has-plate    plate)
(exactly  1  has-saucer saucer)
(exactly  1  has-cup      cup)
(atmost 1 has-napkin   napkin)))

(X configuration) <= (and (X cover)(X configuration)
(Y plate)  <=  (and (X cover)

(X Y  has-plate)(Y plate)
(Y saucer) <= (and (X cover)

(X Y has-saucer)(Y cup)
(Y cup) <= (and (X cover)

(X Y has-cup)(Y cup)

automatic conversion of all conjuncts
of an aggregate definition

DL-safe rules to allow
abduction by
backward-chaining
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Abduction Example

Calling compute_explanations(Σ, Γ1, Γ2) in RacerPro for the table-laying
knowledge base:

Γ2 = {(plate1 plate)(saucer1 saucer)(plate1 saucer1 near)}

Δ = {(cover1 cover)(cover1 plate1 has-plate)(cover1 saucer1 has-saucer)}
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Interpretation Issues Left Open by Logical Framework

• Task-dependent scope and abstraction level
- no need for checking all predicates
  e.g. propositions outside a space and time frame may be uninteresting
- no need for maximal specialization
   e.g. geometrical shape of "thing" suffices for obstacle avoidance

• Ambiguous choices for interpretation steps
-  evidence classfication is naturally ambiguous
-  bad choices may cause inconsistency and backtracking

• Real-world agents need single "best" scene interpretation
- requires uncertainty rating for evidence and context (propositions)
- requires preference measure for scene interpretations

Logical model property provides only loose frame for possible
scene interpretations.
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Probabilistic Aggregate Structure

external representation
in terms of aggregate

properties

internal representation
in terms of component

properties

Rimey 93:
Tree-shaped part-of nets, is-a trees,
expected-area nets, and task nets

B

A1 A2 AN• • •

unrealistic conditional
independence:

P(A1 ... AN| B) = P(A1|B) P(A2|B)  ... P(AN|B)

P(A1 ... AN)

P(A1 ... AN| B)

P(B)
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Probabilities in an Abstraction Hierarchy

The complete JPD of an abstraction hierarchy can be computed from the
conditional aggregate JPDs.

P( Z0 .. ZM ) = P(Z0)  Π  P( parts(Zi) | Zi )

Z0 is a node and Zi, i = 1 .. M are its successors.
i = 0 ... M

• Aggregate properties do not depend on details below the part properties.

• Part properties depend only on the properties of the corresponding
mother aggregate.

• Parts of different aggregates are statistically independent given their
mother aggregates.

Conditional-independence requirements for a compositional hierarchy
to be an "abstraction hierarchy":
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Preference Computation

Wall

Balcony

B-Wall

Entrance

E-Door

E-Stairs

B-Door

B-Window E-Window

B-Railing

B-Wall-View

B-Window-View

B-Door-View

B-Railing-View

E-Wall E-Wall-View

E-Window-View

E-Door-View

E-Stairs-View

Door-View

• Probabilities within a branch may be compared without
considering the rest of the compositional hierarchy

• Probability updating can be performed with a simple propagation
procedure between aggregates
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Summary

• Recognising aggregates is the main task in
high-level scene interpretation

• Useful inferences can be obtained by stepwise
navigation in the aggregate hierarchy

• Partial model construction and abduction
provide a logical basis for scene interpretation

• Abduction is available as a non-standard
inference service in an optimised DL system

• A probabilistic preference measure can be
combined with the logical framework


