Generation of Rules from Ontologies for
High-Level Scene Interpretation

Wilfried Bohlken and Bernd Neumann

Cognitive Systems Laboratory, Department Informatik, University of Hamburg
22527 Hamburg, Germany
{bohlken|neumann}@informatik.uni-hamburg.de

Abstract. In this paper, a novel architecture for high-level scene inter-
pretation is introduced, which is based on the generation of rules from
an OWL-DL ontology. It is shown that the object-centered structure of
the ontology can be transformed into a rule-based system in a native and
systematic way. Furthermore the integration of constraints - which are
essential for scene interpretation - is demonstrated with a temporal con-
straint net, and it is shown how parallel computing of alternatives can
be realised. First results are given using examples of airport activities.

1 Introduction

High-level scene interpretation can be roughly defined as understanding images
or video streams at abstraction levels above single objects. Typical tasks are
traffic scene interpretation in driver assistance systems, criminal acts recogni-
tion, and other monitoring tasks such as airport activity recognition, which is
used as an example domain in this paper. Scene interpretation systems are typ-
ically conceived as knowledge-based systems where extensive high-level knowl-
edge is modelled using declarative knowledge representation techniques. So far,
no standard architecture has emerged. In his long-standing work on traffic scene
interpretation [7,1,2], Nagel developed situation-graph trees, where hierarchi-
cally organized frame-based state descriptions of traffic situations are embedded
in a state-transition structure. A similar structure was also realised by [3,4, 8]
in terms of scenarios for recognizing bank robberies or airport activities. Com-
positional and taxonomical hierarchies of structure-based configuration systems
as a framework for flexible scene interpretation strategies realising both bottom-
up and top-down interpretation steps are proposed in [10]. Using a hierarchi-
cal framework ranging from the pixel level to high-level semantic structures, a
grammar-based scene interpretation system was developed [17].

The usefulness of high-level symbolic scene interpretation on top of low-level
image processing for activity recognition in video streams was demonstrated
by [6,16]. In this approach the activity models are represented in a self-made,
non-standardized formalism. Scene interpretation for more complex activities,
considered in this paper, calls for for well-founded knowledge representation and
standardized inference procedures.

This was the motivation to investigate the use of Description Logics (DL)
for scene interpretation [13] and multimedia interpretation and retrieval [11].
It was shown that a DL system can transparently represent compositional and
taxonomical hierarchies (which provide the backbone for scene interpretation)
in an object-centered manner, and that several DL inference services (such as
inheritance and classification) can be exploited for the interpretation process.
On the other hand, it is difficult in a DL system to represent constraints be-
tween objects, which are often decisive for defining and recognizing high-level
entities. Furthermore, a DL system does not provide a framework for flexible,
stepwise scene interpretation as required for complex applications. In this pa-
per, we propose a novel architecture for high-level scene interpretation which
exploits well-founded object-centered knowledge representation using OWL-DL,
but avoids the limitations of DL systems by transforming knowledge structures
into rules in the rule-based system Jess. This approach promises several advan-
tages:

— High-level knowledge can be represented in OWL in an object-centered trans-
parent manner, scaling well to large knowledge bases.

— The consistency of the knowledge base can be checked automatically using
a DL reasoner connected to OWL (such as Pellet or Racer).

— Logic-based inferences implied by the OWL representation can be automati-
cally translated into corresponding rules and inheritance mechanisms of Jess,
realising the skeleton of a scene interpretation system.

— Constraint processing and other procedural components not representable
in OWL can be realised in the Java background of Jess.

— Data-driven rule-based processing facilitates flexible interpretation as re-
quired for highly variable scenes and realistic image analysis results.

Note that in this architecture, as in most other approaches, high-level scene inter-
pretation is conceived as a process, which takes low-level image analysis results
in terms of primitive objects as input and delivers assertions about the scene as
output, for example ” Aircraft refueling has begun at 13:02:23” for airport activ-
ity monitoring. As in many applications objects cannot be recognized reliably,
it remains the task of high-level interpretation to disambiguate or even correct
low-level classifications. This must be kept in mind when devising high-level
inference rules.

A basic interpretation step is recognizing an aggregate from its parts in ac-
cordance with the compositional hierarchy defined in the OWL knowledge base.
In Section 2, we describe how OWL aggregates are transformed into Jess rules
providing such interpretation steps. Our implementation differs from an auto-
matic transformation of OWL to Jess described in [5] in several respects and
promises advantages with respect to scalability and generality. We also show
how the constraint checks required for aggregate instantiations are embedded
into the rules to be executed in the Java background system.

In Section 3, we describe the basic bottom-up interpretation process based on
the rules generated from the compositional hierarchy. Here, one of the problems is
conflict resolution when several rules can fire. This must be expected throughout

the interpretation process because of several possible lines of interpretation in
the face of partial or unspecific evidence. It is shown how parallel interpretation
threads can be generated automatically which terminate either with a wvalid
interpretation or incomplete as dead ends.

In Section 4, we present an extended example from the airport activity do-
main. Section 5, finally, concludes with a discussion of the results and information
about future work.

2 Rule Generation from Ontology

In the first part of this section, the usage of OWL-DL for an ontology for scene
interpretation is motivated. Then aggregates are introduced as the main repre-
sentational units of the ontology and finally the transformation of aggregates to
Jess rules is presented. In the second part the integration of constraints into the
rule-based system is described using a temporal constraint net.

2.1 Object-Centered Definition of Aggregates

Ontology and OWL DL. To describe scenes at a high conceptual level requires
the expressiveness to define concepts like objects and events (e.g. for interpreta-
tion of video sequences), together with their properties and relations (e.g. tempo-
ral and spatial relations between parts of the scene) [13]. A description language
for a conceptual knowledge base, which is used for scene interpretation, has to
provide the expressiveness to satisfy these requirements. On the other hand, an
ontology, which is developed for the purpose of scene interpretation tasks, is typ-
ically large and difficult to maintain manually. Therefore it is necessary that a
reasoner (like Pellet or Racer) is available to perform automatic checks, e.g. with
respect to class consistency, class equivalence, sub-class relation, disjunctiveness
and global consistency. The description language OWL DL provides the maxi-
mum expressiveness without losing computational completeness (all entailments
are guaranteed to be computed) and decidability (all computations will theo-
retically finish in finite time). Nevertheless the expressiveness is not sufficient
for our purposes, particularly to specify n-ary constraints, but this gap can be
closed with the OWL extension SWRL (Semantic Web Rule Language).! All in
all, OWL DL has many desirable properties for our purposes, and in the follow-
ing we assume that OWL DL is used for our ontology representation. It is also
worth noting that OWL ontologies have become increasingly popular over the
last years, primarily because of the idea of the Semantic Web, which increases
the availability of tools for creating, publicising and distributing ontologies.

Aggregates. The main concepts in our OWL ontology are physical objects, for
example Vehicle, Person or Equipment, and conceptual objects. These are more
abstract objects, for example events as Vehicle-Enters-Zone or Refueling.

! http://www.w3.org/Submission/SWRL

Concepts are related to each other by super-class and sub-class relations, thus,
forming a tazonomy. Other essential relations for a knowledge base for scene
interpretation are the compositional relations, which express that a concept
may have other concepts as parts inducing a compositional hierarchy. For ex-
ample, the conceptual object Vehicle-Enters-Zone is composed of the concep-
tual objects Vehicle-Outside-Zone and Vehicle-Inside-Zone. Instances (or
individuals in OWL terms) of these parts have to be in a specific temporal re-
lation: an instance of Vehicle-Outside-Zone has to occur before the instance
of Vehicle-Inside-Zone. Another constraint is that the respective instances of
the physical objects Vehicle and Zone of both events are the same. These are
the conceptual constraints. A concept and its parts together with the concep-
tual constraints form an aggregate, given by the following generic structure in a
description logic setting [13]:

Aggregate_Concept = Parent_Concepty M ... 1 Parent_Concept,, M
3>m, hasPartRole. Part_Concept, M

3>, hasPartRole. Part_Concepty, M

conceptual constraints

In Figure 1, a simplified extract of the OWL ontology, used for modelling airport
activities, is shown as a screenshot of Protégé, as pure OWL notation is not
convenient to read. In the left frame the taxonomy is shown and in the right
frame the properties of the selected conceptual object Vehicle-Enters-Zone
are displayed.

v Thing
v ap-upper: Constant

ap-upper:integer-Constant

v Scene-Ohject o
! 5 &
v Conceptual-Ohbject
v Ewverit
> Composite-Evert Primitive-Evert
v Primitive-Event has-part-vehicle-inside-zone exacthy 1 Yehicle-Inside-Zone

‘dehicle-Enters. Tone haz-part-vehicle-outside-rone exacthy 1 Vehicle-Outside-Fone

v Stat
& has-part-time-paoint -begin exacthy 1 Time-Point-Begin

Composte-State his-prart-ime-point-end exacthy 1 Time-Point-Enc
> Primitive-State
> Physical-Object

Fig. 1. OWL ontology in Protégé.

For modelling the conceptual constraints we use SWRL. An example of a
SWRL rule, which expresses the conceptual constraint that instances of the
physical objects Vehicle and Zone have to be the same in both events, is given

below (for simplification the temporal constraints are omitted here.

Vehicle-Enters-Zone(?vez) ~
has-part-vehicle-inside-zone(?vez, 7viz) ~
has-part-vehicle(?viz, 7vl) ~
has-part-zone(?viz, ?7z1) ~
has-part-vehicle-outside-zone(?vez, 7voz) ~
has-part-vehicle(?voz, 7v2) ~
has-part-zone(?voz, 7z2) ~

->

swrlb:equal(?vl, ?7v2) ~

swrlb:equal(?zl, ?7z2)

In this way an aggregate hierarchy is modelled with primitive aggregates - like
Vehicle-Inside-Zone - as leaves, which can be directly instantiated based on
visual attributes of physical objects computed by the perceptual components of
the scene interpretation system (see Section 3.1), and more complex aggregates,
defined with aggregates as parts.

Transforming Aggregates to Jess Rules. In this paragraph it will be de-
scribed, how aggregates can be transformed into rules for the rule-engine Jess
in a systematic, automatable way, realising possible interpretation steps and
sustaining the object-centered structure of aggregates.

Scene interpretation cannot be solely modelled as deduction. It has been
shown in [14] that constructing a scene interpretation is essentially a search
problem in the space of possible interpretations defined by the taxonomical and
compositional relations by incrementally instantiating concepts while maintain-
ing consistency. Four kinds of interpretations steps are necessary:

— Aggregate instantiation (moving up a compositional hierarchy).
— Aggregate expansion (moving down a compositional hierarchy).
— Instance specialisation (moving down a taxonomical hierarchy).
— Instance merging (unifying instances obtained separately).

In this paper, we will focus on the first step - aggregate instantiation - which is
a bottom-up step and the backbone for scene interpretation.

A main structuring feature of the Jess rule language is a template, which
can be seen as analogon to a Java class. A template is defined by a name and a
number of slots, which are comparable to member variables of a Java class. In the
first step of the transformation of aggregates to Jess, every concept is defined by
a template with the name of the concept. The slots of the template are defined
corresponding to the properties of the concept with an additional slot name,
which holds the name of the instance (e.g. vehicle_17). Here our approach
differs from the transformation of OWL and SWRL to Jess described in [5],
where the properties are modelled as ordered facts. Ordered facts are simply
Jess lists, which perform an implied template creation. This would mean to lose
the object-centered structure of an aggregate, as the properties are decoupled

from the concept template. The other significant difference is that we keep the
OWL taxonomy by defining the templates with extends, which is used to express
inheritance in Jess. In this way the OWL subclass relation of class C and D

ccDh (1)

is directly transformed into the template inheritance structure of Jess. In the
realisation described in [5] the template structure is flat and the taxonomy is
emulated by duplicating the facts along the taxonomical hierarchy, which could
lead to problems with scalability.

In the second step of the transformation, a rule is defined for every aggregate
of the OWL ontology. In the predicate part (LHS) of the rule, the parts of
the aggregate are listed together with the slots which are needed to express
the conceptual constraints, as far as possible. With part-of relations it can be
checked that a part is not already integrated into another aggregate instance.
Constraints that go beyond the scope of a single aggregate - for example temporal
constraints - are processed procedurally in the Java part of the system and appear
in the predicate part of the rule as a test function (test conditional element).
This will be described in detail in Section 2.2. In the action part (RHS) of the
rule, the aggregate is instantiated, properties are modified accordingly, and the
temporal constraint net is updated.

An example for a Jess rule for the (simplified) aggregate Refueling is given
below? (the temporal constraint processing is only sketched here).

(defrule Refueling

7tez-id <-

(Tanker-Enters-Zone (name 7tez)
(has-part-tanker 7v1)
(has-part-zone 7z1)
(part-of-refueling nil))

?dr-id <-

(Do-Refuel (name 7dr)
(has-part-tanker 7v1l)
(has-part-zone 7z1)
(part-of-refueling nil)

7tlz-id <-

(Tanker-Leaves-Zone (name 7tlz)
(has-part-tanker 7v1l)
(has-part-zone 7z1)
(part-of-refueling nil))

;3 check temporal constraints in a test function

=>

;; create new instance of Refueling

(assert
(Refueling (name 7rf-new)

2 2x-id<- is an identifier needed for modification of facts in the RHS part of a rule.

(has-part-tanker-enters-zone 7tez)
(has-part-do-refuel 7dr)
(has-part-tanker-leaves-zone 7tlz)))
;; modify properties of parts
(modify 7?tez-id (part-of-refueling ?rf-new))
(modify 7dr-id (part-of-refueling ?rf-new))
(modify 7tlz-id (part-of-refueling 7rf-new))
;; update temporal constraint net

2.2 Constraints

Spatial and temporal context play a special part in scene interpretation. But as
already mentioned and shown in [13], it is difficult in a DL system to represent
constraints between conceptual objects, and a DL system does not provide a
framework for flexible, stepwise scene interpretation. In this section the integra-
tion of a global temporal constraint net is introduced which controls the activa-
tion of rules and stepwise aggregate instantiations, maintaining consistency of
the temporal constraints.

Temporal Constraint Net. Temporal constraints are essential in a domain
like airport activity monitoring. For the modelling of temporal relations, we use
the convex time point algebra [15]. The Allen temporal operators used in the
SWRLTemporalOntology® are not expressive enough for our purposes, because
they only allow the modelling of qualitative relations, whereas the complexity of
our domain requires quantitative models.

The basic format of a temporal relation in the convex time point algebra is

t1 > 12+ ci12 (2)

where t1 and t2 are interval-valued time points and c12 is an integer-valued
constant. Using such inequalities, it is possible to model important features of
the temporal structure of a scene model.

Figure 2 illustrates a more detailed aggregate of Refueling. In the OWL
ontology every concept has two temporal data type properties: has-start-time
for the beginning time point (x-tb) and has-finish-time for the ending time
point (x-te). Other properties are not listed here. The temporal constraints
are as follows. A Tanker-Enters-Fuel-Access-Area event has to occur before
a Tanker-Stopped-In-Fuel-Access-Area event, which has to happen before a
Tanker-Leaves-Fuel-Access-Area event. A Handler-Plugged-Fuel event has
to occur before a Handler-Unplugged-Fuel event. Both events occur during the
Tanker-Stopped-In-Fuel-Access-Area event. Every event has to fulfill a cer-
tain duration. Analog to the conceptual constraints in Section 2.1 also these

3 http://protege.cim3.net /cgi-bin /wiki.pl?SWRLTemporalOntology

L tp 1 Datatype: time

:] Concept
—————— + has-datatype relation
—— has-part relation

Tanker-Stopped
In-Fuel-Access-

Handler-
Unplugged-
Fuel

LeavesFuek
Access-Area

Flugged-
Fuel

Handler- ‘

‘ Tanker-

Access-Area Area

Tanker-
Enters-Fuel-

conceptual constraints

Fig. 2. Aggregate Refueling with time properties.

temporal constraints can be expressed with SWRL rules in the form of inequali-
ties, mentioned in (2). Part of the SWRL rule for the Refueling aggregate which
concerns the temporal constraints of Tanker-Stopped-In-Fuel-Access-Area is
given below.

Refueling(?rf) ~
has-part-tanker-stopped-in-fuel-access-area(?rf, 7tsifaa)
duration-of-tanker-stopped-in-fuel-access-area(?7rf, ?tsifaa-dur)
has-Start-Time(?7tsifaa, tsifaa-tb) ~
has-Finish-Time(?tsifaa, tsifaa-te)
swrlb:add(?sum-tb-dur, 7tsifaa-tb, 7tsifaa-dur)
swrlb:greaterThanOrEqual (?tsifaa-te, ?7sum-tb-dur) ~

Beside the transformation of aggregates to Jess rules, the transformation process
must also generate a temporal constraint net (TCN) out of the SWRL rules. The
outcome is a single global TCN which includes all aggregates modelled in the
OWL ontology. An extract of the TCN concerning the Refueling aggregate, is
shown in Figure 3.

The nodes are time points corresponding to the time marks given in the
SWRL rules. The directed arcs represent inequalities, marked with an offset
which represents the ideal value of the duration. Each node is interval-valued,
where the interval denotes the range of the time points which is consistent with
the constraints. Initially the intervals are open-ended, i.e. [—00 +00]. When an
aggregate is instantiated - that is when a rule fires - the corresponding nodes will
receive concrete values. For example, if a Tanker-Stopped-In-Fuel-Access-—
Area event starts at 27, then the time point tp3-tb will receive the value [27
27]. New values are propagated through the constraint net as follows [12]:

— minima in edge direction: tomin’ = max(tomin, timin + C12).
— maxima against edge direction: timaz = MiN(t1maz, t2mar — C12)-

A TCN is inconsistent, if for any node t,,;, > tmq holds.

At l At T
tp2-th tp2-te tp3-th | [tp3-te tp6-th tpé-te
J {

At At l At T At At

[tpd—tb]—"[tpd—te]—"[tpﬁ—tb]—"[tpﬁ—te]
At At At

Fig. 3. Temporal constraint net for Refueling.

Implementation of Temporal Constraint Net with Shadow Facts. As
the propagation of values through the constraint net has a procedural character
and can effect all time points - i.e. not only the time points in one single aggregate
- it is reasonable and efficient to implement this in Java, whereas a pure Jess
implementation would be unnecessary complex and intransparent.

To establish a connection between the Java implementation and Jess objects,
all time points and the TCN itself are implemented as shadow facts [9], i.e. every
time point in Jess has a corresponding time point object in Java.* The usage
of shadow facts enables Jess to perform reasoning about Java objects. Together
with the integration of the TCN into the rules, a general structure of an ag-
gregate bottom-up rule can be given schematically as follows (¢, denote time
points):

(defrule Aggregate-X-Rule
- partl with ti11, t12
- part2 with t21, t22

(TCN (tMins $7tMins) (tMaxs $7tMaxs) (OBJECT ?7tcn-obj))
(test (call ?tcn-obj propagateAndCheckConsistency
$7tMins
$7tMaxs
ti1, t12, t21, t22,...))
=>
- instantiate aggregate X with t31, t32
- modify part-of relations of parts
(call 7tcn-obj update
$7tMins
$7tMaxs
t11, t12, t21, t22,..., t31, t32))

4 Every shadow fact has a slot OBJECT which holds a reference to the Java object
itself.

When the TCN is initialised, all time points are “normal” objects (not con-
nected to Jess facts). At the moment a rule is matched against the working
memory, the propagateAndCheckConsistency function in the LHS part of the
rule propagates the time point values of the parts of the aggregate through a
copy of the original TCN (because the original TCN must not be changed). If
the TCN becomes inconsistent the function returns false, that means it can-
not be satisfied with the currently checked instances, thus the rule must not be
activated. If the function returns true (and all other constraints of the LHS are
fulfilled), then the rule will be activated. If the rule fires, the update function in
the RHS part of the rule integrates the time points into the original TCN (now
these nodes are shadow facts) and propagates the values. In this way the instan-
tiation of aggregates is achieved, while maintaining consistency of the temporal
constraints.

Here it must be mentioned, that a pure Jess implementation of the tempo-
ral constraint net would be possible in principle with Jess functions. But the
realisation of the TCN introduced here is only a preliminary stage for a more
sophisticated component where probability distributions replace crisp time inter-
vals so that a context-dependent certainty value can be generated for activated
rules. This calls for more complex computations not easily realisable in Jess.

3 Interpretation Process

In this section, we describe the basic bottom-up interpretation process based on
the rules generated from the OWL ontology. In the first part, a system overview
of a general scene interpretation system is given and the interpretation process
is described. In the second part, it is demonstrated, how parallel processing of
interpretations can be realised.

3.1 Interpretation Process and System Overview

A Dbasic framework for high-level scene interpretation can be subdivided into
three main layers:

— The segmentation and tracking unit (low-level processing layer).
— The metric-symbolic interface (middle layer).
— The high-level interpretation layer.

In the segmentation and tracking unit, static or moving objects are detected
by low-level image processing components. The objects are classified into view
types. A view is a representation of the visual evidence of a physical object.
Objects are tracked throughout image sequences, and object trajectories are
computed for moving objects. In the middle layer, primitive aggregates are com-
puted. In our domain of airport activities these are primitive states (which
describe properties of physical objects that are true for a given time inter-
val), like Vehicle-Stopped-In-Zone and primitive events (which describe one
or several change(s) of properties of physical objects in a time interval), like

Vehicle-Enters-Zone. These primitive aggregates serve as input for our rule-
based high-level interpretation layer. With several interpretation steps, men-
tioned in Section 2.1, and the usage of conceptual knowledge, the interpretation
layer performs the inference of high-level aggregates which represent assertions
about complex activities in the scene. The usefulness of this architecture for
scene interpretation was already demonstrated by [6].

In the initialisation (or offline) phase of the system, the concepts of the con-
ceptual knowledge base are transformed to templates and aggregates are trans-
formed to rules, all written to data files. An initialisation file for the temporal
constraint net is generated out of the SWRL rules. These files together form the
Jess conceptual knowledge base. In the working (or online) phase of the system,
these data files are read by the Java application with the embedded Jess engine.
The templates and rules are added to the engine, a temporal constraint net is
initialised and also added to the Jess engine as a shadow fact. Now the system
is ready to process the primitive aggregates provided by the middle layer. In
the present stage of the project, the primitive aggregates are read from XML
files, in the future they will be provided by a CORBA interface. Corresponding
to the time marks given in the XML files, the primitive aggregates are added
successively as facts to the working memory of the Jess engine, simulating an
evolving scene. Then the agenda, i.e. the list of activations (rules that can fire
when the engine is started) of the Jess engine is analysed. If the agenda is not
empty, the command is given to run the engine. The rules fire and add new
facts, representing instances of higher level aggregates, to the working memory.
Continuing this in a loop, more and more aggregates - defined higher up in the
hierarchy and representing more complex activities - are instantiated, consistent
with the corresponding conceptual constraints (see Figure 4).

This way a framework for stepwise scene interpretation is realised. The consis-
tency of the rules is guaranteed as far as possible, as they are generated from an
OWL ontology which provides automatic consistency checks (except for SWRL
rules).

Low Level Data

Jess Conceptual | Java Application
= Knowledge Base
Jess
=

Interpretation

Fig. 4. Architecture of interpretation system.

Converter

3.2 Parallelisation

In this section the necessity of parallel computing in the scene interpretation
process is motivated and the technical realisation is demonstrated.

As mentioned before, constructing a scene interpretation is essentially a
search problem in the space of possible interpretations. In a real-time scene
interpretation system, e.g. for airport activity monitoring, it cannot be avoided
that evidence is processed incrementally. That means, early interpretation steps
may be ambiguous because of lack of supporting context. This problem can be
solved either by allowing backtracking to undo faulty decisions, or by parallel
computing to follow several alternatives. We will show that parallel computing
can be implemented in a transparent and efficient way, using Jess.

In our domain of airport activities it is not unusual that an instance of an
aggregate, for example an instance of Vehicle-Enters-Zone, could be a part of
one of several different instantiations (see Figure 5).

} Constraint
inconsistency

—— has—part relation

Fig. 5. Possible alternatives in an interpretation step.

Assuming that the conceptual constraints are only fulfilled in rule A and
rule B, both will be activated and put onto the agenda. Rule C will not be
activated. Because the fact is exclusively part of either instance A or instance
B, the order in which the rules fire is decisive for the result: if rule A fires,
then rule B will be deactivated and vice versa (this is controlled by the part-of
relation, mentioned above). To follow both alternative interpretation paths, the
actual Jess engine is cloned in this situation. By using the Jess mechanism of
serialisation and deserialisation, it is ensured that correct (deep) copies of Java
objects, implemented as shadow facts, are created. After cloning the Jess engine,
rule A and rule B are activated in both engines. Now, we want to fire rule A in
clone_1 and rule B in clone_2. This can be achieved by using a special conflict
strategy which can be easily set in the Jess engine to manipulate the execution
engine accordingly. Concretely, to explicitly fire a certain rule, a strategy is set,
which gives the priority to the activation with a certain activation name (this
name is unique). Then both engines are executed in different threads. Directly
after the first rule has fired in a clone, the strategy is reset to the original strategy

(this can be done by an event handler). When the setStrategy function of the
Jess engine returns, all remaining activations are re-ordered, according to the
new (original) strategy.

In the next loop, new facts, provided by the middle layer, will be added to
the working memory of every clone. If the TCN is not satisfiable anymore, then
the thread dies. It can be assumed that in the beginning of the scene, the initial
thread branches into several parallel threads very quickly, as there is less context
information. But with preceding evolution of the scene the number of threads
will decrease. For example a primitive event like Person-Enters-Zone can be a
part of various events, whereas higher aggregates like Refueling are only part
of one or two higher events. Future experience will show which maximal number
of threads is useful.

4 Results

In this section a simple example of a scene interpretation process is demonstrated
in the domain of airport activities which is the application domain in in the EU
project Co-Friend.?

For our experiment we assume a simplified aggregate Refueling with the
parts Tanker-Enters-Zone, Do-Refuel and Tanker-Leaves-Zone. Another ag-
gregate Tanker-Enters-And-Leaves-Zone consists only of the parts Tanker-—
Enters-Zone and Tanker-Leaves-Zone, both with their respective conceptual
constraints. The second aggregate is a model for the activity that a tanker en-
ters and leaves the specific zone without refueling the aircraft for any reason.
Normally an assured evidence for Do-Refuel should inhibit the activation of the
rule Tanker-Enters-And-Leaves-Zone-Rule, but in future work other interpre-
tation steps - beside bottom-up - will be realised which also include hypothesising
facts, for example, in cases where evidence is missing because of occlusion. Hence,
in general it could make sense to follow both alternatives.

An OWL-DL ontology, including the aggregates and physical objects de-
scribed above, has been created with Protégé 3.4. The global consistency of the
ontology has been checked with the OWL reasoner RacerPro 2.0. SWRL rules
have been defined to express the conceptual constraints of the aggregates with
the integrated SWRL functionality of Protégé 3.4.

The data files for the rules and the templates have been generated manually.
The instances of the three aggregates are read from an XML data file (for sim-
plification we assume Do-Refuel to be a primitive aggregate here) and added to
the Jess engine one after another.

In Figure 6, an extract of the output of the experiment is shown. It can be
seen that as soon as the instance of Tanker-Leaves-Zone is added to the working
memory, the Refueling-Rule and the Tanker-Enters-And-Leaves-Zone-Rule
are activated and put onto the agenda in engine_1. Then the engine is cloned,

5 This work was partially supported by the EC, Grant 214975, Project Co-Friend.

thus, a new engine_2 is created with the same status. Then both engines are exe-
cuted. As desired, the Refueling-Rule fires in engine_1, and the Tanker-Enters-
And-Leaves-Zone-Rule fires in engine_2. Furthermore, the instantiation of Re-
fueling results in adding a Refueling fact to the working memory in engine_1,
and a Tanker-Enters-And-Leaves-Zone fact is added in engine_2.

Engire: 1

f-10 (MAIN::Tanker—El:ners-Zone (nam;a "ta'nker—en‘l'ers-zcne_‘

f-11 (MAIN::Do-Refuel (name "do-refuel_13") (has-pari-stari-
f-12 (MAIN::Tanker-Leaves-Zone (name "“tanker-leaves-zone
Aclivation: BOTTOM-UP:: Tanker-Enlers-And-Leaves-Rule :
Aclivation: BOTTOM-UP::Refueling-Rule : -10, f~11, f-12,
===x= Analysis | time: 31

————— Mew engine: 2 | time: 78

====> Copy engine: 1to 2 | lime: 78

==<<< Copy engine: 110 2 | lime: 203

<<<<< Analysis | time: 203

====> Run engines (1- 2) | time: 203

FIRE 1 BOTTOM-UP: Refueling-Rule -10, f-11, f-12, f-4, -5
=13 (MAIN::TimePoint (class <Java-Object java.lang.Class>|
f-14 (MAIN::TimePoint (class <Java-Object java.lang.Class=>|
f-15 (MAIN::Refueling (name “refueling_15") (has-pari-start-t|
<<<<< Run engines | time: 219

Engine: 2

===== New engine: 2 | time: 78

===>> Copy engine: 1to 2 | time: 78

==<<< Copy engine: 1o 2 | time: 203

=<<<<< Analysis | time: 203

===>> Run engines (1 - 2) | time: 203

FIRE 1 BOTTOM-UP:: Tanker-Enters-And-Leaves-Rule f-10,
f-13 (MAIN::TimePoint (class <Java-Object;java.lang.Class>
f-14 (MAIM: . TimePoint {class <Java-Object;java.lang.Class>
=15 (MAIN: . Tanker-Enters-And-Leaves-Zone (name "tanker-
=<<<< Run engines | time: 219

Fig. 6. Output for example of interpretation process.

5 Conclusion and Future Work

In this paper we have presented a novel architecture for high-level scene inter-
pretation, which is based on the generation of rules from an OWL-DL ontology.
It has been shown how aggregates can be transformed into a rule base of Jess in
a systematic way and how a global temporal constraint net can be integrated.
A general rule pattern has been given for the transformation of aggregates into
bottom-up interpretation rules which provide the backbone of scene interpreta-
tion. Furthermore, the usage of these rules in the scene interpretation process
was explained with examples of airport activities. The technical functionality of
parallel computing, with the intention to follow alternative interpretation steps,
has been shown and a first simple experiment was demonstrated.

In ongoing work, rule generations for the remaining interpretation steps, i.e.
aggregate expansion, instance specialisation and instance merging, are elabo-
rated. All transformations from the OWL ontology into rules, templates, and
the temporal constraint net will be fully automated.

As an advanced use of rule-based processing, the inclusion of common sense
inferences will be investigated. The goal here is to conclude missing facts not
provided by low-level image analysis by rules which reflect every-day human
experiences, for example about natural motion of physical objects.

The original conflict strategy of Jess will be replaced by a probabilistic strat-
egy to provide a preference measure for interpretations steps. In this way the

most promising alternatives of interpretations will be traced in parallel as a
beam search. Finally more complex experiments will be performed with real
input data obtained from aircraft activities captured at Toulouse Airport in
project Co-Friend.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Arens, M., H.-H. Nagel, H.-H.: Behavioural Knowledge Representation for the Un-
derstanding and Creation of Video Sequences. In Proc. 26th German Conf. on
Artificial Intelligence (KI-2003), LNCS 2821, Springer, 149-163, 2003.

. Arens M., Ottlik A., Nagel H.-H.: Using Behavioral Knowledge for Situated Pre-

diction of Movements. In Proc. 27th German Conference on Artificial Intelligence
(KI-2004), Springer LNAI 3238, 141-155, 2004.

Borg, M., Thirde D., Ferryman J., Fusier F., Valentin V., Brémond F., Thonnat,
M.: A Real-Time Scene Understanding System for Airport Apron Monitoring. In
Proc. of IEEFE International Conference on Computer Vision Systems (ICVS-06),
2006.

Bremond, F., Thonnat, M., Zuniga, M.: Video Understanding Framework for Au-
tomatic Behavior Recognition. Behaviour Research Methods 3, 38, 416-426, 2006.

. Eriksson, H.: Using JessTab to Integrate Protégé and Jess. IEEFE Intelligent Sys-

tems 18(2), 43-50, 2003.

Fusier, F., Valentin, V., Brémond, F., Thonnat, M., Borg, M., Thirde, D., Fer-
ryman, J.: Video understanding for complex activity recognition. Machine Vision
and Applications Volume 18, Numbers 3-4, 167-188, 2007.

Gerber, R., Nagel, H.-H.: Occurrence Extraction from Image Sequences of Road
Traffic Scenes. In L. van Gool and B. Schiele (eds.), Proc. Workshop on Cognitive
Vision, Switzerland, 1-8, 2002.

Georis B., Mazire M., Brémond F., Thonnat M.: Evaluation and Knowledge Rep-
resentation Formalisms to Improve Video Understanding. Proc. ICVS-06, 2006.
Friedman-Hill, E.: Jess in Action: Java Rule-Based Systems. Manning, Greenwich,
2003.

Hotz, L., Neumann B.: Scene Interpretation as a Configuration Task. Kuenstliche
Intelligenz 3, BoettcherIT Verlag, 59-65, 2005.

Moeller, R., Neumann B.: Ontology-based reasoning techniques for multimedia in-
terpretation and retrieval. In: Y. Kompatsiaris, P. Hobson (Eds.): Semantic Mul-
timedia and Ontologies: Theory and Applications, Springer, 55-98, 2008.
Neumann, B.: Description of Time-Varying Scenes. Semantic Structures, D. Waltz,
Ed., Lawrence Erlbaum, 1989.

Neumann B., Moeller, R.: On Scene Interpretation with Description Logics. In:
Cognitive Vision Systems, Springer, LNCS 3948, 247-275, 2006.

Neumann, B., Weiss, T.: Navigation through logic-based scene models for high-level
scene interpretations. Proc. 8rd Int. Conf. on Computer Vision Systems (ICVS-
2003), 212-222, 2003.

Vila, L.: A survey on Temporal Reasoning in Artifical Intelligence. AI Communi-
cations 7 (1), 4-28, 1994.

Van-Thinh V., Brémond, F., Thonnat, M.: Automatic Video Interpretation: A
Recognition Algorithm for Temporal Scenarios Based on Pre-compiled Scenario
Models. Computer Vision Systems, Springer, LNCS 2626, 523-533, 2003.

Zhu S.-C., Mumford, D.: A Stochastic Grammar of Images. Now Publishers, 2007.

