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Abstract
We introduce radial basis functions with compact sup-

port for elastic registration of medical images. With these
basis functions the influence of a landmark on the registra-
tion result is limited to a circle in 2D and, respectively, to
a sphere in 3D. Therefore, the registration can be locally
constrained which especially allows to deal with rather lo-
cal changes in medical images due to, e.g., tumor resec-
tion. An important property of the used RBFs is that they
are positive definite. Thus, the solvability of the resulting
system of equations is always guaranteed. We demonstrate
our approach for synthetic as well as for 2D and 3D tomo-
graphic images.

1. Introduction

Registration is an important technique in medical image
analysis. Rigid and affine registration methods can only
cope with global differences, for example, translation, ro-
tation, and scaling. In many cases, however, elastic or non-
rigid methods are required to cope with local differences
between the images. Such differences are due to, for exam-
ple, scanner-induced deformations, movements of the pa-
tient, surgical interventions, or different anatomy (e.g. im-
age atlas-registration).

In this paper, we consider a point-based elastic registra-
tion approach based on the radial basis function (RBF) in-
terpolation method. With this approach the transformation
is composed of radially symmetric functions that serve as
basis functions. The choice of the type of the RBF is cru-
cial for the overall characteristics such as the smoothness
or the locality of the transformation function.

Bookstein [2] has introduced thin-plate splines for med-
ical image registration. This approach yields minimal
bending energy properties measured over the whole im-
age, but the deformation is not limited to regions where
the point landmarks are placed. This behaviour is advan-
tageous for yielding an overall smooth deformation, but it
is problematic when rather local deformations limited to

image parts are desired. To cope with local deformations,
the landmarks have to be well-distributed over the images
to prevent deformations in regions where no changes are
desired [1].

Others have investigated multiquadrics as RBFs for reg-
istration, e.g. [5], and for image deformations [7]. These
RBFs have a parameter which controls their locality. How-
ever, the function values of multiquadrics are increasing
with growing distance from the landmark position and thus
the registration result at locations far off the center of the
RBF is largely influenced. Other RBFs decrease with
growing distance from the landmark position such as in-
verse multiquadrics, e.g. [7], and the Gaussian, e.g. [1].
Since these RBFs asymptotically approach zero, the global
influence is reduced, but it is not spatially limited, i.e. these
RBFs have no compact support.

In this paper, we introduce RBFs with compact support
for the registration of medical images. The basis functions
we employ have a similar shape as the Gaussian, but they
have the advantage that their influence is limited around a
landmark (in 2D and 3D images on a circle or a sphere,
resp.). This property allows the registration of medical
images where changes occur only locally. The applica-
tion scenario we have in mind is the registration of local
changes in medical images due to the resection of a tu-
mor or due to other surgical interventions. This approach
has also very nice theoretical properties. Actually, for the
basis functions we use, it can be shown that the resulting
system of equations is always solvable. Thus, we provide
an answer to a previously posed question in [1], where
Gaussian-shaped RBFs with compact support are sought
while solvability is always ensured.

Below, we first give an overview of the general scheme
for registration based on RBFs (Sect. 2). In Sect. 3, we
introduce an elastic registration scheme using RBFs with
compact support and discuss its properties. Finally, in Sect.
4, we present experimental results for 2D and 3D images.



2. Image registration with RBF

In this section, we briefly describe the radial basis func-
tion interpolation scheme and discuss its properties de-
pending on the choice of the basis function.

2.1. General scheme

Generally, in registration applications one has to deter-
mine a transformation functionu : Rd ! R

d ; whered is
the image dimension, e.g.d = 2; 3 for 2D and 3D images,
resp. An interpolation transformation functionu(x) based
on point-landmarks must fulfill the following constraints:

u(pi) = qi; i = 1 : : : n; (1)

wherepi 2 R
d constitute a given set of point-landmarks

in the source image andqi 2 R
d are the corresponding

landmarks in the target image. Often, each coordinate of
the transformation function is calculated separately, i.e. the
interpolation problemuk : Rd ! R is solved for each
coordinatek = 1 : : : d with the corresponding constraints
uk(pi) = qi;k. In the following, we writeu(x) instead of
uk(x). In 2D,u(x) is calculated separately foru1(x) and
u2(x) and in 3D foru1(x), u2(x), andu3(x).

If we apply a radial basis function approach, then the
interpolation functionu(x) generally consists of two parts:

u(x) = �s(x) +Rs(x); (2)

where�s(x) is a sum of polynomials up to degreep and
Rs(x) consists of a sum of RBFs (the index s denotes sum):

�s(x) =

MX
j=1

�j�j(x); Rs(x) =

nX
i=1

�iR(jjx� pijj):

Here, the�j(x) are a basis ofM functions for all poly-
nomials up to degreep, R(r) = R(jjrjj) is a function
depending only on the distancer � 0 from the origin,
jjx � pijj = jjrjj is the Euclidean distance fromx to pi,
and�i and�j are coefficients. The RBFsR(jjx�pijj) are
centered around then landmarkspi. Inserting (2) in (1)
and using the following additional constraints:

nX
i=1

�i�j(pi) = 0; j = 1 : : :M;

yields the following system of linear equations for the co-
efficients� = (�1; :::; �n)

T and� = (�1; :::; �M )T :�
K P

PT 0

��
�

�

�
=

�
qk
0

�
; (3)

whereK is then�n sub-matrix given byKij = R(jjpi�
pj jj) andP then�M sub-matrix given byPij = �j(pi).
qk = (qk;1; :::;qk;n)

T is a vector of thekth coordinate of
the target landmarksqi.

2.2. Important properties

The choice of the RBFR(r) determines the character-
istics of the transformation functionu(x). Given the appli-
cation scenario from above the following properties are of
primary interest:

� Locality. By locality we denote the spatial range of
influence induced by an additionally used landmark
pair. These influences can be rather local, i.e. regions
of the registration result at larger distances than a cer-
tain radius from the landmark pair do not undergo
changes. Alternatively, the landmark pair can influ-
ence the whole transformed image. Some RBFs have
locality parameters which allow to control their in-
fluence on the registration result (see also Sect. 2.3
below).

� Solvability. To find solutions for the coefficients�
and� for all possible sets of landmarks, which are not
colinear in 2D and not coplanar in 3D, it is required
that the matrix on the left hand side of (3) has to be
non-singular. We will discuss the non-singularity of
the matrix based on the choice of the RBF in Sect. 2.3
below.

� Efficiency.Computational efficiency is important es-
pecially for large data sets such as 3D images. The
computation of a transformation function depends on
the used basis function. Also, for efficiently solving
the system (3) it is important whether the involved
matrix is dense or sparse.

2.3. Commonly used radial basis functions

A variety of different RBFs have been proposed for
elastic image registration and image deformation. These
are, for example, thin-plate splines(RTPS), e.g. [2, 3, 6],
multiquadrics(RM ), e.g. [4, 5, 7], inverse multiquadrics
(RIM ), e.g. [7], and the Gaussian(RG), e.g. [1]:

RTPS(r) =

(
r4�d ln r 4� d 2 2N

r4�d otherwise;
(4)

RM (r) = (r2 + c2)�; � 2 R+ ; (5)

RIM (r) = (r2 + c2)��; � 2 R+ ; (6)

RG(r) = e�r
2=2�2 : (7)

Locality. The first two functions increase, while the lat-
ter two functions decrease with growingr from the land-
mark point. All these functions have in common that they
have no compact support and therefore a landmark pair in-
fluences the whole registration result.

Solvability. The transformation function (2) has a cer-
tain ‘polynomial precision’, which corresponds to the poly-
nomial part of degreep. Naturally, polynomials have



global influence on the registration result. Therefore, to
reduce the global influence it would be advantageous to
have no polynomial part. Note, that due to a mathematical
property of some of these functions, which is the condi-
tional positive definiteness, certain polynomials are neces-
sary to guarantee the non-singularity of the matrix in (3).
For thin-plate splines we havep = 1(d = 2; 3) and for
multiquadricsp depends on the exponent�. The minimal
degreep is p = d�e�1 whered�e denotes the smallest in-
teger� �. The inverse multiquadric and the Gaussian are
positive definite, and thus they can be calculated without
any polynomial part.

Efficiency. All functions (4)-(7) involve the calculation
of transcendental functions (the logarithm, the exponential,
or the square root with� = 0:5). Also, the matrix (3) is
always dense since the functions have no compact support.

3. Image registration using RBF with com-
pact support

The disadvantages of the functions described above are
the global influence of a landmark pair on the registration
result, the necessary polynomials for some functions, and
the necessity of calculating transcendental functions. In
this section, we describe a spatially limited RBF which
does not have these disadvantages, and is thus suited for
our purpose of spatially limited medical image registration.

3.1.  -functions of Wendland
We propose to use the �functions of Wendland [9]

as RBFs for elastic registration of medical images. These
radial basis functions have compact support, are positive
definite, and are moreover polynomials. These RBFs have
previously been used in [8] to model facial expressions for
videocoding applications. The general form of the RBFs
can be stated as:

 (r) =

(
p(r) 0 � r � 1

0 r > 1;
(8)

wherep(r) is a univariate polynomial. Let (r) denote the
univariate function, then : Rd ! R; (r) =  (jjrjj)
is the corresponding multivariate function in the space of
dimensiond. The mathematical property of positive def-
initeness of depends on the space dimensiond. If  is
positive definite onRd , then is also positive definite on
R
g with 0 < g � d. It has been proven in [9] that for given

space dimensiond and smoothnessC2k(R) there exists –
up to a constant factor – only one function (r) of the form
(8) which is positive definite onRd and which has a poly-
nomial of minimal degreebd=2c+ 3k + 1, wherebxc, the
floor function, is the largest integer� x. This function is
given by:

 d;k(r) := Ik (1� r)
bd=2c+k+1
+ (r) (9)

with

(1� r)�+ =

(
(1� r)� 0 � r < 1

0 r � 1

as the truncated polynomial and

I  (r) :=

Z 1

r

t  (t) dt r � 0

as the integral operator which is appliedk times in (9).
Note, that for even dimensionsd, the property d;k =
 d+1;k holds due to the floor function in (9). For the func-
tions d;k(r) we chosed = 3 which is the largest image
dimension in our registration applications. As we have
mentioned, the function 3;k is positive definite also for
smaller dimensions than three. Below, we list -functions
for d = 3 andk = 0:::2:

 3;0(r) = (1� r)2+

 3;1(r) = (1� r)4+(4r + 1)

 3;2(r) = (1� r)6+(35r
2 + 18r + 3):

In Fig. 1 the functions 3;0 and 3;1 are plotted together
with the Gaussian.

Since we prefer differentiable and smooth functions at
r = 0, we excludek = 0 and chose the polynomial 3;1
for k = 1 of next smallest degree for use in registration.
The mathematical properties also hold for different spatial
supportsa:

 a(r) =  (r=a):

3.2. Properties of our registration approach

Locality. In our elastic registration approach we first
apply a rigid transformation function computed by a least
squares fit to cope with global differences. Second, we
apply the 3;1-function as RBF together with the identity
transformation. These RBFs ensure limited locality of each
landmark on a circle or a sphere depending on the lengtha
of the support.

Solvability. The  3;1-functions are positive definite
which ensures the regularity of the matrixK. Since an
additional polynomial part�s is not necessary, (3) reduces
to:

K� = qk:

Note, that we use an equal support sizea for all landmarks.
We are not aware of a theoretical result which states that
K in the case of different support sizesa is non-singular.
Thus the solvability is not guaranteed.

Efficiency. In comparison to the Gaussian or the in-
verse multiquadrics neither exponential nor root functions
have to be evaluated for the 3;1-function, which is a poly-
nomial. Also, depending on the sizea of the support and
the distribution of the landmarkspi the matrixK is rather
sparse.



3.3. Comparison with the Gaussian

In Fig. 1, we compare the shape of the -functions
 a;3;0(r) and a;3;1(r) with the Gaussian. Like all positive
definite functions, (r) has its maximum atr = 0. For a
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Figure 1:Comparison of  a;3;0;  a;3;1 with a = 1:504 with
the Gaussian with � = 0:4. The similarity is apparent.

given value of� of the Gaussian we computeda such that
the integrals over both functions were equal. This yields:

a

3
=
p
�=2� ) a = 3

p
�=2�:

The similarity of the graphs a;3;1 and the Gaussian is
striking.

3.4. Preservation of topology

A major requirement for an elastic registration scheme
is preservation of topology. One necessary condition is that
the functionu is continuous. Another necessary condition
is that the determinant of the Jacobian matrix must be pos-
itive at each point of the image:

det(u) > 0:

We analyzed the Jacobian matrix for an isolated landmark
p which gives the conditions listed in Tab. 1, where� is
the displacement from the source landmarkp to the target
landmarkq in one coordinate direction. These conditions

Table 1:Minimum a and � for given displacement �.

Dimension  a;3;1  a;3;2 Gaussian

d = 2 a > 2:98� a > 3:54� � > 0:86�

d = 3 a > 3:66� a > 4:33� � > 1:06�

are valid only for isolated landmarks for which no other
landmark is placed within the radiusa of the support. For
landmarks with intersecting support regions the minimal
value ofa depends also on the positions of the landmarks
pi which leads to a much more complicated calculation.
Nevertheless, Tab. 1 is a good reference and gives a clue
for choosing a minimal value for the locality parametera.

4. Experimental Results

We now present registration results for synthetic and to-
mographic images using the elastic registration approach
introduced in Sect. 3. We first demonstrate the applica-
bility of this approach for simple objects, which shift or
scale in elastic material. Second, we show experimental
results for a pre-operative image with the corresponding
post-operative image after tumor resection.

(a) Shift of a square (b) Result + infl.

(c) Scale of a square (d) Result + infl.

Figure 2: Local elastic registration using  3;1 as RBF. (a)
shift and (c) isotropic scaling of a square. (b) and (d) show
registration results together with the area where elastic de-
formations occur.

In Fig. 2, we demonstrate the registration of objects
embedded in elastic material that change their position or
form. Landmarks are placed at the outlines, especially
at the object corners. These experiments simulate typical
medical cases, where image parts shift and either shrink or
grow as it happens in cases of, e.g., tumor growth or tumor
resection. The grids in Fig. 2 are composed of301� 301
pixels and they are transformed using4 and8 landmarks
(Figs. 2(a) and (c), resp.). Landmarks of the source and the
target image are marked by a box () and a circle (e),
resp. Parts of the grids which represent the areas to be reg-
istered are colored gray. Source and target landmarks are
both shown in the left images. In Fig. 2(a) the landmarks
were shifted20 pixels on both thex- andy-axes to the bot-
tom right. Fig. 2(b) shows the registration result using 3;1
with a support ofa = 110 which we found experimen-
tally to be visually the best. We started with the value from
Tab. 1a = 60 and proceeded toa = 180 using first coarse
steps of30 and then fine steps of10.



With growing distance outside the square the influences
of the landmarks decrease monotonically. The margin
where the transformation function reduces to the identity
is marked as gray curve. In Fig. 2(c) we demonstrate a
scaling example. Fig. 2(d) shows the registration result for
a = 90 which we found again visually to be the best test-
ing values from50 to 150. The scaling in the registration
result is mainly limited to the square, outside the square
again the influences of the landmarks decrease.

Fig. 3 shows an experiment with tomographic images
where a tumor in a pre-operative image has to be regis-
tered with the corresponding resection area in the post-
operative image. An application scenario is the regis-
tration of pre-operative tomographic images of high res-
olution (e.g., MR) with intra-operative images of worse
quality (e.g., CT or MR). The aim is to correct the pre-
operatively acquired image such that it agree with the cur-
rent anatomical situation. For demonstration purposes, in
our case, we use a post-operative image instead of an intra-
operative image. The source image 3(a) and the target im-
age 3(b) are corresponding slices of rigidly transformed 3D
MR datasets. In Fig. 3(a), landmarks are placed at the mar-
gin of the brain tumor as well as at the outer and inner
part of the skin in the vicinity of the tumor. Correspond-
ing target landmarks are shown in Fig. 3(b). The tumor
itself corresponds to the resection area. The correspon-
dences between the contours of the skin, the brain, and the
tumor have been determined through the use of a snake
algorithm. Out of these correspondences we have interac-
tively selected 21 pairs of landmarks shown in Figs. 3(a)-
(b). Note, that there is also a significant brain shift at the
top of Fig. 3(b) which will not be considered here. For
this registration problem a reduction of the influence of the
registration scheme far off the area of interest is necessary
and thus locality of the registration w.r.t. the tumor is de-
sired. In Fig. 3(c) the transformation result is shown using
 3;1 with a = 60 as RBF. Since the maximum displace-
ment in one coordinate direction of the landmark set is17,
the reference value isa � 50 (Tab. 1). Our experiments
revealed that a value ofa = 60 yielded quite good results,
while being close to the reference value and thus ensur-
ing a rather local registration result. To assess the form
of the transformation we have applied it to a regular grid
which we show in Fig. 3(e). It can be seen that the tumor
is registered to the resection area while the region around
the tumor is shifted towards the resection area. The re-
duced influence of the transformation is demonstrated in
Figs. 3(d) and (f) where the source image was subtracted
from the registration result. To demonstrate the differences
to RBFs without compact support we applied the thin-plate
spline approach to the same problem as shown in Fig. 3(g).
Note, that additional landmarks in other parts of the im-

(a) Source (b) Target

(c) Reg. result (d) Difference a-c

(e) Grid of c (f) Grid of d

(g) TPS Reg. result (h) Difference a-g

Figure 3:Registration of a tumor with its resection area. (a)
Pre-operative image, (b) post-operative image. (c) Regis-
tration result and (d) difference between (a) and (c). (e) and
(f) same as (c) and (d) for an underlying grid. (g) and (h)
Registration result using thin-plate splines with additional
landmarks and difference between (a) and (g).

age are necessary to prevent deformations there. Although
we have added11 of these additional landmarks, thin-plate
spline transformations are rather global as it is best seen in
the difference image Fig. 3(h). There, the deformations are
not limited on the tumor area.



(a) Source (b) Target (c) Result

(d) Source (Slice 32) (e) Result (Slice 32)

(f) Source (Slice 38) (g) Result (Slice 38)

Figure 4:3D Registration of a tumor with its resection area.
(a) and (b) 3D segmentation of the tumor and the resection
area as well as (c) 3D registration result showing the trans-
formed tumor only. (d) and (f) show different slices of the
3D source image, (e) and (g) the corresponding slices of
the 3D registration result.

In Fig. 4 we demonstrate the applicability of our ap-
proach for the case of a 3D registration problem. The out-
lines of the tumor as well as of the resection area have been
determined manually.40 landmarks have been used and
the correspondences have been determined by simply inter-
secting rays going through the common geometric center
point with the corresponding surfaces. First, we segmented
the tumor and the resection area as shown in Figs. 4(a) and
(b). The registration result is shown in Fig. 4(c) which is
quite similar to the target image. Figs. 4(d) and (f) show
exemplarily two slices of the 3D dataset together with the
outlines of the tumor. The registration result for the same
slices is shown in Figs. 4(e) and (g), resp. Also here, the
deformation is limited to an area around the tumor.

5. Conclusion

We have proposed an approach to elastic registration
which utilizes positive definite functions of compact sup-
port as RBF. In comparison to thin-plate spline based elas-

tic registration, with our approach we have a significant re-
duction of the global influence. The synthetic experiments
have shown that object deformations can well be locally
registered using landmarks placed at the outlines of the
objects. Experiments for 2D and 3D tomographic images
have demonstrated the applicability of our approach to reg-
istering pre-operative images with post-operative images in
the case of tumor resection. Further investigations are nec-
essary to determine appropriate landmark distributions and
support sizes of the RBF for registration problems at hand.
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