
Consistency Testing: The RACE Experience

Volker Haarslev and Ralf Möller

University of Hamburg, Computer Science Department
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

Abstract. This paper presents the results of applying RACE, a descrip-
tion logic system for ALCNHR+ , to modal logic SAT problems. Some
aspects of the RACE architecture are discussed in detail: (i) techniques
involving caching and (ii) techniques for dealing with individuals.

1 Introduction to the RACE Architecture

The description logic (DL) ALCNHR+ [5] extends the logic ALCHfR+ (see [8]
for a concept consistency calculus) by adding number restrictions. The inference
services supported by RACE for TBoxes and ABoxes are described in [6]. In this
paper, due to space restrictions, we assume that the reader is familiar with DLs.

The ABox consistency algorithm implemented in the RACE system is de-
scribed as a tableaux calculus in [5]. However, optimized search techniques are
required in order to guarantee good average-case performance. The RACE archi-
tecture incorporates the following standard optimization techniques: dependency-
directed backtracking [12] and DPLL-style semantic branching (see [3] for recent
results and for an overview of the literature). Among a set of new optimization
techniques, the integration of these techniques into DL reasoners for concept
consistency has been described in [7] (see also [2] for a discussion of ideas to in-
tegrate intelligent backtracking into terminological logics). The implementation
of these techniques in the ABox reasoner RACE differs from the implementa-
tion of other DL systems (e.g. FaCT or DLP [10]), which provide only concept
consistency (and TBox) reasoning. The latter systems have to consider only so-
called “labels” (sets of concepts) whereas an ABox prover such as RACE has to
explicitly deal with individuals (nominals).

The techniques for TBox reasoning described in [1] (marking and propagation
as well as lazy unfolding) are also supported by RACE. As indicated in [4], the
architecture of RACE is inspired by recent results on optimization techniques
for TBox reasoning [9], namely transformations of axioms (generalized concept
inclusions, GCIs), model caching and model merging.

RACE is implemented in Common Lisp and can be copied for research pur-
poses: http://kogs-www.informatik.uni-hamburg.de/˜moeller/race/race.html.

2 Results on the TANCS Comparison Problems

The TANCS QBF benchmarks are transformed into concept consistency tests.
The runtimes of RACE on the comparison problems with different encodings are
documented in Table 1. All tests have been run on a Macintosh Powerbook G3

Table 1. Runtimes for the TANCS’2000 comparison problems (runtimes include read-
ing times): S = definitely satisfiable, T = timed out. The percentage of definitely
unsatisfiable problems is U = 100 – S – T. The number of instances provided for the
TANCS comparison problems of different type is indicated in parentheses.

K C V D Time (10ms) S (%) T (%)

QBF cnf (4)
4 10 4 4 2481 100 0
4 10 4 6 10455 0 100
4 20 4 4 4246 75 0
4 20 4 6 10577 0 100
4 30 4 4 776 0 0
4 30 8 4 11443 0 100

QBF cnf modS4 (64)
4 20 2 2 2277 14 6

QBF cnf SSS (8)
4 10 4 4 23 100 0
4 10 4 6 31 100 0
4 10 8 4 46 100 0
4 10 8 6 82 100 0
4 10 16 4 99 100 0
4 10 16 6 120 100 0
4 20 4 4 48 75 0
4 20 4 6 68 100 0
4 20 8 4 104 100 0
4 20 8 6 296 100 0
4 20 16 4 297 100 0
4 20 16 6 735 100 0
4 30 4 4 74 25 0
4 30 4 6 116 88 0
4 30 8 4 246 100 0
4 30 8 6 733 100 0
4 30 16 4 1647 100 0
4 30 16 6 5206 25 75
4 40 4 4 61 12 0
4 40 4 6 112 25 0
4 40 8 4 414 25 0
4 40 8 6 3344 88 0
4 40 16 4 3661 75 25
4 40 16 6 8932 25 75
4 50 4 4 71 0 0
4 50 4 6 128 0 0
4 50 8 4 716 0 0
4 50 8 6 3306 62 12
4 50 16 4 9075 25 75
4 50 16 6 9896 12 88

K C V D Time (10ms) S (%) T (%)

QBF cnf Ladn (8)
4 10 4 4 425 100 0
4 10 4 6 4487 88 12
4 10 8 4 9644 25 75
4 10 8 6 10191 0 100
4 20 4 4 940 100 0
4 20 4 6 9360 12 88
4 20 8 4 10205 0 100
4 20 8 6 10306 0 100
4 30 4 4 857 25 0
4 30 4 6 9710 0 88
4 30 8 4 10276 0 100
4 30 8 6 10433 0 100
4 40 4 4 508 0 0
4 40 4 6 3680 0 38
4 40 8 4 8919 0 88
4 40 8 6 10557 0 100
4 50 4 4 616 12 0
4 50 4 6 1851 0 12
4 50 8 4 10421 0 100
4 50 8 6 10689 0 100

PSAT cnf (8)
4 20 4 1 11 100 0
4 20 4 2 29 100 0
4 20 8 1 10 100 0
4 20 8 2 78 100 0
4 30 4 1 14 100 0
4 30 4 2 132 100 0
4 30 8 1 16 100 0
4 30 8 2 2987 62 38
4 40 4 1 23 100 0
4 40 4 2 364 100 0
4 40 8 1 26 100 0
4 40 8 2 10651 12 88
4 50 4 1 30 88 0
4 50 4 2 2088 62 25
4 50 8 1 32 100 0
4 50 8 2 10017 0 100

with 333 MHz. A timeout is set to 100secs. In case of a timeout, the runtime
(100secs) is included into the geometric mean. For some of the TANCS’2000
comparison problem types, the set of benchmarks contains harder problems,
which are not reported in Table 1. For these problems all instances are timed
out, hence the runtime for each problem is 100secs.

The PSAT problems of the TANCS comparison problems are defined with a
set of axioms. Axioms are represented as generalized concept inclusions (GCIs).
In the RACE system, well-known as well as novel transformations on GCIs are
employed in order to reduce runtimes. The goal of the transformations (see [7])
is to reduce the number of GCIs by transforming GCIs in order to derive concept
definitions, i.e. a pair of GCIs A � C and C � A or primitive concept definitions
A � C (with no C � A) such that A is not mentioned on the left-hand side of
another GCI in the TBox. Furthermore, as a novel transformation technique,
in RACE axioms for declaring the disjointness of atomic concepts and axioms
for domain and range restrictions for roles are absorbed. These constructs are
treated in a special way by the RACE architecture.

In the PSAT problems the axioms are of the form � � C where C is a complex
concept expression (i.e. a complex modal logic formula). Unfortunately, in the

case of PSAT the number of axioms (GCIs) can only be reduced by detecting
common subexpressions. The derivation of (primitive) concept definitions is not
possible due to the structure of the formulae (see Table 1 for the runtime results).

3 An Important Optimization Technique: Caching

Caching of intermediate computation results is a necessary prerequisite to prove
the (in)consistency of many concepts terms [9]. In particular, solutions for some
of the TANCS problems mentioned above cannot be computed within the time
limit without caching. For instance, the runtimes for the PSAT problems with
depth 2 (see Table 1) increase by one order of magnitude.

Caching is not a trivial optimization technique. Solving a consistency problem
{i0 :E} w.r.t. the following (cyclic) inclusion axioms demonstrates that caching
must depend on the context:

C � (∃R . D) � (∃S . X)� ∀S . (¬X � A), D � ∃R . C, E � (∃R . C)� (∃R . D)

The proof steps are presented in Figure 1. In the figure the sequence of
“expansion” steps is indicated with numbers. In step 1, the initial problem {i0 :E}
is presented. Since there is an axiom for E involving a disjunction we get two
constraint systems (see step 2). Let us assume the first alternative is tried first.
This leads to a subconstraint system (step 3). The assertion from step 3 is
expanded w.r.t. the axioms and we get the constraint system in step 4. The first
some-constraint is expanded first. In step 5 the corresponding subconstraint
system is considered. The right-hand side of the axiom for D is inserted (step
6). The some-constraint yields another subconstraint system (step 7). Due to
the blocking strategy [4], the constraint system in step 7 is not expanded (see
the constraint system in step 3 with the “blocking witness” i1). In Figure 1 the
canonical interpretation is indicated with a dashed arrow.

An often-employed strategy is to cache intermediate results, i.e. the satis-
fiability of D is stored as a so-called pseudo model {D, ∃R . C}. Let us assume
at the end of step 7 a pseudo model for D is stored as indicated above. In our
example, there are some proof steps pending. In step 8 the remaining constraints
from step 4 are considered. Obviously, the second some-constraint for the role
S together with the value restriction for S causes a clash. Therefore, the second

1 2 3

45

i5

i0 i1 i2 i3

i4

R R R

SR

R

1. {i0 :E}
2. {i0 :E, i0 :∃R . C} ∨ {i0 :E, i0 :∃R . D}
3. {i1 :C}
4. {i1 :C, i1 :∃R . D, i1 :∃S . X, i1 :∀ S .¬X � A}
5. {i2 :D}
6. {i2 :D, i2 :∃R . C}
7. {i3 :C}
8. {i4 :X, i4 :A, i4 :¬X}
9. {i5 :D}

Fig. 1. Caching example with blocking (see text).

alternative in step 2 has to be considered. The corresponding subconstraint sys-
tem is presented in step 9. If the consistency of D is checked by examining a
cache entry for D, the overall result will be “E is consistent”. Obviously, this is
erroneous. The reason is that the caching principle described above does not con-
sider the dependency on the satisfiability of C. Therefore, a dependency tracking
mechanism for cache entries is implemented in RACE. Once the system detects
the inconsistency of a concept (or constraint system) on which a cached pseudo
model is dependent, the corresponding cache entries are (recursively) removed.

Caching of a pseudo model for a specific concept (model caching) is a strategy
which is implemented in the FaCT system and the DLP system [9]. To the best
of our knowledge, only the DLP system offers an additional caching technique.
If, during a certain tableaux proof for the consistency of a concept term, a
some-constraint (e.g. ∃R . C interacts with all-constraints ∀R . C and ∀R . D),
then another strategy is to cache the result of checking the consisteny of the
subproblem {inew :C, inew :D, inew :E}. Again, the dependency tracking mechanism
implemented in RACE ensures correct behavior of the so-called “subtableaux
caching” strategy in the case of blocking. To the best of our knowledge, details
about the techniques employed in DLP have not been published yet.

If there exists no cache entry for a subproblem such as {inew :C, inew :D, inew :E},
then it might be possible check out whether the models of C, D and E can be
merged (see [7] for an introduction to model merging). However, for the TANCS
benchmarks this technique was disabled because the overhead involved in this
test caused the runtimes to increase.

4 Optimizations for ABox Reasoning

Unfortunately, the TANCS benchmarks only consider concept consistency prob-
lems (possibly w.r.t. axioms). The RACE architecture has been developed also
for ABox reasoning with individuals. Thus, there is some overhead involved if
only concept consistency tests are computed with RACE. As the runtime re-
sults indicate, the overhead costs of pure consistency reasoning with an ABox
reasoner are minimal. However, ABox reasoning itself requires additional opti-
mization techniques in order to ensure adequate average-case performance. For
instance, for computing the direct types (most-specific atomic concepts) of an
individual a during ABox realization, multiple consistency problems for ABoxes
A∪ {a :¬Ai} with different atomic concepts Ai have to be solved. In order to
optimize ABox realization (see [4] for other ABox optimization techniques) we
use a transformation technique for tree-like ABoxes, called contraction w.r.t. an
individual a. The idea is to maximize the effect of caching. To speed up the tests
we transform A in such a way that acyclic, tree-like “role paths” between individ-
uals are represented by an appropriate existential restriction. The corresponding
concept and role assertions “representing” the role paths are deleted from the
ABox. The following contraction rule is applied to A as often as possible. The
final ABox is called A′. Then, the consistency of A′ ∪ {a :¬Ai} is checked. Ob-
viously, A (without a :¬Ai being added) must be tested for consistency without
contraction beforehand.

RC Contraction Rule for ALCNHR+ .
Premise: ∃(i, j) :R ∈ A, j :C1 ∈ A, . . . , j :Cn ∈ A:

[j �= a, (¬∃ (j, k) :R′ ∈ A),
(¬∃ (i, j) :R′′ ∈ A : R′′ �= R), (¬∃ (l, j) :R′′′ ∈ A : l �= i)
(¬∃ (i, o) :S ∈ A : o �= j, R↑ ∩ S↑ �= ∅),
(¬∃ j :Cn+1 ∈ A : ∀ i ∈ 1..n : Cn+1 �= Ci)]

Consequence: A := (A \ {(i, j) :R, j :C1, . . . , j :Cn}) ∪ {i :∃R . C1 � . . . � Cn}
Empirical tests with automatically generated ABox problems indicate that

the role path contraction technique is very effective for tree-like ABoxes. The
contraction technique can give a speed gain of about one order of magnitude
(see [4] for a set of benchmarks and evaluation results).

References

1. F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.J. Profitlich. An empiri-
cal analysis of optimization techniques for terminological representation systems.
Applied Intelligence, 2(4):109–138, 1994.

2. D. Drollinger. Intelligentes Backtracking in Inferenzsystemen am Beispiel Termi-
nologischer Logiken (in German). Document D-93-21, Deutsches Forschungszen-
trum für Künstliche Intelligence, Germany, 1993.

3. J.W. Freeman. Improvements to propositional satisfiability search algorithms. PhD
thesis, University of Pennsylvania, Computer and Information Science, 1995.

4. V. Haarslev and R. Möller. An empirical evaluation of optimization strategies
for ABox reasoning in expressive description logics. In Lambrix et al. [11], pages
115–119.

5. V. Haarslev and R. Möller. Expressive abox reasoning with number restrictions,
role hierachies, and transitively closed roles. In A.G. Cohn, F. Giunchiglia, and
B. Selman, editors, Proc. of the Seventh International Conference on Principles of
Knowledge Representation and Reasoning (KR’2000), 2000.

6. V. Haarslev, R. Möller, and A.-Y. Turhan. RACE User’s guide and reference
manual version 1.1. Technical Report FBI-HH-M-289/99, University of Hamburg,
Computer Science Department, October 1999.

7. I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD
thesis, University of Manchester, 1997.

8. I. Horrocks. Using an expressive description logic: FaCT or fiction? In A.G.
Cohn, L. Schubert, and S. Shapiro, editors, Proceedings of the Sixth International
Conference on Principles of Knowledge Representation and Reasoning (KR’98),
Trento, Italy, June 2-5, 1998, pages 636–647, June 1998.

9. I. Horrocks and P. Patel-Schneider. Optimising description logic subsumption.
Journal of Logic and Computation, 9(3):267–293, June 1999.

10. I. Horrocks and P.F. Patel-Schneider. FaCT and DLP: Automated reasoning with
analytic tableaux and related methods. In Proceedings International Conference
Tableaux’98, pages 27–30, 1998.

11. P. Lambrix et al., editor. Proceedings of the InternationalWorkshop on Description
Logics (DL’99), July 30 - August 1, 1999, Linköping, Sweden, June 1999.

12. R.M. Stallman and G.J. Sussman. Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis. Artificial Intelligence,
9(2):135–196, 1977.

