
Exploiting Pseudo Models for TBox and ABox
Reasoning in Expressive Description Logics

Volker Haarslev∗ and Ralf Möller∗ and Anni-Yasmin Turhan∗∗

∗ University of Hamburg
Computer Science Department
Vogt-Kölln-Str. 30
22527 Hamburg, Germany

∗∗ RWTH Aachen
LuFG Theoretical Computer Science
Ahornstr. 55
52074 Aachen, Germany

Abstract. This paper investigates optimization techniques and data
structures exploiting the use of so-called pseudo models. These techniques
are applied to speed up TBox and ABox reasoning for the description
logics ALCNHR+ and ALC(D). The advances are demonstrated by an
empirical analysis using the description logic system RACE that imple-
ments TBox and ABox reasoning for ALCNHR+ .

1 Introduction

We introduce and analyze optimization techniques for reasoning in expressive
description logics exploiting so-called pseudo models. The new techniques being
investigated are called deep model merging and individual model merging . The
presented algorithms are empirically evaluated using TBoxes and ABoxes derived
from actual applications. The model merging technique is also developed for the
logic ALC(D) [1] which supports so-called concrete domains. This is motivated
by a proposal which extends ALCNHR+ with a restricted form of concrete
domains [4].

1.1 The Language ALCNHR+

We briefly introduce the description logic (DL) ALCNHR+ [3] (see the tables
in Figure 1) using a standard Tarski-style semantics based on an interpretation
I = (∆I , ·I) ALCNHR+ extends the basic description logic ALC by role hier-
archies, transitively closed roles, and number restrictions. Note that the com-
bination of transitive roles and role hierarchies implies the expressiveness of
so-called general inclusion axioms (GCIs). The language definition is slightly
extended compared to the one given in [3] since we additionally support the
declaration of “native” features. This allows additional optimizations, e.g. an
efficient treatment of features by the model merging technique (see below). The
concept name 	 (⊥) is used as an abbreviation for C � ¬C (C
 ¬C). We assume
a set of concept names C , a set of role names R, and a set of individual names
O . The mutually disjoint subsets F , P , T of R denote features, non-transitive,
and transitive roles, respectively (R = F ∪ P ∪ T).

(a)

Syntax Semantics

Concepts

A AI ⊆ ∆I

¬C ∆I \ CI

C
 D CI ∩ DI

C � D CI ∪ DI

∃R . C {a ∈ ∆I | ∃ b ∈ ∆I : (a, b) ∈ RI , b ∈ CI}
∀R . C {a ∈ ∆I | ∀ b : (a, b) ∈ RI ⇒ b ∈ CI}
∃≥n S {a ∈ ∆I | ‖{b ∈ ∆I | (a, b) ∈ SI}‖ ≥ n}
∃≤m S {a ∈ ∆I | ‖{b ∈ ∆I | (a, b) ∈ SI}‖ ≤ m}
Roles

R RI ⊆ ∆I ×∆I

(b)

Terminol. Axioms

Syntax Satisfied if

R ∈ T RI = (RI)
+

F ∈ F ∆I ⊆ (∃≤1 F)I

R � S RI ⊆ SI

C � D CI ⊆ DI

(c)

Assertions

Syntax Satisfied if

a :C aI ∈ CI

(a, b) :R (aI , bI) ∈ RI

Fig. 1. Syntax and Semantics of ALCNHR+ (n, m ∈ N, n > 0, ‖ · ‖ denotes set
cardinality, and S ∈ S).

If R,S ∈ R are role names, then the terminological axiom R � S is called a role
inclusion axiom. A role hierarchy R is a finite set of role inclusion axioms. Then,
we define �∗ as the reflexive transitive closure of � over such a role hierarchy
R. Given �∗, the set of roles R↓ = {S ∈ R |S �∗ R} defines the descendants of a
role R. R↑ = {S ∈ R |R �∗ S} is the set of ancestors of a role R. We also define
the set S = {R ∈ P |R↓ ∩ T = ∅} of simple roles that are neither transitive nor
have a transitive role as descendant. Every descendant G of a feature F must be
a feature as well (G ∈ F).

A syntactic restriction holds for the combinability of number restrictions and
transitive roles in ALCNHR+ . Number restrictions are only allowed for simple
roles. This restriction is motivated by an undecidability result in case of an
unrestricted combinability [8].

If C and D are concept terms, then C � D (generalized concept inclusion or
GCI) is a terminological axiom. A finite set of terminological axioms TR is called
a terminology or TBox w.r.t. to a given role hierarchy R.1

An ABox A is a finite set of assertional axioms as defined in Figure 1c. The set
O of object names is divided into two disjoint subsets, OO and ON .2 An initial
ABox A may contain only assertions mentioning old individuals (from OO).
Every individual name from O is mapped to a single element of ∆I in a way such
that for a, b ∈ OO , aI �= bI if a �= b (unique name assumption or UNA). This
ensures that different individuals in OO are interpreted as different elements. The
UNA does not hold for elements of ON , i.e. for a, b ∈ ON , aI = bI may hold even
if a �= b, or if we assume without loss of generality that a ∈ ON , b ∈ OO .

The ABox consistency problem is to decide whether a given ABox A is con-
sistent w.r.t. a TBox T . Satisfiability of concept terms can be reduced to ABox

1 The reference to R is omitted in the following.
2 The set of “old” individuals names characterizes all individuals for which the unique

name assumption holds while the set of “new” names denotes individuals which are
constructed during a proof.

consistency as follows: A concept term C is satisfiable iff the ABox {a :C} is
consistent. The instance problem is to determine whether an individual a is an
instance of a concept term C w.r.t. an ABox A and a TBox T , i.e. whether A
entails a :C w.r.t. T . This problem can be reduced to the problem of deciding if
the ABox A ∪ {a :¬C} is inconsistent w.r.t. T .

1.2 A Tableaux Calculus for ALCNHR+

In the following we present a tableaux algorithm to decide the consistency of
ALCNHR+ ABoxes. The algorithm is characterized by a set of tableaux or com-
pletion rules and by a particular completion strategy ensuring a specific order for
applying the completion rules to assertional axioms of an ABox. The strategy is
essential to guarantee the completeness of the ABox consistency algorithm. The
purpose of the calculus is to generate a so-called completion for an initial ABox
A in order to prove the consistency of A or its inconsistency if no completion
can be found.

First, we introduce new assertional axioms needed to define the augmentation
of an initial ABox. Let C be a concept term, a, b ∈ O be individual names, and
x �∈ O , then the following expressions are also assertional axioms: (1) ∀ x . (x :C)
(universal concept assertion), (2) a � .= b (inequality assertion). An interpretation
I satisfies an assertional axiom ∀ x . (x :C) iff CI = ∆I and a � .= b iff aI �= bI .

We are now ready to define an augmented ABox as input to the tableaux
rules. For an initial ABox A w.r.t a TBox T and a role hierarchy R we define
its augmented ABox or its augmentation A′ by applying the following rules
to A. For every feature name F mentioned in A the assertion ∀ x . (x : (∃≤1 F))
is added to A′. For every GCI C � D in T the assertion ∀ x . (x : (¬C � D)) is
added to A′. Every concept term occurring in A is transformed into its usual
negation normal form. Let O ′

O = {a1, . . . , an} ⊆ OO be the set of individuals
mentioned in A, then the following set of inequality assertions is added to A′:
{ai � .= aj | ai, aj ∈ O ′

O , i, j ∈ 1..n, i �= j}. Obviously, if A′ is an augmentation of A
then A′ is consistent iff A is consistent.

ALCNHR+ supports transitive roles and GCIs. Thus, in order to guaran-
tee the termination of the tableaux calculus, the notion of blocking an individ-
ual for the applicability of tableaux rules is introduced as follows. Given an
ABox A and an individual a occurring in A, we define the concept set of a as
σ(A, a) := {	} ∪ {C | a :C ∈ A}. We define an individual ordering ‘≺’ for new
individuals (elements of ON) occurring in an ABox A. If b ∈ ON is introduced
into A, then a ≺ b for all new individuals a already present in A. Let A be an
ABox and a, b ∈ O be individuals in A. We call a the blocking individual of b
if all of the following conditions hold: (1) a, b ∈ ON , (2) σ(A, a) ⊇ σ(A, b), (3)
a ≺ b. If there exists a blocking individual a for b, then b is said to be blocked
(by a).

We are now ready to define the completion rules that are intended to generate
a so-called completion (see also below) of an initial ABox A w.r.t. a TBox T .

R
 The conjunction rule.
if a :C
 D ∈ A, and {a :C, a :D} �⊆ A
then A′ = A ∪ {a :C, a :D}

R� The disjunction rule.
if a :C � D ∈ A, and {a :C, a :D} ∩ A = ∅
then A′ = A ∪ {a :C} or A′ = A ∪ {a :D}

R∀C The role value restriction rule.
if a :∀R .C ∈ A, and ∃ b ∈ O ,S ∈ R↓ : (a, b) :S ∈ A, and b :C �∈ A
then A′ = A ∪ {b :C}

R∀+C The transitive role value restriction rule.
if 1. a :∀R .C ∈ A, and ∃ b ∈ O , T ∈ R↓, T ∈ T , S ∈ T↓ : (a, b) :S ∈ A, and

2. b :∀T .C �∈ A
then A′ = A ∪ {b :∀T .C}

R∀x The universal concept restriction rule.
if ∀ x . (x :C) ∈ A, and ∃ a ∈ O : a mentioned in A, and a :C �∈ A
then A′ = A ∪ {a :C}

R∃C The role exists restriction rule.
if 1. a :∃R .C ∈ A, and a is not blocked, and

2. ¬∃ b ∈ O , S ∈ R↓ : {(a, b) :S, b :C} ⊆ A
then A′ = A ∪ {(a, b) :R, b :C} where b ∈ON is not used in A

R∃≥n The number restriction exists rule.
if 1. a :∃≥n R ∈ A, and a is not blocked, and

2. ¬∃ b1, . . . , bn ∈ O , S1, . . . ,Sn ∈ R↓ :
{(a, bk) :Sk | k ∈ 1..n} ∪ {bi � .= bj | i, j ∈ 1..n, i �= j} ⊆ A

then A′ = A ∪ {(a, bk) :R | k ∈ 1..n} ∪ {bi � .= bj | i, j ∈ 1..n, i �= j}
where b1, . . . , bn ∈ON are not used in A

R∃≤n The number restriction merge rule.
if 1. a :∃≤n R ∈ A, and

2. ∃ b1, . . . , bm ∈ O , S1, . . . ,Sm ∈ R↓: {(a, b1) :S1, . . . , (a, bm) :Sm} ⊆ A
with m > n, and

3. ∃ bi, bj ∈ {b1, . . . , bm} : i �= j, bi � .= bj �∈ A
then A′ = A[bi/bj], i.e. replace every occurrence of bi in A by bj

Given an ABox A, more than one rule might be applicable to A. The order is
determined by the completion strategy which is defined as follows.

A meta rule controls the priority between individuals: Apply a tableaux rule
to an individual b ∈ ON only if no rule is applicable to an individual a ∈ OO

and if no rule is applicable to another individual c ∈ ON such that c ≺ b.
The completion rules are always applied in the following order. (1) Apply all

non-generating rules (R
, R�, R∀C, R∀+C, R∀x, R∃≤n) as long as possible. (2)
Apply a generating rule (R∃C, R∃≥n) once and continue with step 1.

In the following we always assume that the completion strategy is observed.
This ensures that rules are applied to new individuals w.r.t. the ordering ‘≺’.

We assume the same naming conventions as used above. An ABox A is called
contradictory if one of the following clash triggers is applicable. If none of the

clash triggers is applicable to A, then A is called clash-free. The clash triggers
have to deal with so-called primitive clashes and with clashes caused by number
restrictions:

– Primitive clash: a :⊥ ∈ A or {a :A, a :¬A} ⊆ A, where A is a concept name.
– Number restriction merging clash: ∃S1, . . . ,Sm ∈ R↓ : {(a, bi) :Si | i ∈ 1..m}∪

{a :∃≤n R} ∪ {bi � .= bj | i, j ∈ 1..m, i �= j} ⊆ A with m > n.

Any ABox containing a clash is obviously unsatisfiable. A clash-free ABox A
is called complete if no completion rule is applicable to A. A complete ABox A′

derived from an initial ABox A is called a completion of A. The purpose of the
calculus is to generate a completion for an initial ABox A to prove the consistency
of A. An augmented ABox A is said to be inconsistent if no completion can be
derived. For a given initial ABox A, the calculus applies the completion rules.
It stops the application of rules, if a clash occurs. The calculus answers “yes”
if a completion can be derived, and “no” otherwise. Based on these notions we
introduce and evaluate the new optimization techniques in the next sections.

2 Deep Models for TBox Reasoning in ALCNHR+

Given a set of concepts representing a conjunction whose satisfiability is to be
checked, the model merging strategy tries to avoid a satisfiability test which
relies on the “expensive” tableaux technique due to non-deterministic rules.3

This idea was first introduced in [5] for the logic ALCHfR+ . A model merging
test is designed to be a “cheap” test comparing cached “concept models.” It is a
sound but incomplete satisfiability tester for a set of concepts. The achievement
of minimal computational overhead and the avoidance of any indeterminism are
important characteristics of such a test. If the test returns false, a tableaux
calculus based on the rules as defined in Section 1.2 is applied. In order to be
more precise, we use the term pseudo model instead of “concept model.”

For testing whether the conjunction of a set of concepts {C1, . . . ,Cn} is sat-
isfiable, we present and analyze a technique called deep model merging that gen-
eralizes the original model merging approach [5] in two ways: (1) we extend the
model merging technique to the logic ALCNHR+ , i.e. this technique also deals
with number restrictions; (2) we introduce deep pseudo models for concepts that
are recursively traversed and checked for possible clashes.

Let A be a concept name, R a role name, and C a concept. The consistency
of the initial ABox A = {a :C} is tested. If A is inconsistent, the pseudo model4

of C is defined as ⊥. If A is consistent, then there exists a non-empty set of
completions C. A completion A′ ∈ C is selected and a pmodel M for a concept C

3 In our case the rules R� and R∃≤n.
4 For brevity a pseudo model is also called a pmodel .

is defined as the tuple 〈M A,M ¬A,M ∃,M ∀〉 of concept sets using the following
definitions.

M A = {A | a :A ∈ A′, A ∈ C}, M ¬A = {A | a :¬A ∈ A′, A ∈ C}
M ∃ = {∃R .C | a :∃R .C ∈ A′} ∪ {∃≥n R | a :∃≥n R ∈ A′}
M ∀ = {∀R .C | a :∀R .C ∈ A′} ∪ {∃≤n R | a :∃≤n R ∈ A′} ∪

{∃R .C | a :∃R .C ∈ A′, R ∈ F}

Note that pmodels are based on complete ABoxes. In contrast to the theoret-
ical calculus presented above, model merging deals directly with features instead
of representing them with at most restrictions. Therefore concept exists restric-
tions mentioning features are also included in the sets M ∀ of pmodels. This
guarantees that a possible “feature interaction” between pmodels is detected.

Procedure 1 mergable(MS ,VM ,D?)
1: if MS = ∅ ∨MS ∈ VM then
2: return true
3: else if ⊥ ∈ MS ∨ ¬atoms mergable(MS) then
4: return false
5: else
6: for all M ∈ MS do
7: for all C ∈ M ∃ do
8: if critical at most(C,M ,MS) then
9: return false

10: else
11: MS ′ ← collect successor pmodels(C,MS)
12: if (¬D? ∧MS ′ != ∅) ∨ ¬mergable(MS ′,VM ∪ {MS},D?) then
13: return false
14: return true

The procedure mergable shown in Procedure 1 implements the flat and
deep model merging test. The test has to discover potential clashes which might
occur if all pmodels in MS are merged, i.e. their corresponding concepts are
conjunctively combined. The test starts with a set of pmodels MS , an empty set
of visited pmodel sets VM , and a parameter D? controlling whether the deep or
flat mode (see below) of mergable will be used. The test recursively traverses
the pmodel structures. In case of a potential clash, mergable terminates and
returns false, otherwise it continues its traversal and returns true if no potential
clash can be discovered. Testing whether the actual pmodel set MS is already a
member of the set VM (line 1) is necessary to ensure termination (in analogy to
blocking an individual) for the deep mode. A potential primitive clash is checked
in line 3. If no primitive clash is possible for the “root individual” of the pmodel,
it is tested whether a clash might be caused by interacting concept exists, concept
value, at least, and at most restrictions for the same successor individuals. Two
nested loops (lines 6-13) check for every pmodel M ∈ MS and every concept

in the set M ∃ whether an at most restriction might be violated by the other
pmodels (line 8). If this is not the case,5 the set MS ′ of “R-successor pmodels”
is computed (line 11). If the flat mode is enabled and MS ′ �= ∅, this indicates
a potential interaction via the role R and mergable returns false (lines 12-13).
If the deep mode is enabled, mergable continues and traverses the pmodels
in MS ′. Observe that the procedure mergable is sound but not complete, i.e.
even if mergable returns false for a pmodel set the corresponding concept
conjunction can be satisfiable.

The procedure atoms mergable tests for a possible primitive clash between
pairs of pmodels. It is applied to a set of pmodels MS and returns false if
there exists a pair {M1, M2} ⊆ MS with (M A

1 ∩ M ¬A
2) �= ∅ or (M ¬A

1 ∩ M A
2) �= ∅.

Otherwise it returns true.
The procedure critical at most checks for a potential number restriction

clash in a set of pmodels and tries to avoid positive answers which are too conser-
vative. It is applied to a concept C of the form ∃S .D or ∃≥n S, the current pmodel
M and a set of pmodels MS = {M1 , . . . ,Mk}. Loosely speaking, it computes the
maximal number of potential S-successors and returns true if this number ex-
ceeds the applicable at most bound m. More precisely, critical at most returns
true if there exists a pmodel M ′ ∈ (MS \M) and a role R ∈ S↑ with ∃≤m R ∈ M ′∀

such that
∑

E∈N num(E,RS) > m, N = ∪i∈1 ..k M ∃
i , RS = S↑ ∩ R↓. In all other

cases critical at most returns false. The function num(E,RS) returns 1 for
concepts of the form E = ∃R′ .D and n for E = ∃≥n R′, if R′ ∈ RS , and 0 other-
wise.

The procedure collect successor pmodels is applied to a concept C of the
form ∃S .D or ∃≥n S and a set of pmodels MS . It computes the set Q containing
all S-successor pmodels (by considering (transitive) superroles of S). We define
Qaux = {D} if C = ∃S .D and Qaux = ∅ otherwise. Observe that ∃R .E ∈ M ∀

implies that R is a feature. The procedure collect successor pmodels returns
the pmodel set {MC |C ∈ Q}.

Q = Qaux ∪ {E | ∃M ∈ MS ,R ∈ S↑ : (∀R .E ∈ M ∀ ∨ ∃R .E ∈ M ∀)}∪
{∀T .E | ∃M ∈ MS ,R ∈ S↑,T ∈ T ∩ S↑ ∩ R↓ : ∀R .E ∈ M ∀}

Note that mergable depends on the clash triggers of the particular tableaux
calculus chosen since it has to detect potential clashes in a set of pmodels. The
structure and composition of the completion rules might vary as long as the
clash triggers do not change and the calculus remains sound and complete.

Proposition 1 (Soundness of mergable). Let D? have either the value true
or false, CS = {C1, . . . ,Cn}, MCi = get pmodel(Ci), and PM = {MCi | i ∈ 1..n}.
If the procedure call mergable(PM , ∅,D?) returns true, the concept C1
 . . .
 Cn

is satisfiable.

Proof. This is proven by contradiction and induction. Let us assume that the call
mergable(PM , ∅,D?) returns true but the initial ABox A = {a : (C1
 . . .
 Cn)}
is inconsistent, i.e. there exists no completion of A. Every concept Ci must be
5 In the following let us assume that the concept C mentions a role name R.

satisfiable, otherwise we would have ⊥ ∈ PM and mergable would return false
due to line 3 in Procedure 1. Let us assume a finite set C containing all con-
tradictory ABoxes encountered during the consistency test of A. Without loss
of generality we can select an arbitrary A′ ∈ C and make a case analysis of its
possible clash culprits.
1. We have a primitive clash for the “root” individual a, i.e. {a :D, a :¬D} ⊆ A′.

Thus, a :D and a :¬D have not been propagated to a via role assertions and
there have to exist Ci,Cj ∈ CS , i �= j such that a :D (a :¬D) is derived from
a :Ci (a :Cj) due to the satisfiability of the concepts Ci, i ∈ 1..n. It holds for
the associated pmodels MCi

,MCj
∈ PM that D ∈ M A

Ci
∩ M ¬A

Cj
. However, due

to our assumption the call of mergable(PM , ∅,D?) returned true. This is a
contradiction since mergable called atoms mergable with PM (line 3 in
Procedure 1) which returned false since D ∈ M A

Ci
∩ M ¬A

Cj
.

2. A number restriction clash in A′ is detected for a, i.e. a :∃≤m R ∈ A′ and
there exist l > m distinct R-successors of a.6 These successors can only be de-
rived from assertions of the form a :∃Sj .Ej or a :∃≥nj Sj with Sj ∈ R↓, j ∈ 1..p.
The concepts Ci ∈ CS , i ∈ 1..n are satisfiable and there has to exist a sub-
set CS ′ ⊆ CS such that ∃≤m R ∈ ∪C∈CS ′M ∀

C and
∑

E′∈N num(E′,RS) ≥ l ,
N = ∪C∈CS ′M ∃

C , RS = (∪j∈1..p Sj
↑) ∩ R↓. However, due to our assumption

the call of mergable(PM , ∅,D?) returned true. This is a contradiction since
there exists a pmodel M ′

C , C ∈ CS ′ and a concept E′ ∈ M ′∃
C such that mer-

gable called critical at most(E′,M ′
C ,PM) (lines 6-8 in Procedure 1) which

returned true since
∑

E′∈N num(E′,RS) ≥ l > m.
3. Let the individual an be a successor of a0 via a chain of role assertions

(a0, a1) :R1, . . . , (an−1, an) :Rn, n > 0 and we now assume that a clash for an

is discovered.
(a) In case of a primitive clash we have {an :D, an :¬D} ⊆ A′. Without loss

of generality we may assume that the clash culprits can only be derived
from assertions of the form an−1 :∃≥m Rn or an−1 :∃Rn .E1 in combination
with an−1 :∃S′ .E2 (if Rn and S′ ∈ Rn

↑ are features), and/or an−1 :∀S′′ .E3

with S′′ ∈ Rn
↑. Due to the clash there exists a pair E′,E′′ ⊆ {E1,E2,E3}

with D ∈ M A
E ′ ∩ M ¬A

E ′′ . Each role assertion in the chain between a0 and
an−1 can only be derived from assertions of the form ak−1 :∃Rk .Ek or
ak−1 :∃≥mk

Rk with k ∈ 1..n − 1. The call graph of mergable(PM , ∅,D?)
contains a chain of calls resembling the chain of role assertions. By in-
duction on the call graph we know that the node resembling an−1 of
this call graph chain contains the call mergable(PM ′,VM ′, true) such
that {ME ′ ,ME ′′} ⊆ PM ′ and atoms mergable has been called with
a set MS ′ and {ME ′ ,ME ′′} ⊆ MS ′. The call of atoms mergable has
returned false since D ∈ M A

E ′ ∩ M ¬A
E ′′ . This contradicts our assumption

that mergable(PM , ∅,D?) returned true.
(b) In case of a number restriction clash we can argue in an analogous way

to case 2 and 3a. Again, we have a chain of role assertions where a
number restriction clash is detected for the last individual of the chain.

6 Due to our syntax restriction, the elements of R↓ are not transitive.

10

20

30

50

75
100

200

1000

5000

>10000

Galen2 Galen1 Galen

Setting 1
Setting 2
Setting 3

0

20
30

50

75

100

200

300

Bike1 Bike2 Bike3 Bike4 Bike5 Bike6 Bike7 Bike8 Bike9

Setting 1
Setting 2
Setting 3

(a) Galen TBoxes (b) Bike TBoxes

Fig. 2. Evaluation of model merging techniques (runtime in seconds, 3 runs for each
TBox, left-right order corresponds to top-bottom order in the legend).

It exists a corresponding call graph chain where by induction the last call
of mergable called critical at most with a set of pmodels for which
critical at most returned true. This contradicts the assumption that
mergable(PM , ∅,D?) returned true.
�

It is easy to see that this proof also holds if the value of D? is false since the
“flat mode” is more conservative than the “deep” one, i.e. it will always return
false instead of possibly true if the set of collected pmodels M ′ is not empty
(line 12 in Procedure 1).

The advantage of the deep vs. the flat mode of the model merging technique
is demonstrated by empirical tests using a set of “quasi-standard” application
TBoxes [7, 6, 2]. Figure 2 shows the runtimes for computing the subsumption
lattice of these TBoxes. Each TBox is iteratively classified using three different
parameter settings. The first setting has the deep mode of model merging en-
abled, the second one has the deep mode of model merging disabled but the flat
mode still enabled, and the third one has model merging completely disabled.
The comparison between setting one and two indicates a speed up in runtimes of
a factor 1.5 − 2 if the deep mode is enabled. The result for setting three clearly
demonstrate the principal advantage of model merging.

The principal advantage of the deep vs. the flat model merging mode is due
to the following characteristics. If the flat model merging test is (recursively)
applied during tableaux expansion and repeatedly returns false because of in-
teracting value and exists restrictions, this test might be too conservative. This

effect is illustrated by an example: The deep model merging test starts with
the pmodels 〈∅, ∅, {∃R .∃S .C}, ∅〉 and 〈∅, ∅, ∅, {∀R .∀S .D}〉. Due to interaction
on the role R, the test is recursively applied to the pmodels 〈∅, ∅, {∃S .C}, ∅〉
and 〈∅, ∅, ∅, {∀S .D}〉. Eventually, the deep model merging test succeeds with
the pmodels 〈{C}, ∅, ∅, ∅〉 and 〈{D}, ∅, ∅, ∅〉 and returns true. This is in contrast
to the flat mode where in this example no tableaux tests are avoided and the
runtime for the model merging tests is wasted.

The next section describes how model merging can be utilized for obtaining
a dramatic speed up of ABox reasoning.

3 Flat Models for ABox Reasoning in ALCNHR+

Computing the direct types of an individual a (i.e. the set of the most specific
concepts from C of which an individual a is an instance) is called realization
of a. For instance, in order to compute the direct types of a for a given sub-
sumption lattice of the concepts D1, . . . ,Dn, a sequence of ABox consistency
tests for ADi = A ∪ {a :¬Di} might be required. However, individuals are usually
members of only a small number of concepts and the ABoxes ADi are proven as
consistent in most cases. The basic idea is to design a cheap but sound model
merging test for the focused individual a and the concept terms ¬Di without
explicitly considering role assertions and concept assertions for all the other in-
dividuals mentioned in A. These “interactions” are reflected in the “individual
pseudo model” of a. This is the motivation for devising the novel individual
model merging technique.

A pseudo model for an individual a mentioned in a consistent initial ABox A
w.r.t. a TBox T is defined as follows. Since A is consistent, there exists a set of
completions C of A. Let A′ ∈ C. An individual pseudo model M for an individual
a in A is defined as the tuple 〈M A,M ¬A,M ∃,M ∀〉 w.r.t. A′ and A using the
same definitions from the previous section for the components M A,M ¬A,M ∀

and the following definition.

M ∃ = {∃R .C | a :∃R .C ∈ A′} ∪ {∃≥n R | a :∃≥n R ∈ A′} ∪ {∃≥1 R | (a, b) :R ∈ A}
Note the distinction between the initial ABox A and its completion A′. When-

ever a role assertion exists, which specifies a role successor for the individual a
in the initial ABox, a corresponding at least restriction is added to the set M ∃.
This is based on the rationale that the cached pmodel of a cannot refer to indi-
vidual names. However, it is sufficient to reflect a role assertion (a, b) :R ∈ A by
adding a corresponding at least restriction to M ∃. This guarantees that possible
interactions via the role R are detected. Note that individual model merging is
only defined for the flat mode of model merging.

Proposition 2 (Soundness of individual model merging). Let Ma be the
pmodel of an individual a mentioned in a consistent initial ABox A, M¬C be the
pmodel of a satisfiable concept ¬C, and PM = {Ma ,M¬C}. If the procedure call
mergable(PM , ∅, false) returns true, the ABox A ∪ {a :¬C} is consistent, i.e. a
is not an instance of C.

Proof. This is proven by contradiction. Let us assume that the procedure call
mergable({Ma ,M¬C}, ∅, false) returns true but the ABox A′ = A ∪ {a :¬C} is
inconsistent, i.e. there exists no completion of A′. Let us assume a finite set C
containing all contradictory ABoxes encountered during the consistency test of
A′. Without loss of generality we can select an arbitrary A′′ ∈ C and make a
case analysis of its possible clash culprits.

1. In case of a primitive clash for a we have {a :D, a :¬D} ⊆ A′′. Since A is
consistent and the concept ¬C cannot indirectly refer to the old individual
a via a role chain, we know that either a :D or a :¬D must be derived from
a :¬C and we have D ∈ (M A

a ∩ M ¬A
¬C)∪ (M ¬A

a ∩ M A
¬C). This contradicts the

assumption that the call mergable({Ma ,M¬C}, ∅, false) returned true since
mergable called atoms mergable({Ma ,M¬C}) which returned false (line
3 in Procedure 1) since D ∈ (M A

a ∩ M ¬A
¬C)∪ (M ¬A

a ∩ M A
¬C).

2. A number restriction clash in A′′ is detected for a, i.e. a :∃≤m R ∈ A′′ and
there exist l > m distinct R-successors of a in A′′. This implies that the set
N = M ∃

a ∪ M ∃
¬C contains concepts of the form ∃Sj .Ej or ∃≥nj Sj,7 Sj ∈ R↓,

j ∈ 1..k, such that
∑

E′∈N num(E′,RS) ≥ l , RS = (∪j∈1..k Sj
↑) ∩ R↓. This con-

tradicts the assumption that mergable({Ma ,M¬C}, ∅, false) returned true
since mergable called critical at most (lines 6-8 in Procedure 1) which re-
turned true since

∑
E′∈N num(E′,RS) ≥ l > m.

3. A clash is detected for an individual b in A′′ that is distinct to a. Since
A is consistent the individual b must be a successor of a via a chain of
role assertions (a, b1) :R1, . . . , (bn, b) :Rn+1, n ≥ 0, and one of the clash cul-
prits must be derived from the newly added assertion a :¬C and propa-
gated to b via the role assertion chain originating from a with (a, b1) :R1.
Since ¬C is satisfiable and A is consistent we have an “interaction” via
the role or feature R1. This implies for the associated pmodels Ma ,M¬C

that (M ∃
a ∩ M ∀

¬C) ∪ (M ∀
a ∩ M ∃

¬C) �= ∅. This contradicts the assumption that
mergable({Ma ,M¬C}, ∅, false) returned true since mergable eventually
called collect successor pmodels for Ma ,M¬C which returned a non-
empty set (line 11 in Procedure 1).
�

The performance gain by the individual model merging technique is empir-
ically evaluated using a set of five ABoxes containing between 15 and 25 indi-
viduals. Each of these ABoxes is realized w.r.t. the application TBoxes Bike7-9
derived from a bike configuration task. The TBoxes especially vary on the degree
of explicit disjointness declarations between atomic concepts. Figure 3 shows the
runtimes for the realization of the ABoxes 1-5. Each ABox is realized with two
different parameter settings. The first setting has the individual model merging
technique enabled, the second one has it disabled. The comparison between both
settings reveals a speed gain of at least one order of magnitude if the individual
model merging technique is used. Note the use of a logarithmic scale.

7 Any role assertion of the form (a, b) :R ∈ A implies that ∃≥1 R ∈ M ∃
a . This takes care

of implied at least restrictions due to the UNA for old individuals.

5

10

20

30
40
50

75
100

200

500

1000

5000

>10000

A71 A72 A73 A74 A75 A81 A82 A83 A84 A85 A91 A92 A93 A94 A95

Setting 1
Setting 2

Fig. 3. Bike ABoxes: Evaluation of model merging techniques (runtime in seconds, 2
runs for each ABox, left-right order corresponds to top-bottom order in the legend).

4 Pseudo Models for Reasoning with Concrete Domains

The requirements derived from practical applications of DLs ask for more expres-
siveness w.r.t. reasoning about objects from other domains (so-called concrete
domains, e.g. for the real numbers). Thus, in [4] the logic ALCNHR+ is extended
with a restricted form of reasoning about concrete domains. However, the clas-
sification of non-trivial TBoxes is only feasible, if the model merging technique
can be applied. Therefore, we extend the model merging technique to the basic
DL with concrete domains, the language ALC(D) [1]. We conjecture that the
results from this approach can be directly transferred to the logic presented in
[4]. First, we have to briefly introduce ALC(D).

4.1 The Language ALC(D)

A concrete domain D is a pair (∆D, ΦD), where ∆D is a set called the domain,
and ΦD is a set of predicate names. Each predicate name PD from ΦD is asso-
ciated with an arity n and an n-ary predicate PD ⊆ ∆n

D. A concrete domain
D is called admissible iff (1) the set of predicate names ΦD is closed under
negation and ΦD contains a name 	D for ∆D; (2) the satisfiability problem
Pn1

1 (x11, . . . , x1n1) ∧ . . . ∧ Pnm
m (xm1, . . . , xmnm) is decidable (m is finite, Pni

i ∈ ΦD,
and xjk is a name for an object from ∆D).

Let S and F (R = S ∪ F) be disjoint sets of role and feature names, respec-
tively. A composition of features (written F1 · · ·Fn) is called a feature chain. A
simple feature is a feature chain of length 1. Let C be a set of concept names
which is disjoint from R. Any element of C is a concept term. If C and D are
concept terms, R ∈ R is a role or feature name, P∈ ΦD is a predicate name from

an admissible concrete domain, ui’s are feature chains, then the following expres-
sions are also concept terms: C
 D, C � D, ¬C, ∀R .C, ∃R .C, ∃ u1, . . . , un .P. A
concept term of the last kind is called predicate exists restriction.

An interpretation ID = (∆I , ∆D, ·I) consists of a set ∆I (the abstract do-
main), a set ∆D (the domain of an admissible ‘concrete domain’ D) and an
interpretation function ·I . Besides for feature and predicate names the interpre-
tation function is defined as in Figure 1a. The function maps each feature name
F from F to a partial function FI from ∆I to ∆I ∪∆D, and each predicate name
P from ΦD with arity n to a subset PI of ∆n

D. For a feature chain u = F1 · · ·Fn,
uI denotes the composition F1

I ◦ · · · ◦ Fn
I of partial functions F1

I , . . . ,Fn
I . Let

u1, . . . , un be feature chains and let P be a predicate name. Then, the interpre-
tation function can be extended to concept terms as in Figure 1a. The semantics
for the predicate exists restrictions is given by:

(∃ u1, . . . , un . P)I := { a ∈ ∆I | ∃x1, . . . , xn ∈ ∆D : (a, x1) ∈ u1
I , . . . , (a, xn) ∈ un

I ,

(x1, . . . , xn) ∈ PI}

Note that in a concept term elements of ∆D can be used only as feature fillers.
A TBox T is a finite set of non-cyclic axioms of the form A � D or A

.= D
where A must be a concept name. An interpretation I is a model of a TBox T
iff it satisfies AI ⊆ DI (AI = DI) for all A � D (A .= D) in T .

An ABox A is a finite set of assertional axioms which are defined as fol-
lows: Let O be a set of individual names and let X be a set of names for
concrete objects (X ∩ O = ∅). If C is a concept term, R ∈ R, F ∈ F , a, b ∈ O
and x, x1, . . . , xn ∈ X , then the following expressions are assertional axioms: a :C,
(a, b) :R, (a, x) :F and (x1, . . ., xn) :P.

The interpretation function additionally maps every individual name from O
to a single element of ∆I and names for concrete objects from X are mapped to
elements of ∆D. (The UNA does not necessarily hold in ALC(D).) An interpre-
tation satisfies an assertional axiom a :C iff aI ∈ CI , (a, b) :R iff (aI , bI) ∈ RI ,
(a, x) :F iff (aI , xI) ∈ FI , and (x1, . . ., xn) :P iff (x1

I , . . . , xn
I) ∈ PI . An interpre-

tation I is a model of an ABox A w.r.t. a TBox T iff it is a model of T and
furthermore satisfies all assertional axioms in A.

4.2 Pseudo Models for TBox Reasoning in ALC(D)

By analogy to the previous sections, we assume a tableaux calculus which de-
cides the ABox consistency problem for ALC(D) (see [1]). The clash triggers in
this calculus are the primitive clash, two triggers for feature fillers with member-
ship to both domains, and one clash trigger indicating inconsistencies between
concrete domain objects.

In the following we assume the same naming conventions as used above.
In order to obtain a flat pseudo model for a concept C the consistency of
A ={a :C} is tested. If A is inconsistent, the pseudo model of C is defined as
⊥. If A is consistent, then there exists a set of completions C. A completion
A′ ∈ C is selected and a pmodel M for a concept C is defined as the tuple

〈M A,M ¬A,M ∃,M ∀,M ∃F,M ∀F〉 using the following definitions (let u = F1 · · ·Fn

be a feature chain, then first(u) = F1).

M A = {A | a :A ∈ A′}, M ¬A = {A | a :¬A ∈ A′},
M ∃ = {R | a :∃R .C ∈ A′}, M ∀ = {R | a :∀R .C ∈ A′},

M ∃F = {F | a :∃F .C ∈ A′} ∪
{F | F = first(uj), uj used in ∃ u1, . . . , un .P, a :∃ u1, . . . , un .P ∈ A′},

M ∀F = {F | a :∀F .C ∈ A′}

Note that sets from a flat pseudo model for an ALC(D) concept contain only
concept, role, and/or feature names. In order to correctly deal with the semantics
of features, the pmodel also contains separate sets M ∀F and M ∃F. The set M ∃F

contains all feature names mentioned in exists restrictions and all feature names
being first element of a feature chain in predicate exists restrictions, and the set
M ∀F contains all feature names mentioned in value restrictions.

The following procedure ALC(D)-mergable implements the flat model merg-
ing test for ALC(D) for a given non-empty set of pmodels MS .

Procedure 2 ALC(D)-mergable(MS)
if ⊥ ∈ MS ∨ ¬atoms mergable(MS) then

return false
else

for all pairs {M1, M2} ⊆ MS do
if (M ∃

1 ∩M ∀
2) != ∅ ∨ (M ∀

1 ∩M ∃
2) != ∅ then

return false
else if (M ∃F

1 ∩M ∀F
2) != ∅ ∨ (M ∀F

1 ∩M ∃F
2) != ∅ ∨ (M ∃F

1 ∩M ∃F
2) != ∅ then

return false
return true

The idea of this test is to check for possible primitive clashes at the “root
individual” of the pmodels in MS using atoms mergable. Then the procedure
ALC(D)-mergable checks for possible references to the same direct role or
feature filler by more than one pmodel in MS .

This easy, but conservative test handles, besides primitive clashes, the three
ALC(D)-specific clash triggers, because they can only appear at feature fillers. A
proof for the soundness of ALC(D)-mergable can therefore be easily adapted
from the one given in Section 2. Due to lack of space, we cannot present the
model merging technique for deep pseudo models which is described in [9] where
this technique is also extended for other DLs with concrete domains. Full proofs
for flat and deep model merging for ALC(D) can be found in [9].

5 Conclusion and Future Work

In this paper we have analyzed optimization techniques for TBox and ABox
reasoning in the expressive description logic ALCNHR+ . These techniques ex-

ploit the traversal of flat and/or deep pmodels extracted from ABox consistency
tests. A moderate speed gain using deep models for classification of concepts
and a dramatic gain for realization of ABoxes is empirically demonstrated. The
model merging technique has also been investigated for the logic ALC(D) with
concrete domains. We conjecture that individual model merging for ALC(D) can
be developed in analogy to Section 3. The model merging technique for ALC(D)
is a prerequisite in order to apply model merging to ALCNHR+ extended by
concrete domains.

It is easy to see that an enhanced version of the individual model merging
technique for ALCNHR+ can be developed, which additionally exploits the use
of deep models. This is immediately possible if only ABoxes containing no joins
for role assertions are encountered. In case an ABox A contains a join (e.g.
{(a, c) :R, (b, c) :R} ⊆ A), one has to consider a graph-like instead of a tree-like
traversal of pseudo models reflecting the dependencies caused by joins.

References

1. F. Baader and P. Hanschke. A scheme for integrating concrete domains into con-
cept languages. In Twelfth International Joint Conference on Artificial Intelligence,
Darling Harbour, Sydney, Australia, Aug. 24-30, 1991, pages 452–457, August 1991.

2. V. Haarslev and R. Möller. An empirical evaluation of optimization strategies for
ABox reasoning in expressive description logics. In P. Lambrix et al., editor, Pro-
ceedings of the International Workshop on Description Logics (DL’99), July 30 -
August 1, 1999, Linköping, Sweden, pages 115–119, June 1999.

3. V. Haarslev and R. Möller. Expressive ABox reasoning with number restrictions,
role hierarchies, and transitively closed roles. In A.G. Cohn, F. Giunchiglia, and
B. Selman, editors, Proceedings of Seventh International Conference on Principles
of Knowledge Representation and Reasoning (KR’2000), Breckenridge, Colorado,
USA, April 11-15, 2000, pages 273–284, April 2000.

4. V. Haarslev, R. Möller, and M. Wessel. The description logic ALCNHR+ extended
with concrete domains: A practically motivated approach. In Proceedings of the
International Joint Conference on Automated Reasoning, IJCAR’2001, June 18-23,
2001, Siena, Italy, LNCS. Springer-Verlag, Berlin, June 2001.

5. I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD
thesis, University of Manchester, 1997.

6. I. Horrocks and P. Patel-Schneider. Optimising description logic subsumption. Jour-
nal of Logic and Computation, 9(3):267–293, June 1999.

7. I. Horrocks and P.F. Patel-Schneider. DL systems comparison. In Proceedings of
DL’98, International Workshop on Description Logics, pages 55–57, Trento(Italy),
1998.

8. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proceedings of the
6th International Conference on Logic for Programming and Automated Reasoning
(LPAR’99), number 1705 in Lecture Notes in Artificial Intelligence, pages 161–180.
Springer-Verlag, September 1999.

9. A.-Y. Turhan. Optimization methods for the satisfiability test for description log-
ics with concrete domains (in German). Master’s thesis, University of Hamburg,
Computer Science Department, April 2000.

