
RACER System Description

Volker Haarslev and Ralf Möller

University of Hamburg, Computer Science Department
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

http://kogs-www.informatik.uni-hamburg.de/~haarslev|moeller/

Abstract. RACER implements a TBox and ABox reasoner for the logic
SHIQ. RACER was the first full-fledged ABox description logic system
for a very expressive logic and is based on optimized sound and complete
algorithms. RACER also implements a decision procedure for modal logic
satisfiability problems (possibly with global axioms).

1 Introduction

The description logic (DL) SHIQ [18] extends the logic ALCNHR+ [9] by addi-
tionally providing qualified number restrictions and inverse roles. ALCNHR+

was the logic supported by RACE (Reasoner for ABoxes and Concept Ex-
pressions), the precursor of RACER (Renamed ABox and Concept Expres-
sion Reasoner). Using the ALCNHR+ naming scheme, SHIQ could be called
ALCQHIR+ (pronunciation: ALC-choir).

ALCQHIR+ is briefly introduced as follows. We assume a set of concept names
C , a set of role names R, and a set of individual names O . The mutually disjoint
subsets P and T of R denote non-transitive and transitive roles, respectively
(R = P ∪ T). ALCQHIR+ is introduced in Figure 1 using a standard Tarski-
style semantics. The term
 (⊥) is used as an abbreviation for C � ¬C (C � ¬C).

If R,S ∈ R are role names, then R � S is called a role inclusion axiom. A role
hierarchy R is a finite set of role inclusion axioms. Then, we define �∗ as the
reflexive transitive closure of � over such a role hierarchy R. Given �∗, the set
of roles R↓ = {S ∈ R |S �∗ R} defines the sub-roles of a role R. We also define
the set S := {R ∈ P |R↓ ∩ T = ∅} of simple roles that are neither transitive nor
have a transitive role as sub-role.

The concept language of ALCQHIR+ syntactically restricts the combination of
number restrictions and transitive roles. Number restrictions are only allowed
for simple roles. This restriction is motivated by a known undecidability result
in case of an unrestricted syntax [17]. In concepts, instead of a role name R (or
S), the inverse role R−1 (or S−1) may be used.

If C and D are concepts, then C � D is a terminological axiom (generalized con-
cept inclusion or GCI). A finite set of terminological axioms TR is called a
terminology or TBox w.r.t. to a given role hierarchy R.1 An ABox A is a finite
set of assertional axioms as defined in Figure 1.
1 The reference to R is omitted in the following if we use T .

Syntax Semantics

Concepts

A AI ⊆ ∆I

¬C ∆I \ CI

C
 D CI ∩ DI

C � D CI ∪ DI

∃R . C {a ∈ ∆I | ∃ b ∈ ∆I : (a, b) ∈ RI , b ∈ CI}
∀R . C {a ∈ ∆I | ∀ b ∈ ∆I : (a, b) ∈ RI ⇒ b ∈ CI}
∃≥n S . C {a ∈ ∆I | ‖{y | (x, y) ∈ SI , y ∈ CI}‖ ≥ n}
∃≤n S . C {a ∈ ∆I | ‖{y | (x, y) ∈ SI , y ∈ CI}‖ ≤ n}
Roles

R RI ⊆ ∆I × ∆I

A is a concept name and ‖ · ‖ denotes the cardinality of
a set. Furthermore, we assume that R ∈ R and S ∈ S .

Axioms

Syntax Satisfied if

R ∈ T RI = (RI)
+

R � S RI ⊆ SI

C � D CI ⊆ DI

Assertions

Syntax Satisfied if

a :C aI ∈ CI

(a, b) :R (aI , bI) ∈ RI

Fig. 1. Syntax and Semantics of ALCQHIR+ .

An interpretation I is a model of a concept C (or satisfies a concept C) iff
CI �= ∅ and for all R ∈ R it holds that iff (x , y) ∈ RI then (y , x) ∈ (R−1)I An
interpretation is a model of a TBox T iff it satisfies all axioms in T . See Figure
1 for the satisfiability conditions. An interpretation is a model of an ABox A
w.r.t. a TBox iff it is a model of T and satisfies all assertions in A. Different
individuals are mapped to different domain objects (unique name assumption).

2 Inference Services

In the following we define several inference services offered by RACER.

A concept is called consistent (w.r.t. a TBox T) iff there exists a model of C
(that is also a model of T and R). An ABox A is consistent (w.r.t. a TBox T)
iff A has model I (which is also a model of T). A knowledge base (T ,A) is called
consistent iff there exists a model for A which is also a model for T . A concept,
ABox, or knowledge base that is not consistent is called inconsistent .

A concept D subsumes a concept C (w.r.t. a TBox T) iff CI ⊆ DI for all in-
terpretations I (that are models of T). If D subsumes C, then C is said to be
subsumed by D.

Besides these basic problems, some additional inference services are provided by
description logic systems. A basic reasoning service is to compute the subsump-
tion relationship between concept names (i.e. elements from C). This inference
is needed to build a hierarchy of concept names w.r.t. specificity. The problem
of computing the most-specific concept names mentioned in T that subsume a
certain concept is known as computing the parents of a concept. The children
are the most-general concept names mentioned in T that are subsumed by a cer-

tain concept. We use the name concept ancestors (concept descendants) for the
transitive closure of the parents (children) relation. The computation of the par-
ents and children of every concept name is also called classification of the TBox.
Another important inference service for practical knowledge representation is
to check whether a certain concept name is inconsistent. Usually, inconsistent
concept names are the consequence of modeling errors. Checking the consistency
of all concept names mentioned in a TBox without computing the parents and
children is called a TBox coherence check .

If the description logic supports full negation, consistency and subsumption can
be mutually reduced to each other since D subsumes C (w.r.t. a TBox T) iff
C � ¬D is inconsistent (w.r.t. T) and C is inconsistent (w.r.t. T) iff C is subsumed
by ⊥ (w.r.t. T). Consistency of concepts can be reduced to ABox consistency
as follows: A concept C is consistent (w.r.t. a TBox T) iff the ABox {a :C} is
consistent (w.r.t. T). An individual i is an instance of a concept C (w.r.t. a
TBox T and an ABox A) iff iI ∈ CI for all models I (of T and A). Again, for
description logics that support full negation for concepts, the instance problem
can be reduced to the problem of deciding if the ABox A ∪ {a :¬C} is inconsistent
(w.r.t. T). This test is also called instance checking . The most-specific concept
names mentioned in a TBox T that an individual is an instance of are called
the direct types of the individual w.r.t. a knowledge base (T ,A). The direct
types inference problems can be reduced to subsequent instance problems. The
retrieval inference problem is to find all individuals mentioned in an ABox that
are an instance of a certain concept C. The set of fillers of a role R for an
individual i w.r.t. a knowledge base (T ,A) is defined as {x | (T ,A) |= (i, x) :R}
where (T ,A) |= ax means that all models of T and A are also models of ax.
The set of roles between two individuals i and j w.r.t. a knowledge base (T ,A)
is defined as {R | (T ,A) |= (i, j) :R}.
As in other systems, there are some auxiliary queries supported: retrieval of the
concept names or individuals mentioned in a knowledge base, retrieval of the set
of roles, retrieval of the role parents and children (defined analogously to the
concept parents and children, see above), retrieval of the set of individuals in
the domain and in the range of a role, etc. As a distinguishing feature to other
systems, which is important for many applications, we would like to emphasize
that RACER supports multiple TBoxes and ABoxes. Assertions can be added
to ABoxes after queries have been answered. In addition, RACER also provides
support for retraction of assertions in particular ABoxes. The inference services
supported by RACER for TBoxes and ABoxes are described in detail in [11].

3 The RACER Architecture

The ABox consistency algorithm implemented in the RACER system is based
on the tableaux calculus of its precursor RACE [9]. For dealing with qualified
number restrictions and inverse roles, the techniques introduced in the tableaux
calculus for SHIQ [18] are employed.

However, optimized search techniques are required in order to guarantee good
average-case performance. The RACER architecture incorporates the following
standard optimization techniques: dependency-directed backtracking [22] and

DPLL-style semantic branching (see [6] for an overview of the literature). Among
a set of new optimization techniques, the integration of these techniques into DL
reasoners for concept consistency has been described in [15]. The implementation
of these techniques in the ABox reasoner RACER differs from the implementa-
tion of other DL systems, which provide only concept consistency (and TBox)
reasoning. The latter systems have to consider only so-called “labels” (sets of
concepts) whereas an ABox prover such as RACER has to explicitly deal with
individuals (nominals). ABox optimizations are also explained in [8].

The techniques for TBox reasoning described in [3] (marking and propagation as
well as lazy unfolding) are also supported by RACER. As indicated in [7], the
architecture of RACER is inspired by recent results on optimization techniques
for TBox reasoning [16], namely transformations of axioms (GCIs) [19], model
caching [8] and model merging [15] (including so-called deep model merging and
model merging for ABoxes [13]). RACER also provides additional support for
very large TBoxes (see [10]).

RACER is implemented in Common Lisp and is available for research pur-
poses as a server program which can be installed under Linux and Windows
(http://kogs-www.informatik.uni-hamburg.de/~race). Specific licenses are
not required. Client programs can connect to the RACER DL server via a very
fast TCP/IP interface based on sockets. Client-side interfaces for Java and Com-
mon Lisp are available. A C/C++ interface is available soon.

4 Applications

An application of RACER for ontology engineering is described in [10]. The the-
ory behind another application of RACER in the domain of telecommunication
systems is explained in [2]. RACER has also be used for solving modal logic
satisfiability problems [8] and for database integration tasks. The Java interface
has been developed in order to support a TBox learning application (see [1]).

5 Outlook

The integration of techniques for representing “concrete domains” (e.g. linear
inequalities between real numbers) on the role fillers of an individual has been
investigated in [14]. In addition, optimization techniques for dealing with quali-
fied number restrictions [12] will be integrated into RACER in the next release.

References

1. J. Alvarez. Tbox acquisition and information theory. In Baader and Sattler [4],
pages 11–20.

2. C. Areces, W. Bouma, and M. de Rijke. Description logics and feature interaction.
In Lambrix et al. [20], pages 33–36.

3. F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.J. Profitlich. An empiri-
cal analysis of optimization techniques for terminological representation systems.
Applied Intelligence, 2(4):109–138, 1994.

4. F. Baader and U. Sattler, editors. Proceedings of the International Workshop on
Description Logics (DL’2000), Aachen, Germany, August 2000.

5. A.G. Cohn, F. Giunchiglia, and B. Selman, editors. International Conference on
Principles of Knowledge Representation and Reasoning (KR’2000), April 2000.

6. J.W. Freeman. Improvements to propositional satisfiability search algorithms. PhD
thesis, University of Pennsylvania, Computer and Information Science, 1995.

7. V. Haarslev and R. Möller. An empirical evaluation of optimization strategies
for ABox reasoning in expressive description logics. In Lambrix et al. [20], pages
115–119.

8. V. Haarslev and R. Möller. Consistency testing: The RACE experience. In R. Dy-
ckhoff, editor, Proceedings, Automated Reasoning with Analytic Tableaux and Re-
lated Methods, number 1847 in Lecture Notes in Artificial Intelligence, pages 57–61.
Springer-Verlag, April 2000.

9. V. Haarslev and R. Möller. Expressive ABox reasoning with number restrictions,
role hierarchies, and transitively closed roles. In Cohn et al. [5], pages 273–284.

10. V. Haarslev and R. Möller. High performance reasoning with very large knowl-
edge bases: A practical case study. In B. Nebel H. Levesque, editor, International
Joint Conference on Artificial Intelligence (IJCAI’2001), August 4th - 10th, 2001,
Seattle, Washington, USA. Morgan-Kaufmann, August 2001.

11. V. Haarslev and R. Möller. RACER user’s guide and reference manual version 1.5.
Technical report, University of Hamburg, Computer Science Department, 2001.

12. V. Haarslev and R. Möller. Signature calculus: Optimizing reasoning with number
restrictions. Technical report, University of Hamburg, Computer Science Depart-
ment, June 2001.

13. V. Haarslev, R. Möller, and A.-Y. Turhan. Exploiting pseudo models for tbox and
abox reasoning in expressive description logics. In Massacci [21]. In this volume.

14. V. Haarslev, R. Möller, and M. Wessel. The description logic ALCNHR+ extended
with concrete domains. In Massacci [21]. In this volume.

15. I. Horrocks. Optimising Tableaux Decision Procedures for Description Logics. PhD
thesis, University of Manchester, 1997.

16. I. Horrocks and P. Patel-Schneider. Optimising description logic subsumption.
Journal of Logic and Computation, 9(3):267–293, June 1999.

17. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive descrip-
tion logics. In Harald Ganzinger, David McAllester, and Andrei Voronkov, editors,
Proceedings of the 6th International Conference on Logic for Programming and
Automated Reasoning (LPAR’99), number 1705 in Lecture Notes in Artificial In-
telligence, pages 161–180. Springer-Verlag, September 1999.

18. I. Horrocks, U. Sattler, and S. Tobies. Reasoning with individuals for the descrip-
tion logic SHIQ. In David MacAllester, editor, Proceedings of the 17th International
Conference on Automated Deduction (CADE-17), number 1831 in Lecture Notes
in Computer Science, Germany, 2000. Springer-Verlag.

19. I. Horrocks and S. Tobies. Reasoning with axioms: Theory and practice. In Cohn
et al. [5], pages 285–296.

20. P. Lambrix et al., editor. Proceedings of the International Workshop on Description
Logics (DL’99), July 30 - August 1, 1999, Linköping, Sweden, June 1999.

21. F. Massacci, editor. International Joint Conference on Automated Reasoning (IJ-
CAR’2001), June 18-23, 2001, Siena, Italy., Lecture Notes in Artificial Intelli-
gence. Springer-Verlag, June 2001.

22. R.M. Stallman and G.J. Sussman. Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis. Artificial Intelligence,
9(2):135–196, 1977.

