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Abstract

This paper presents a method for reason-
ing about spatial objects and their qualita-
tive spatial relationships. In contrast to ex-
isting work, which mainly focusses on reason-
ing about qualitative spatial relations alone,
we integrate quantitative and qualitative in-
formation with terminological reasoning. For
spatioterminological reasoning we present the
description logic ALCRP(D) and define an
appropriate concrete domain D for polygons.
The theory is motivated as a basis for knowl-
edge representation and query processing in
the domain of deductive geographic informa-
tion systems.

1 Introduction

Qualitative relations play an important role in formal
reasoning systems that can be part of, for instance,
geographic information systems (GIS). In this context,
inferences about spatial relations should not be consid-
ered in isolation but should be integrated with formal
inferences about structural descriptions of domain ob-
jects (e.g. automatic consistency checking and classifi-
cation) and inferences about quantitative data. In our
opinion, the abstractions provided by qualitative spa-
tial relations can be interpreted as an interface from
a conceptual model about the world to quantitative
spatial data representing spatial information about do-
main objects. The combination of formal conceptual
and spatial reasoning serves as a theoretical basis for
knowledge representation in GIS and can be used to
solve important application problems. Continuing our
work presented in [11] and [13] we demonstrate the
importance of terminological inferences with spatial
relations in the domain of map databases and spatial
query processing. In order to answer a query, concept

terms are computed on the fly and must be checked for
consistency. Furthermore, we assume that computed
concept terms must be automatically inserted into the
subsumption hierarchy of a knowledge base.

For formalizing reasoning about spatial structures
many theories have been published (see e.g. [27] for
an overview). Ignoring decidability, Borgo et al. [5]
have developed a first order theory of space which for-
malizes different aspects such as mereology etc. An al-
gebraic theory about space has been proposed in [21].
The well-known RCC theory [6] also formalizes quali-
tative reasoning about space. While first axiomatiza-
tions used first-order logic, recently, the spatial rela-
tions used in RCC have been defined in terms of intu-
itionistic logic and propositional modal logic [4]. Al-
though qualitative reasoning with RCC can be used in
many applications, in GIS also conceptual knowledge
combined with quantitative data has to be considered.
Therefore, another approach is required.

In order to adequately support decidable reasoning (i)
about qualitative relations between spatial regions and
(ii) about properties of quantitative data, we extend
the description logic ALC(D) [2]. The main idea of
our approach is to deal with spatial objects and their
relations using predicates over concrete domain ob-
jects (see below for a formal introduction) and to deal
with knowledge about abstract domain objects using
the well-known description logic theory. Although de-
scription logics in general, and ALC in particular, are
known to be strongly related to propositional modal
logics [26, 7], it is not clear how Bennett’s modal logic
approach can be extended to handle conceptual mod-
eling and quantitative data.

Extending the work on ALC(D), we have developed a
new description logic called ALCRP(D) [16] in order
to provide a foundation for spatioterminological rea-
soning with description logics (RP stands for role def-
initions based on predicates). The part of our theory
dealing with spatial relations is based on a set of topo-



logical relations in analogy to Egenhofer [8] or RCC-
8 [22]. The goal was to develop a description logic
that provides modeling constructs which can be used
to represent topological relations as defined roles. In a
specific domain model, roles representing topological
relations can be defined based on properties between
concrete objects which, in turn, are associated to in-
dividuals via specific features. Thus, ALCRP(D) pro-
vides role terms that refer to predicates over a concrete
domain. With these constructs ALCRP(D) extends
the expressive power of ALC(D) (for a comparison,
see [16]). However, in order to ensure termination of
the satisfiability algorithm, we impose restrictions on
the syntactic form of the set of terminological axioms.
Although modeling is harder, the restrictions on ter-
minologies ensure decidability of the language.
In contrast to our earlier work presented in [13], [10]
and [14] where topological relations are used as prim-
itives in the sense of logic, we extend the treatment
of topological relations with respect to terminological
reasoning. Thus, the theory presented in this paper
allows one to detect both inconsistencies and implicit
information in formal conceptual models for spatial do-
main objects (for a longer introduction, see [16], [18],
[12], and [11]).
The paper is structured as follows. In the second sec-
tion we introduce the language ALCRP(D). Unfortu-
nately, without restrictions the satisfiability problem
for ALCRP(D) is undecidable. We give a proof in the
second section. Afterwards, we discuss the notion of
a restricted terminology. A proof for the decidability
of the satisfiability problem for restricted ALCRP(D)
terminologies is sketched. Section 3 discusses an ex-
tended example for applying ALCRP(D) to spatioter-
minological reasoning. The conclusion in Section 4
demonstrates the general significance of ALCRP(D)
by pointing out its applicability to other important
reasoning problems such as terminological reasoning
about temporal relations.

2 The Description Logic ALCRP(D)

The description logic ALC(D) as defined in [2] sup-
ports the representation of concrete knowledge by in-
corporating concrete domains. The concrete domain
approach can be used to integrate conceptual knowl-
edge with concrete spatial knowledge. However, to
define meaningful spatial concepts, it is also neces-
sary to represent qualitative spatial relations and to
exploit their various properties for reasoning. Since
quantification over these relations is also needed in
a description logic formalism, they should be repre-
sented as roles. Furthermore, the formalism has to
ensure that knowledge about qualitative relations is

represented in a way that is consistent with quantita-
tive spatial knowledge. In this section, the description
logic ALCRP(D) is introduced. ALCRP(D) extends
ALC(D) by a role-forming operator which is based on
concrete domain predicates. The new operator allows
the definition of roles with very complex properties
and provides a close coupling of roles with concrete
domains.

2.1 The Formalism

First, the concept language is introduced. Concrete
domains are defined by Baader and Hanschke [2] as
follows.

Definition 1. A concrete domain D is a pair
(∆D,ΦD), where ∆D is a set called the domain, and
ΦD is a set of predicate names. Each predicate name
P from ΦD is associated with an arity n, and an n-
ary predicate PD ⊆ ∆n

D. A concrete domain D is
called admissible iff (1) the set of its predicate names
is closed under negation and contains a name for ∆D,
(2) the satisfiability problem for finite conjunctions of
predicates is decidable.

In the following we define role and concept terms in
ALCRP(D).

Definition 2. Let R and F be disjoint sets of role and
feature names1, respectively. Any element of R ∪ F is
an atomic role term. A composition of features (writ-
ten f 1f 2· · · ) is called a feature chain. A simple fea-
ture can be viewed as a feature chain of length 1. If
P ∈ ΦD is a predicate name with arity n + m and
u1, . . . ,un as well as v1, . . . ,vm are feature chains,
then the expression ∃(u1, . . . , un)(v1, . . . , vm).P (role-
forming predicate restriction) is a complex role term.
Let S be a role name and let T be a role term. Then
S .= T is a terminological axiom.

Definition 3. Let C be a set of concept names which
is disjoint to R and F. Any element of C is a concept
term (atomic concept term). If C and D are con-
cept terms, R is a role term, P ∈ ΦD is a predicate
name with arity n, and u1, . . . ,un are feature chains,
then the following expressions are also concept terms:
C u D (conjunction), C t D (disjunction), ¬C
(negation), ∃R.C (exists restriction), ∀R.C (value re-
striction), and ∃u1, . . . , un.P (predicate exists restric-
tion). For all kinds of exists and value restrictions, the
role term or the list of feature chains may be written
in parentheses. Let A be a concept name and let D
be a concept term. Then A .= D is a terminological
axiom as well. A finite set of terminological axioms T

1In the following, the notion feature is used as a syn-
onym for feature name.



is a terminology or TBox if no concept or role name in
T appears more than once on the left hand side of a
definition and, furthermore, if no cyclic definitions are
present.

We can now assign a meaning to ALCRP(D) concept
terms by giving a set-theoretic semantics as usual.

Definition 4. An interpretation I = (∆I , ·I) con-
sists of a set ∆I (the abstract domain) and an
interpretation function ·I . The sets ∆D and ∆I must
be disjoint. The interpretation function maps each
concept name C to a subset C I of ∆I , each role
name R to a subset RI of ∆I ×∆I , and each feature
name f to a partial function f I from ∆I to ∆D ∪∆I ,
where f I(a) = x will be written as (a , x) ∈ f I . If
u = f 1 · · · f n is a feature chain, then uI denotes
the composition f I1 ◦ · · · ◦ f In of the partial functions
f I1 , . . . , f In. Let the symbols C , D , R, P , u1, . . . ,um,
and v1, . . . ,vm be defined as in Definition 2 and 3, re-
spectively. Then the interpretation function can be ex-
tended to arbitrary concept and role terms as follows:

(C u D)I := C I ∩DI

(C t D)I := C I ∪DI

(¬C )I := ∆I \ C I

(∃R.C )I := {a ∈ ∆I | ∃b ∈ ∆I :

(a , b) ∈ RI , b ∈ C I}
(∀R.C )I := {a ∈ ∆I | ∀b ∈ ∆I :

(a , b) ∈ RI → b ∈ C I}
(∃u1, . . . , un.P)I := {a ∈ ∆I | ∃x 1, . . . , xn ∈ ∆D :

(a, x1) ∈ uI1 , . . . , (a, xn) ∈ uIn,

(x1, . . . , xn) ∈ PD}
(∃(u1, . . . , un)(v1, . . . , vm).P)I :=

{(a, b) ∈ ∆I ×∆I |
∃x1, . . . , xn, y1, . . . , ym ∈ ∆D :

(a, x1) ∈ uI1 , . . . , (a, xn) ∈ uIn,

(b, y1) ∈ vI1 , . . . , (b, ym) ∈ vIm,

(x1, . . . , xn, y1, . . . , ym) ∈ PD}

An interpretation I is a model of a TBox T iff it sat-
isfies AI = DI for all terminological axioms A .= D
in T . A concept term C subsumes a concept term D
w.r.t. a TBox T (written D �T C ), iff DI ⊆ C I for
all models I of T . A concept term C is satisfiable
w.r.t. a TBox T iff there exists a model I of T such
that DI 6= ∅.

The basic reasoning service for a description logic for-
malism is computing the subsumption relationship.

This inference is needed in the TBox to build a hier-
archy of concepts w.r.t. specificity. Subsumption and
satisfiability can be mutually reduced to each other
since C �T D iff C u ¬D is not satisfiable. The fol-
lowing definition introduces the assertional language
of ALCRP(D), which can be used to represent knowl-
edge about individual worlds.

Definition 5. Let OD and OA be two disjoint
sets of object names. If C is a concept term,
R a role term, f a feature name, P a predicate
name with arity n, a and b are elements of OA

and x , and x 1, . . . ,xn are elements of OD, then
the following expressions are assertional axioms.

a : C , (a, b) : R, (a, x) : f , (x 1, . . . , xn) : P

A finite set of assertional axioms is called ABox.
An interpretation for the concept language can
be extended to the assertional language by addi-
tionally mapping every object name from OA to
a single element of ∆I and every object name
from OD to a single element from ∆D. We as-
sume that the unique name assumption does not
hold, that is aI = bI may hold even if a 6= b.
An interpretation satisfies an assertional axiom

a : C iff aI ∈ C I , (a, b) : R iff (aI , bI) ∈ RI ,

(a , x) : f iff f I(aI) = xI ,

(x 1, . . . , xn) : P iff (xI1 , . . . , x
I
n) ∈ PD

An interpretation is a model of an ABox A w.r.t. a
TBox T , iff it is a model of T and furthermore satisfies
all assertional axioms in A. An ABox is consistent
w.r.t. a TBox T iff it has a model.

The ABox consistency problem is to decide whether
a given ABox A is consistent w.r.t. a TBox T . Sat-
isfiability of concept terms can be reduced to ABox
consistency as follows: A concept term C is satisfiable
iff the ABox {a : C } is consistent. In the next section
we show that the reasoning problems just introduced
are undecidable if the full logic ALCRP(D) is consid-
ered.

2.2 Undecidability of the Full Logic

In the following we prove the undecidability of rea-
soning in ALCRP(D) if no restrictions are posed on
terminologies.

Theorem 6. The problem whether an ALCRP(D)
concept term C is satisfiable w.r.t. a TBox T is unde-
cidable.



Proof. The proof works by reducing the Post Corre-
spondence Problem (PCP) to the satisfiability prob-
lem for ALCRP(D) concept terms and is similar to
the reduction given in [3]. The PCP is defined as fol-
lows. Given a nonempty finite set S = {(li, ri); i =
1, . . . ,m}, where the li and ri are words over an alpha-
bet Σ, a solution of S is a sequence of indices i1, ..., ik
with k ≥ 1 such that the left concatenation wl =
li1 · · · lik and the right concatenation wr = ri1 · · · rik
denote the same word. The PCP is known to be un-
decidable if Σ contains at least two symbols [20].

For the reduction, the words over Σ are encoded as nat-
ural numbers which are then represented as concrete
domain objects. The elements of Σ are interpreted as
digits of numbers at base B, where B := |Σ| + 1. w
denotes the nonnegative integer at base 10 which the
(nonempty) word w represents at base B. w 7→ w is a
1− 1-mapping from Σ∗ into the set of nonnegative in-
tegers. Concatenation is encoded as an operation over
natural numbers that can be captured by a concrete
domain predicate: If vw is the concatenation of two
words v, w ∈ Σ∗, then vw = v ∗B|w| +w, where |w| is
the length of the word w.

Now for every instance S of the PCP, an ALCRP(D)
concept C(S) can be defined whose models have an
infinite tree-like structure that encodes the set of possi-
ble solutions of the PCP instance S. Additionally, the
concept is defined in a way such that it is satisfiable if
and only if none of the possible solutions in fact is a so-
lution. Hence, if the satisfiability of the concept C(S)
could be decided then one would be able to decide the
satisfiability of the PCP S. Since this is impossible,
the satisfiability problem for ALCRP(D) concept
terms must be undecidable. Let l , r , w l, wr and
f 1,...,f m be attributes and R be a role name, then for a
given instance S of the PCP we define a concept C(S):

C(S) .=∃w l.zero-p u ∃wr.zero-p u (1)

umi=1 ∃w l, f i ◦ w l.cnstr-pil u (2)

umi=1 ∃wr, f i ◦ wr.cnstr-pir u (3)

∀R. umi=1 ∃w l, f i ◦ w l.cnstr-pil u (4)

∀R. umi=1 ∃wr, f i ◦ wr.cnstr-pir u (5)
∀R.∃w l,wr.notequal-p (6)

R .=∃(w l,wr)(w l,wr).trans-p

The predicates used in the definition of C(S) are de-
fined as follows (li and ri are the words used in the

definition of the PCP problem, see above):

trans-p(a, b, c, d) := a < c ∧ b < d

zero-p(a) := a = 0

cnstr-pil(a, b) := b = li + a ∗B|li|

cnstr-pir(a, b) := b = ri + a ∗B|ri|

notequal-p(a, b) := a 6= b

To complete the proof of theorem 6, we need to prove
the following proposition.

Proposition 7. The concept C(S) is satisfiable if and
only if the PCP S has no solution.

Proof. It has to be shown that (i) if C(S) is satisfiable
then S has no solution and (ii) if S has no solution
then C(S) is satisfiable.
The first point can be seen by examining the defini-
tion of C(S). If C(S) is satisfiable then there exists an
interpretation I with C(S)I 6= ∅. As intended, this in-
terpretation encodes all possible sequences that could
be a solution of the PCP S. It has the form of an
infinite tree. Each node (abstract object) in the tree
has m successors. The edges (attributes) to these suc-
cessors are labeled with f 1 to f m, respectively. The
edges represent single indices and the nodes represent
sequences of indices defined by the labels of the path
from the root node. The role R is used as a “universal
role” to propagate concepts to every node in the tree:
every node in the tree is an R-role filler of the root-
node. In lines 4 and 5, predicate-operators which use
the predicate constr-p are propagated to every node
in the tree. These concepts enforce the successors of
each node. The concepts in lines 2 and 3 do the same
for the root node. Each node in the tree has concrete
fillers of the wl and wr attributes. These fillers are
enforced by the concept terms in lines 1-5. The fillers
of these attributes encode the two concatenations that
are defined by the index sequence which the node rep-
resents. Line 6 enforces that for all objects in the tree
the fillers of wl and wr (and thus the concatenations
for all possible sequences) differ. From this it is clear
that the concept C(S) can only be satisfiable if the
PCP S has no solution.
To prove the second point we give an interpretation
with C(S)I 6= ∅ for a given PCP S for which it is
known that no solution exists. This interpretation has
the same structure as described above.

∆I = {aij ; i ≥ 0, 0 ≤ j < mi};
∀i ≥ 0, 0 ≤ j < mi :

f I1 (aij) = ai+1 j∗m, . . . , f Im(aij) = ai+1 j∗m+m−1,

wIl (aij) = φl(i, j), wIr (a ij) = φr(i, j)



where φl and φr are two recursively defined concate-
nation functions (concat concatenates words and bc
denotes the floor function):

φl(0, 0) = ε

φr(0, 0) = ε

φl(i, j) = concat(φl(i− 1, bj/mc), lj+1−(m∗bj/mc))
φr(i, j) = concat(φr(i− 1, bj/mc), rj+1−(m∗bj/mc)).

2

As already noted, in [3] a similar proof is used to prove
the undecidability of subsumption for ALC(D) ex-
tended by a transitivity operator for roles. The proof
given there differs in that it uses a concept which is
satisfiable if and only if the corresponding PCP is has
a solution. A transitive attribute is used to distribute
concepts to any node. This cannot be directly done in
ALCRP(D). However, with a role-forming predicate
we can define a transitive role to achieve similar effects
(see [17] for further details).

The new role-forming operator plays an important role
in the definition of the concept C(S). As already noted,
the complex role R is used as a universal role, i.e. it
connects the root node of the tree to all other nodes.
Using value restriction over R, a concept term which
contains exists restrictions creating new succeeding
nodes is propagated to every node of the tree. It is
this mechanism that enforces the infinite tree struc-
ture of the model of C(S). In the following section a
set of restrictions for terminologies is developed. The
idea is that these restrictions prohibit the definition of
“dangerous” concepts such as C(S).

2.3 Restricted Terminologies

The analysis of the concept C(S) at the end of the last
section gives a first idea on how to avoid undecidabil-
ity. Complex roles seem to cause problems if they are
used in certain combinations with exists and value re-
strictions. A more thorough analysis reveals that there
exist at least two options for restricting the language
such that reasoning becomes decidable. First, restric-
tions could be posed on the structure of the concrete
domain predicates. This is not very promising since all
interesting applications, e.g. modeling spatial or tem-
poral relations, require fairly complex predicate defini-
tions that inevitably cause undecidability of reasoning
in ALCRP(D). Second, some critical combinations of
concept-forming operators could be restricted. We will
pursue the second approach. Before we can introduce
our structurally restricted terminologies, we have to
make some technical definitions.

A concept term C is said to be unfolded w.r.t. a TBox
T iff none of the concept and role names used in the

concept term occur on the left side of any termino-
logical axiom in T . Any concept term can be trans-
formed into an unfolded form by iteratively replacing
concept and role names by their defining terms. This
algorithm terminates since the terminology is required
to be acyclic. Any unfolded concept term can then
be transformed to an equivalent one in negation nor-
mal form (NNF). An unfolded concept term is said to
be in NNF iff negation occurs only in front of concept
names. The transformation to NNF can be done by it-
eratively applying transformation rules that propagate
the negations “down” to the atomic concepts. For ex-
ample, ¬(C uD) has to be transformed to ¬C t ¬D .
We omit details since the transformation rules are the
same as for ALC(D) [2]. We are now ready to define
restricted terminologies.

Definition 8. A concept term X is called restricted
w.r.t. a TBox T iff its equivalent X’ which is unfolded
w.r.t. T and in NNF fulfills the following conditions:

(1) For any (sub)concept term C of X’ that is of the
form ∀R1.D where R1 is a complex role term, D does
not contain any terms of the form ∃R2.E where R2 is
also a complex role term.

(2) For any (sub)concept term C of X’ that is of the
form ∃R1.D where R1 is a complex role term, D does
not contain any terms of the form ∀R2.E where R2 is
also a complex role term.

(3) For any (sub)concept term C of X’ that is of the
form ∀R.D or ∃R.D where R is a complex role term,
D contains only predicate exists restrictions that (i)
quantify over attribute chains of length 1 and (ii) are
not contained inside any value and exists restrictions
that are also contained in D .

A terminology is called restricted iff all concept terms
appearing on the right-hand side of terminological ax-
ioms in T are restricted w.r.t. T . An ABox A is called
restricted w.r.t. a TBox T iff T is restricted and all
concept terms used in A are restricted w.r.t. the ter-
minology T .

Consider for example the following three very
simple terminologies that are already in unfolded
NNF. None of them is restricted because they
all violate one of the above conditions. Let C
and D be concept names, Ra be an atomic role
term, Rc be a complex role term, f be a feature,
and u be a feature chain with a length greater than 1.

T 1 : {C .= ∀Rc.∃Rc.D},
T 2 : {C .= ∃Rc.∃u.P},
T 3 : {C .= ∀Rc.∀Ra.∃f .P}



We can now examine the decidability of the standard
reasoning problems with respect to restricted termi-
nologies of ALCRP(D).

Theorem 9. The ABox consistency problem for re-
stricted ALCRP(D) ABoxes is decidable.

We prove this by giving an algorithm which is sound
and complete.

2.4 The Tableau Calculus

The algorithm is a standard tableau-based one as it is
used for first order or modal logics as well as other
description logics. To decide the satisfiability of a
concept C , the algorithm starts with an initial ABox
A0 := {a : C} and then iteratively applies completion
rules creating one or more descendant ABoxes. Thus,
rule application constructs a tree of ABoxes Υ. Fi-
nally, either all ABoxes that are leaves of Υ happen
to be contradictory which means that C is not satisfi-
able or a non-contradictory ABox is obtained to which
no more completion rules are applicable. In the lat-
ter case, the ABox mentioned is called complete and
defines a model for C . The purpose of the comple-
tion rules can be understood as making implicit facts
explicit. The algorithm can be considered as a step-
by-step model construction.

The rule set is an extension of the one used for decid-
ing ABox consistency in ALC(D) (see [2]). Before the
rules can be given, some technical terms need to be
defined. Let A be an ABox, R be a role term, a and b
be object names from OA, γ be a symbol that is not
element of OD, u be a feature chain f 1◦· · ·◦f k, and let
u1, . . . ,un and v1, . . . ,vm be arbitrary feature chains.
For convenience we define three functions as follows:

fillerA(a, u) :=

x where x ∈ OD such that
∃b1, . . . , bk−1 ∈ OA :
((a , b1) : f 1 ∈ A, . . . , (bk−1, x) : f k ∈ A)

γ if no such x exists.

filler?A(a, b,R) :=

true if (a , b) : R ∈ A
true if R is of the form
∃(u1, . . . , un)(v1, . . . , vm).P and
∃x 1, . . . , xn, y1, . . . , ym ∈ OD such that
fillerA(a, u1) = x 1 ∧ . . . ∧ fillerA(a, un) = xn∧
fillerA(b, v1) = y1 ∧ . . . ∧ fillerA(b, vm) = ym∧
(x 1, . . . , xn, y1, . . . , ym) : P ∈ A

false in all remaining cases.

chainA(a, x , u) := {(a, c1) : f 1, . . . , (ck−1, x ) : f k}
where the c1, . . . , ck−1 ∈ OA are not used in A.

An ABox A is said to contain a fork (for a feature f )
if it contains the two axioms (a, b) : f and (a, c) : f ,
where a and b are either both from OA or OD. A fork
can be eliminated by replacing all occurrences of c inA
with b. We assume that during rule application forks
are eliminated as soon as they appear. Before any rules
are applied to initial ABox A0, fork elimination also
takes place. The completion rules can now be defined.

Definition 10. The following completion rules will
replace an ABox A by a single ABox A′ or by two
ABoxes A′ and A′′ (descendants of A). In the
following, C and D denote concept terms, R denotes
a role term, and P denotes a predicate name from
ΦD. Let f 1, . . . ,f n denote feature names, and u1,
. . . ,um as well as v1, . . . ,vm denote feature chains. a
and b denote object names from OA.

Ru The conjunction rule.
Premise: a : C u D ∈ A, a : C 6∈ A ∨ a : D 6∈ A
Consequence: A′ = A ∪ {a : C , a : D}

Rt The disjunction rule.
Premise: a : C t D ∈ A, a : C 6∈ A ∧ a : D 6∈ A
Consequence: A′ = A ∪ {a : C }, A′′ = A ∪ {a : D}

R∃C The exists restriction rule.
Premise: a : ∃R.C ∈ A, ¬∃b ∈ OA :

(filler?A(a, b,R) ∧ b : C ∈ A)
Consequence: A′ = A ∪ {(a, b) : R , b : C}
where b ∈ OA is not used in A.

R∀C The value restriction rule.
Premise: a : ∀R.C ∈ A, ∃b ∈ OA :

(filler?A(a, b,R), ∧ b : C 6∈ A)
Consequence: A′ = A ∪ {b : C}

R∃P The predicate exists restriction rule.
Premise:
a : ∃u1, . . . , un.P ∈ A,¬∃x 1, . . . , xn ∈ OD :

(fillerA(a, u1) = x 1 ∧ . . . ∧ fillerA(a , un) = xn ∧
(x 1, . . . , xn) : P ∈ A)

Consequence:
A′ = A ∪ {(x1, . . . , xn) : P} ∪

chainA(a, x1, u1) ∪ . . . ∪ chainA(a, xn, un)
where the objects x i ∈ OD are not used in A.

Rr∃P The complex role rule.
Premise:
(a, b) : ∃(u1, . . . , un)(v1, . . . , vm).P ∈ A,
¬∃x 1, . . . , xn, y1, . . . , ym ∈ OD :
(fillerA(a, u1) = x 1 ∧ . . . ∧ fillerA(a , un) = xn ∧
fillerA(b, v1) = y1 ∧ . . . ∧ fillerA(b, vm) = ym ∧
(x 1, . . . , xn, y1, . . . , ym) : P ∈ A)

Consequence:
A′ = A ∪ {(x1, . . . , xn, y1, . . . , ym) : P} ∪



chainA(a, x1, u1) ∪ . . . ∪ chainA(a, xn, un) ∪
chainA(b, y1, v1) ∪ . . . ∪ chainA(b, ym, vm)

where the objects x i ∈ OD and y i ∈ OD are not used
in A.

RChoose The choose rule.
Premise:
a : ∀(∃(u1, . . . , un)(v1, . . . , vm).P).C ∈ A,
∃b ∈ OA, x1, . . . , xn, y1, . . . , ym ∈ OD :
(fillerA(a, u1) = x 1 ∧ . . . ∧ fillerA(a , un) = xn ∧
fillerA(b, v1) = y1 ∧ . . . ∧ fillerA(b, vm) = ym ∧
(x 1, . . . , xn, y1, . . . , ym) : P 6∈ A ∧
(x 1, . . . , xn, y1, . . . , ym) : P 6∈ A)

Consequence:
A′ = A ∪ {(x1, . . . , xn, y1, . . . , ym) : P},
A′′ = A ∪ {(x1, . . . , xn, y1, . . . , ym) : P}

The notion of a contradictory ABox still needs to be
formally defined.

Definition 11. Let the same naming conventions be
given as in Definition 10. Additionally, let f be a fea-
ture. An ABox A is called contradictory if any of the
following clash triggers are applicable:
Primitive Clash: a : C ∈ A, a : ¬C ∈ A
Feature Domain Clash: (a, x ) : f ∈ A, (a, b) : f ∈ A
All Domain Clash: (a, x) : f ∈ A, a : ∀f .C ∈ A
Concrete Domain Clash:
(x (1)

1 , . . . , x (1)
n1 ) : P1 ∈ A, . . . , (x (k)

1 , . . . , x (k)
nk ) : Pk ∈ A

and the corresponding conjunction
∧k
i=1 P i(x(i)) is not

satisfiable in D. This can be decided because D is re-
quired to be admissible.

Similar completion rules can also be found in algo-
rithms for related languages such as ALC(D). The
clash triggers are identical to those of ALC(D). The
new completion rules are Rr∃P and RChoose. The use
of the related function is also new and is necessary be-
cause the new role-forming operator is introduced. In
the following we will discuss only the novelties as com-
pared to the rules needed for ALC(D). First, consider
the rule R∀C. The use of the related function is neces-
sary because not all role fillers might appear explicitly
as constraints of the form (a, b) : R. If R is a complex
role then b could be an R role filler of a, although
there is no constraint of the above form. Two objects
can be related simply because a predicate holds over
the concrete fillers of feature chains starting from a
and b, respectively. This can be seen by considering
the semantics of the role-defining operator. The two
possible types of role fillers (explicit and implicit) are
both captured by the related function.

The meaning of the rule Rr∃P is straightforward. If
it is known that two objects are related via a com-
plex role, we can immediately create concrete objects

as fillers of those feature chains being used in the def-
inition of the complex role. It is then also known that
the predicate used in the definition of the role holds
over the newly created concrete objects and thus ap-
propriate constraints can be added. This is what Rr∃P
does.

The meaning of RChoose can be understood as follows.
If a set of feature chains is used in the definition of
a complex role R and (loosely spoken) there are the
appropriate concrete fillers for two objects a and b
for all the feature chains in this set, then b might be
an R role filler of a. But unless there is an explicit
constraint which states that the predicate P used in
the definition of the role R holds (or does not hold),
we do not know if this is really the case. So, if there
is no such constraint, we have to try both alternatives
and test whether P holds or does not hold. If any of
these two alternatives is the wrong one, we will end
up with a concrete domain clash in the corresponding
branch of the ABox tree Υ. Like Rt, an application
of RChoose creates a branch in Υ.

A full proof of the soundness and completeness of the
algorithm given above can be found in [16]. Sound-
ness of the algorithm follows from the local soundness
of the completion rules. Completeness can be proven
by showing that any complete ABox computed by the
algorithm defines a model for the initial ABox A0.
However, proving termination is less straightforward.
The restrictions posed on terminologies are required to
ensure that all satisfiable concepts from the language
are also satisfied by at least one finite model. If this
finite model property does not hold, termination of the
tableau algorithm can not be guaranteed.

We give a short sketch of the termination proof and
then motivate the definition of the restrictions on con-
cept terms. Each ABox that is computed by the appli-
cation of completion rules can be mapped to a forest,
i.e. a collection of trees, in the following way: Each ele-
ment of OA that is already present in A0 is the root of
a tree. The edges and further nodes of the trees corre-
spond to role filler relationships and abstract objects,
respectively. But only the explicit role filler relation-
ships introduced by the rules R∃C, R∃P and Rr∃P are
taken into account. The number of the trees obviously
doesn’t grow during rule application. It can be shown
that (i) infinite rule application implies infinite growth
of at least one of the trees in at least one sequence of
forests2 and (ii) that there exist upper bounds for the
degree and the depth of all the trees. From this it fol-
lows that the algorithm terminates. The restrictions
on concept terms ensure the existance of the upper

2A sequence of forrests corresponds to one path in Υ.



bound for the depth of the trees. For the detailed ter-
mination proof see [16].

As already noted at the end of section 2.2, in the case
of unrestrictedness there are concept terms which are
only satisfied by infinite models. To shed more light
on details about the restrictions given in Definition 8,
it is necessary to analyze how these concepts would be
treated by the tableau calculus given in this section.
Using a value restriction over a complex role ∀Rc.C ,
a concept term C .= ∃R.D can be “propagated” to
an object o1. Then, the application of the R∃C rule
creates an object o2 with (o1, o2) : R. The concept
term D can be crafted in a way such that concrete
objects are generated as fillers of some attributes of
o2. This leads to the inference of a new role filler re-
lationship between another object and the newly cre-
ated object o2. Again a value restriction is used to
propagate an exists restriction along the role filler re-
lationship just inferred to the object o2. Thus, a cycle
is obtained. To prevent this, one has to prevent the
generation of concrete fillers for the attributes of o2.
Concrete objects are only created by the rules R∃P and
Rr∃P. The rule R∃P can only be applied if there is a
concept-forming predicate operator inside the concept
term D . The rule Rr∃P can only be applied if the con-
cept term C contains an exists restriction quantifying
over a complex role. Summarizing, concept-forming
predicate operators inside of value restrictions quan-
tifying over complex roles and also nestings of value
and exists restrictions which both quantify over com-
plex roles have to be prohibited. Further elaboration
yields the restrictions given in definition 8.

Corollary 12. The subsumption problem and the sat-
isfiability problem for ALCRP(D) concept terms are
decidable w.r.t. terminologies for which the considered
concept terms are restricted.

Proof. This follows from Theorem 9 together with the
reduction of subsumption to satisfiability and of satis-
fiability to ABox consistency (see Section 2.1). Please
note that if the concept terms C and D are restricted
w.r.t. a terminology T , then the concept term C u ¬D
is also restricted w.r.t. T since the set of restricted con-
cept terms is closed under negation.

In order use ALCRP(D) for knowledge representation
in general and for spatial reasoning in particular, an
admissible concrete domain must be defined. This will
be discussed in the next section.

A B A B A B

disjoint touching s overlapping

A

B

A

B

t contains s contains

Figure 1: Elementary relations between two regions
A and B. The inverses of t contains and s contains as
well as the relation equal have been omitted.

3 A Concrete Domain for Polygonal
Space

Rather than dealing with arbitrary point sets in <2, we
restrict the predicates for the spatial domain to the de-
scription of polygons because efficient algorithms (e.g.
the simplex procedure) are known for the polygon in-
clusion and polygon intersection problems (see below).
In accordance to Definition 1 we define the concrete
domain DP as consisting of a set ∆DP of polygons and
a set ΦDP of predicate names. Polygons are defined as
usual as a list of polylines, i.e. polygons describe point
sets that are not necessarily internally connected.

3.1 Predicates for Qualitative Spatial
Relationships

The set ΦDP contains the names of eight ele-
mentary binary predicates (equal, disjoint, touch-
ing, strictly overlapping, tangentially contains/
tangentially inside, strictly contains/strictly inside)
representing spatial relationships as illustrated in
Figure 1. In analogy to Egenhofer [8] or RCC-8 [22]
we have given a formal definition of the elementary
relations in [11]. The definition is based on the
interior, the complement and the boundary of spatial
objects (point sets). The interior of a set λ is defined
to be the union of all open sets in λ. The boundary
of a polygon, i.e. the intersection of the closure of
the interior and the closure of the complement of an
object, is defined by the “border polyline.”

For convenience, we extend the set ΦDP by names for
so-called composite predicates consisting of disjunc-
tions of elementary predicates. For instance, in this
paper we use the universal relation spatially related
and the relation generally inside (g inside ≡ t inside
∨ s inside ∨ equal). We define one-place predicates
which are denoted as srp where sr is an elementary or
composite predicate and p is a concrete object repre-
senting a polygon constant.



3.2 Satisfiability of Conjunctions of
Predicates

The admissibility criterion for DP concerns the sat-
isfiability of finite conjunctions of (possibly negated)
predicate terms. Negated unary and binary terms
can be resolved into disjunctions of elementary spatial
predicates by simple syntactic transformations because
the elementary predicates are mutually exclusive and
exhaustive. Therefore, we can restrict our analysis to
conjunctions of unnegated binary terms

∨k
j=1 epj(x, y)

where 1 ≤ k ≤ 8 and epj ∈ EP.

Consistency of a conjunction of binary predicate terms
is usually considered as a binary constraint satisfaction
problem. In this view, a conjunction is represented as a
constraint network whose nodes are defined by variable
names and whose edges are labeled by relation sets
representing disjunctions of relations between a pair
of nodes. A standard technique for deciding the satis-
fiability of such a network is the 3-consistency or path
consistency method that is based on a composition ta-
ble. This table defines the composition of spatial rela-
tions, for instance it has to hold that s inside◦s inside =
s inside (see above). In other words, a composition
table directly encodes so-called 3-consistent or path
consistent spatial relations between three regions, e.g.
s inside(A,B) ∧ s inside(B ,C )⇒ s inside(A,C ).

However, in general, path consistency is not a sufficient
criterion for consistency. Thus, an additional step
is required to ensure global consistency. Algorithms
for solving these constraint problems are discussed in
[15] and [19, 24]. According to Nebel and Renz [19,
24], the worst case complexity depends on the relations
(disjunctions of base relations) actually encountered in
a constraint network. To achieve global consistency,
in the worst case, exponential algorithms are required.
However, Nebel and Renz [19, 24] showed that for cer-
tain subsets of EP global consistency is equivalent to
path consistency. These findings can be used to speed
up the verification of consistency (Ladkin and Reine-
feld [15] also discuss speedup techniques).

Grigni et al. [9] consider objects that are internally
connected regions in the plane and propose two no-
tions of satisfiability, relational consistency and realiz-
ability. First, a conjunction may violate the so-called
relational consistency criterion which is identical to
the global consistency of a (spatial) constraint network
(see above). The full form of satisfiability is called re-
alizability and is related to planarity. A relationally
consistent conjunction may violate realizability if pla-
nar regions are declared to be disjoint from one an-
other (for examples see [9]). Thus, according to their
semantics (regions are internally connected), there are

conjunctions of predicates that are relationally consis-
tent but not realizable in the plane.

In our approach, the geometric relationship between
two concrete polygons (or its border polylines) directly
corresponds to the qualitative spatial relationship of
the objects. The elementary predicates for qualitative
spatial relations have the property of being mutually
exclusive and exhaustive. Hence, topological reasoning
can be realized by inference processes based on compo-
sition tables when all spatial relations implicitly given
by concrete polygons are computed and non-concrete
spatial objects are not assumed to be internally con-
nected. The work of Renz [23] shows that, in the case
of regions that are not necessarily internally connected
(open set semantics), satisfiability of RCC-8 constraint
systems implies realizability. Thus, an algorithm for
the concrete domain satisfiability test can be divided
into three main steps:

1. Negated predicate terms are replaced by the
corresponding disjunction of elementary predi-
cate terms. Afterwards, every conjunct con-
sists of either a single term sr(x , y) or a disjunc-
tion

∨k
i=1 sri(x, y) with sr, sri ∈ ER, 1 ≤ k ≤

8, and all sri(x, y) are involved with the same
pair of objects. For instance, ¬g inside(x , y) is
replaced by t contains(x , y) ∨ s contains(x , y) ∨
s overlapping(x , y)∨ touching(x , y)∨disjoint(x , y).
Furthermore, for each conjunct a new conjunct
representing the inverted relation term is added.
For example, for the term t contains(x , y) we add
t inside(y, x ).

2. The one-place predicates srip introduce concrete
polygons. With the help of standard algorithms
from computational geometry we compute the
topological base relation between each pair of con-
crete polygons. In accordance to our definition of
the spatial relations, this problem basically can be
reduced to the intersection test for two polygons.
For each pair of polygons, the topological infor-
mation is added to the constraint system with a
corresponding predicate. From now on, concrete
polygons are treated as variables.

3. In the third step, relational consistency is veri-
fied. Thus, a globally consistent solution must be
computed (path-consistency may be realized as a
pruning step). If no globally consistent solution
can be found, return “not satisfiable”, otherwise
return “satisfiable.”

In summary, we showed that the concrete domain P is
admissible. The next section discusses the application
of the algorithm using several application examples.
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Figure 2: A sketch of the northern part of Germany
with polygons for Germany (p1), Northern Germany
(p5), the federal states Schleswig-Holstein (p4) and
Hamburg (p2). Polygon p2 is touching p4 and p3 is
t inside p2.

3.3 Examples for Spatioterminological
Reasoning

How can conrete domain predicates be used to sup-
port spatioterminological inferences? First of all, as
an ontological commitment we assume that each do-
main object is associated with its spatial representa-
tion via the attribute has area. We would like to define
predicates that restrict the role fillers for has area to
be specific spatial regions. For instance, without being
told explicitly, the inference system should automati-
cally classify a region in Hamburg also as a Northern
German region (see Figure 2).

For instance, the one-place predicate g insidep can be
used as follows. Using the concept-forming predicate
operator ∃ f .P (see above), we define restrictions for
fillers of the feature (or attribute) has area of a re-
gion in Northern Germany, for a district of the city of
Hamburg, etc. The restrictedness criterion (cf. Defini-
tion 8) for the following two TBox axioms is trivially
fulfilled because they contain no nested exists or all
quantifiers.

northern german region
.
= ∃ has area . g insidep5

district of hh
.
= ∃ has area . g insidep2

u
∃ has area .¬equalp2

In the concept northern german region existential
quantification for has area is used to constrain the
filler to be any polygon that is g inside of p5 which
defines the area of Northern Germany (see Fig-
ure 2). In other words: The concept denoted by
∃ has area . g insidep5

subsumes every region of North-
ern Germany whose associated polygon is g inside of
p5. Therefore, district of hh is automatically classified
as a subconcept of northern german region. By anal-
ogy, we define the concepts for the federal states Ham-
burg and Schleswig-Holstein. We would like to empha-
size that both concepts are subsumed by the concept
northern german region.

federal state hh
.
= german federal state u
∃ has area . equalp2

federal state sh
.
= german federal state u
∃ has area . equalp4

These simple examples can already be represented
with ALC(D). However, in many cases, restrictions
about spatial relations have to be combined with ad-
ditional conceptual restrictions. Thus, there is a need
to quantify over roles that are defined based on pred-
icates over a concrete domain. For example, how can
we define a concept that describes a district of Ham-
burg that touches the “Federal State Hamburg” from
the inside? Note that it is not sufficient that the corre-
sponding district polygon (e.g. p3 in Figure 2) is inside
any polygon that is equal to the state polygon (e.g. p2).
The domain object that refers to the polygon p2 with
the feature has area must also be subsumed by the con-
cept federal state hh. We can adequately express this
restriction with the help of the role-forming predicate
restriction (∃ (f)(f) .P). For modeling spatial relations
we use role axioms for declaring corresponding roles
in the TBox. The following TBox axioms also fulfill
the restrictedness criterion because the nested concept
terms employ only the ∃ f .P constructor.

is t inside
.
= ∃ (has area)(has area) . t inside

hh border district
.
= district of hh u
∃ is t inside . federal state hh

The concept hh border district is discussed as an exam-
ple for the use of the role-forming predicate restriction
introduced by is t inside. The associated polygon of
any individual that is a member this concept has to be
in the t inside relationship with another polygon that,
in turn, is referred to by an instance of the concept
federal state hh.

While the subsumption relationships discussed above
are quite obvious, the advantages of TBox reasoning
with spatial relations become apparent if we assume
that the following axiom is computed by other compo-
nents and added to our TBox (e.g. imagine a scenario
employing machine learning techniques). The restrict-
edness criterion is fulfilled.

spatially related
.
= ∃ (has area)(has area) . spatially related

is touching
.
= ∃ (has area)(has area) . touching

unknown
.
= district of hh u
∃ spatially related . federal state hh u
∃ touching . federal state sh

If the polygon of district of hh touches the polygon of
federal state sh, then the polygon of district of hh is



also t inside the polygon of federal state hh. There-
fore, it can be proven that unknown is subsumed by
hh border district (see the next section). The spatial
constellation defined by the concept unknown could
also be characterized as a “Hamburg border district
to Schleswig-Holstein.”

If district of hh had been defined without the term
∃ has area .¬equalp2

, unknown would not have been
subsumed by hh border district because an abstract in-
dividual whose associated polygon had been equal to
p2 would have been a member of unknown but not a
member of hh border district (for hh border district the
equal relation is eliminated by the constraint satisfac-
tion process). A more detailed discussion of this exam-
ple and the interaction between ALCRP(D) and the
domain DP can be found in [18].

4 Conclusion

Based on the description logic ALCRP(D), we have
shown how spatial and terminological reasoning can
be combined in the TBox. Thus, the fruitful research
on description logics has been extended to cope with
qualitative spatial relations and quantitative spatial
data. One of the main ideas is to introduce the notion
of a role which is defined based on properties of con-
crete objects. The abstract domain is used to repre-
sent terminological knowledge about spatial objects on
an abstract logical level. The concrete domain (space
domain) extends the abstract domain and provides ac-
cess to spatial reasoning algorithms. If required, even
quantitative data (conrete polgyons) are considered by
applying algorithms known from computational geom-
etry. Techniques for spatial indexing can easily be in-
tegrated.

We admit that the ALCRP(D) restrictedness crite-
rion for terminologies does impose tight constraints on
modeling spatioterminological structures. However, in
a specific application, many interesting concepts can
be represented in a TBox with the additional advan-
tage of having a decidable satisfiability algorithm. Our
approach for testing satisfiability of finite conjunctions
relies on current work in qualitative spatial reason-
ing theory [24]. Considering the topological spatial
relations, it becomes clear that another instance of
ALCRP(D) can deal with temporal relations. Similar
constraint satisfaction algorithms known from the lit-
erature (e.g. [15]) can be employed. Future work will
reveal the relationship between ALCRP(D) and, for
instance, the temporal description logic developed in
[1]. Although this approach does not impose restric-
tions on terminologies, it does not provide facilities
for expressing value restrictions over spatial relations.

This is not a problem in ALCRP(D) as long as the ter-
minology fulfills the restrictedness criterion. Defined
qualitative relations that are “grounded” in quantita-
tive data provide a bridge to conceptual knowledge
and support more extensive reasoning services to be
exploited for solving practical problems.
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