
Published in: Proceedings, 12th IEEE Symposium on Visual Languages, Boulder, Colorado, USA, Sep. 3 6, 1996, IEEE

Press, 1996, in press.

GenEd – An Editor with Generic Semantics for
Formal Reasoning about Visual Notations

Volker Haarslev and Michael Wessel
University of Hamburg, Computer Science Department,

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
http://kogs-www.informatik.uni-hamburg.de/~haarslev/

Abstract

We describe the object-oriented editor GenEd support-
ing the design of specifications for visual notations.
Prominent features of GenEd are (1) it is generic, i.e.
domain-specific syntax and semantics are specified by
users; (2) built-in parser for actual drawings, driven by
formal specifications; (3) powerful reasoning capabili-
ties about diagrams and their specification. GenEd’s
specification language is based on a fully formalized
theory for describing visual notations. Three exam-
ples, place-transition petri nets, entity-relationship di-
agrams, and a small GIS application are presented.

Keywords— Theory of visual languages, formal se-
mantics, diagrammatical reasoning, description logics,
visual editor, visual parsing, geographical information
systems.

1 Motivation and Introduction

This paper reports on the design and evaluation of
the generic editor GenEd for visual notations. The
term “generic” refers to the characteristic that users
can specify domain-specific syntax and semantics for
visual notations. We think of formal notations as a
very general notion. Examples for visual notations can
be found in areas such as music, geography, mathemat-
ics, chemistry, etc. Visual programming languages are
viewed as a subset of formal notations.

GenEd is intended for supporting the design and
analysis of visual notations or visual programming lan-
guages. Usually the design of new visual notations is
an exploratory approach. Our experience with the de-
sign of formal semantics [1] for a completely visual pro-
gramming language, Pictorial Janus [2, 3], has strongly
motivated the approach presented in this paper. We
argue that designers of notations should be offered an
almost free-form, purely declarative style for specifi-
cations with immediate support for analysis and rea-
soning about specifications and for verification through
parsing of example drawings. GenEd’s parser can op-
erate in two modes. The incremental mode validates
drawings after every relevant modification and reports
parsing successes and errors to the user. The second
mode performs parsing only when demanded by the
user.

Our approach is based on a fully formalized theory
about visual notations that can be defined from “first
principles” by starting with point-sets and topology.
GenEd’s specification language and its reasoning capa-
bilities depend on description logic theory.

This paper makes several contributions to visual lan-
guages. It demonstrates that our theory can be applied
to a variety of different visual notations, ranging from
simple diagrams, over petri nets, to sophisticated visual
programming languages. The latter was extensively
described in [1]. It also introduces a new full-featured
graphic editor based on our formal theory. This the-
ory was introduced in [1] and is extensively presented
and related to visual language theory in [4]. Our ap-
proach is in contrast to other approaches that use only
syntax specifications or favor a generative solution, i.e.
they create specialized editors for particular visual lan-
guages.

The next section describes our theoretical founda-
tion in more detail. Then follows the main section ex-
plaining GenEd’s user interface and presenting three
example applications. The last sections discuss related
work and future research.

2 Theoretical Foundation

We believe that the semantics of formalisms used for
VL theory should be well understood. That is, the
meanings of represented language concepts should be
unambiguously determined by explicit notational for-
malisms, so that algorithms can operate on the repre-
sentation in accordance with the semantics of the no-
tation, without needing ad hoc provisions for specific
VL domains. Our approach is based on a fully for-
malized theory [4] for describing visual notations that
consists of three components. Each component is de-
fined by precise semantics. Objects and relations are
defined by point-sets and topology. Description logic
theory can be based on model-theoretic semantics us-
ing a compositional axiomatization with set theory.

2.1 Geometrical Objects

GenEd implements these three components in accor-
dance to our theory. However, the implementation of
geometrical objects and their corresponding spatial re-

1

Figure 1: Examples for geometric objects.

A B A B A B A

B

disjoint touches intersects contains

Figure 2: Primitive relations between A and B

lations uses well-known computer graphics techniques
for reasons of efficiency. The semantics of these algo-
rithms are still specified within our theory (see [5] for a
complete treatment). GenEd offers a set of predefined
geometrical objects (similar to other object-oriented
graphic editors) that can be used to design examples of
particular notations. Supported primitive objects are
points, (directed) line segments, line segment chains,
and (spline) polygons (see Figure 1).

2.2 Spatial Relations

GenEd recognizes seven primitive spatial relations
(disjoint, touches, intersects, contains/contained by,
covers/covered by) that may hold between two objects
(see Figure 2). It also computes the dimension of the
intersection, if applicable. The semantics are defined
in analogy to a proposal by Clementini et al. [6] and
are based on point-sets and topology. The relations
have a parameterized ‘fuzziness’ compensating for in-
exact positioning of objects (caused by users or scaling
factors) and floating-point arithmetic. In contrast to
several other approaches for spatial relations (e.g. see
[4]) GenEd can also deal with concave objects. Ad-
ditionally, an arbitrary collection of objects may be
grouped together and treated as a composition object.
Analogous semantics for composition objects were de-
fined.

Higher-level relations can be defined with the help
of the above mentioned seven relations (see Figure

A

B C A B

C

pointing to(C,B)
starting from(C,A)

directly contains(C,A) linked(A,B)

Figure 3: Higher-level relations

3). GenEd currently recognizes specialized contain-
ment (directly-contains/inside), connectivity (linked-
with), and direction of line segments (starting-from,
pointing-to). These relations are also applicable to
composition objects.

2.3 Description logic

Description logic (DL) theory has been successfully ap-
plied to the specification of Pictorial Janus (PJ) [2, 3],
a completely visual language for concurrent logic pro-
gramming [1, 7].

DL theories are based on the ideas of structured in-
heritance networks [8]. A DL can be considered as
a term rewriting language restricting the left side of
equations to single unique term names. The specifica-
tion of a DL consists of a set of concepts (or terms), a
set of roles (binary relations that may hold between
individuals of concepts), a set of disjointness asser-
tions among concepts and among roles, a set of concept
membership assertions for individuals, and a terminol-
ogy, which maps names to specifications of concepts or
roles. Concepts may be primitive or defined . A spec-
ification of a primitive concept represents conditions
that are necessary but not sufficient. The specifica-
tion of a defined concept represents conditions that are
both necessary and sufficient. Primitive and defined
roles are similarly specified. If a role holds between in-
dividuals, these individuals are referred to as fillers of
this role. The meaning of DL theory can be described
by model-theoretic semantics using a compositional ax-
iomatization with set theory. The appendix summa-
rizes the semantics of DL language elements that are
used in the following sections.

There exist several theorem provers for special types
of DLs. These theorem provers (referred to as DL
systems) offer powerful reasoning mechanisms that are
based on the DL semantics. DL systems usually distin-
guish two separate reasoning components. The termi-
nological reasoner or classifier (TBox) classifies con-
cepts with respect to subsumption relationships be-
tween these concepts and organizes them into a taxon-
omy. The TBox language is designed to facilitate the
construction of concept expressions describing classes
(types) of individuals. The classifier automatically per-
forms consistency checking (e.g. for incoherence, cy-

2

Figure 4: GenEd: petri net for reader-writer problem (simplified)

cles) of concept definitions and offers retrieval facili-
ties about the classification hierarchy. The forward-
chaining assertional reasoner or realizer (ABox) rec-
ognizes and maintains the type (concept membership)
of individuals. The purpose of the ABox language is to
state constraints or facts (usually restricted to unary or
binary predications) that apply to a particular domain
or world. Assertional reasoners support a query lan-
guage as access to their state. Some query languages
offer the expressiveness of the full first-order calculus.

GenEd defines several predefined primitive concepts
resembling supported geometric objects. It also intro-
duces a set of primitive roles representing the spatial
relations described in the previous section. The built-
in spatial parser of GenEd can recognize these objects
and their spatial relationships. GenEd can create for
elements of a drawing a corresponding set of ABox el-
ements asserting concept membership (e.g. geometric

objects A is a rectangle) and role fillers (e.g. rectan-
gle A touches line B). GenEd’s roles are organized
in a hierarchy with inheritance for role fillers. Roles
with at most one filler are referred to as attributes
(e.g. text value for text elements). Many geometric
attributes are available for objects (size, position, ink,
etc). GenEd also maintains part-of relationships for
composition objects.

3 GenEd

Figure 4 shows the user interface in detail. The
workspace window displays a fully classified petri net
example (see Section 3.3.1 for explanations). The next
sections describe GenEd’s user interface, its implemen-
tation, and two example applications.

3

Figure 5: GenEd: magnified selection of petri net

3.1 User Interface

The user interface contains several (scrollable) panes
and a menu bar at the top. The three horizontal panes
below the menu bar offer the selection of object types
and the setting of drawing attributes for elements and
text. The left vertical pane shows a variety of mod-
ifiable parameters for controlling display options and
scaling factors. The center pane (workspace) contains a
petri net for the reader-writer problem. It displays the
petri net elements (place as circle, transition as rect-
angle, edge as (spline) arrow, token as bullet, capacity
label as gray number). The elements are also labeled
with the concept names as computed by the classifi-
cation phase of the spatial parser. The right pane is
used to inform the user about computed concept mem-
berships, role fillers, etc. The horizontal pane below
the three vertical panes is the command pane. Users
have the choice whether they enter commands as ges-
tures (mouse movement, clicks) or as text commands.
The pane at the bottom always shows object-sensitive
documentation about available gestures.

Users can always select a collection of elements in
the workspace with an enclosing bounding box and ag-
gregate them into a composition object. The contents
of the workspace can be zoomed in or out (see Figure 5
for a magnified selection of the petri net). In general,
GenEd offers many operations on objects that are also
available in commercial graphic editors (create, delete,
copy, move, scale, rotate, hide, show, inspect, arrange-
ment, save, restore, undo list).

Figure 6: Library menu
with submenu for places.

It is worth to note that
special handles might
be attached to arbitrary
objects. These handles
can be used to fix rel-
ative positions between
objects or to define
stretchable lines whose
end points might be
fixed at objects. Prim-
itive and composition
objects may be stored
in and retrieved from
a user-defined library.
Figure 6 shows a sub-
menu displaying visual-
izations of petri net places stored in the library. The
workspace can be saved in and loaded from a file.

3.2 Implementation

GenEd is implemented in Common Lisp using the
Common Lisp Object System (CLOS) and the Com-
mon Lisp Interface Manager (CLIM) as interface
toolkit. The classification of concepts and the parsing
of actual drawings take place by using CLASSIC [9, 10]
as DL system. CLASSIC is also implemented in Com-
mon Lisp. GenEd consists of 28 modules with a total
of about 300 KB source code (without CLIM, CLOS,
and CLASSIC). GenEd is fully implemented with the
features described in this paper.

3.3 Example Session

We demonstrate two visual notations whose specifica-
tions were created with GenEd. The first notation de-
scribes place-transition petri nets. The second notation
defines entity-relationship (ER) diagrams.

3.3.1 Petri Nets

A petri net is a triple N = (P, T, E) with P a set
of places, a set T != ∅ of transitions, and a relation
E ⊂ (P × T) ∪ (T × P) representing edges.

A tuple N = (P, T, E, C,W,M) defines a place-
transition net if the following conditions hold. The
tuple (P, T, E) is a petri net with places P and transi-
tions T . C : P → N ∪ {ω} defines a capacity for each
place. W : E → N − {0} specifies the weight of every
edge. M : P → N ∪ {ω}, with ∀p ∈ P : M(p) ≤ C(p),
defines the initial marking.

The complete specification of place-transition nets
is out of scope of this paper. We already proved in [1]
with Pictorial Janus that our approach can handle com-
plex visual notations. We only outline the design of the

4

specification for place-transition nets. We define con-
cepts representing legal constellations for places, tran-
sitions, and edges. A petri net is specified as a com-
posite object consisting of at least 5 parts. Primitive
concepts are typeset in a slanted style.

petri net ≡
(composite thing ∧
(∃≥5 has parts) ∧ (∃≥1 has parts place) ∧
(∀ (has parts• rectangle) transition) ∧
(∀ (has parts• arrow) edge))

Petri nets are specialized to place-transitions nets
after defining capacity labels, places with capacity, to-
ken, places with tokens, edges with capacity, and active
transitions.

place transition net ≡
(petri net ∧ (∃≥1 has parts place with token))

An interesting special case of place-transition nets
is a predicate-event net. All places and edges have a
maximal capacity of 1.

∀p ∈ P : C(p) = 1 ∧ ∀(x, y) ∈ E : W (x, y) = 1

predicate event net ≡
(place transition net ∧
(∀ (has parts• place) predicate event place) ∧
(∀ (has parts• arrow) predicate event edge))

The definition of predicate-event places and transi-
tions are omitted. There are still other interesting con-
cepts characterizing special petri net elements that are
left out due to lack of space. However, the next sec-
tion discusses entity-relationship diagrams which are
specified in almost full detail.

3.3.2 Entity-Relationship Diagrams

Our definition of a subset of entity-relationship (ER)
diagrams was inspired by [11]. We present this exam-
ple in order to demonstrate the expressiveness of our
specification language and the reasoning capabilities of
GenEd. Due to space constraints we show only a screen
shot of GenEd (see Figure 7) displaying a subpart of
a larger example modelling relationships in an airline
company. Figure 8 shows a simple ER diagram spec-
ifying a relationship between a pilot and an aircraft.
The design and evaluation of the specification for this
simplified type of ER diagrams took about half an hour
for an experienced user of GenEd. We assume a few
primitive concepts and spatial relations representing
geometrical objects (rectangle, circle, diamond, line,
text) used in our ER diagram language.

Figure 7: An ER diagram modelling airlines

age

pilot flies1

salary

aircraft1

Figure 8: A simple entity-relationship diagram

Connectors

entityrelation
ship

cardinality

A relationship-entity connection is a line that touches
exactly one text label (expressing cardinality) and two
other regions (rectangle or diamond). A cardinality is
a text string with values chosen from the set {1, m, n}.

relationship entity ≡
(line ∧ (∃=3 touching) ∧ (∃=1 touching text) ∧
(∃=2 touching (rectangle ∨ diamond)) ∧
(∃=1 touching rectangle) ∧ (∃=1 touching diamond))

cardinality ≡
(text ∧ (∀ touching relationship entity) ∧
(∃=1 touching) ∧ (∀ text value {1,m, n}))

An attribute-entity
connection is a line
that touches only
two regions (circle
or rectangle) and no
text string.

entityattribute

5

attribute entity ≡
(line ∧ (∃=2 touching) ∧
(∀ touching (circle ∨ rectangle)) ∧
(∃=1 touching rectangle) ∧ (∃=1 touching circle))

Entities

entityattribute relation
ship

1

An entity is a rectangle that contains its name. It
touches at least one relationship-entity and optionally
some attribute-entity connectors. It is linked with at
least one diamond.

named region ≡
(region ∧ (∃=1 containing) ∧ (∀ containing text))

entity ≡
(rectangle ∧ named region ∧
(∃≥1 touching relationship entity) ∧
(∀ touching (attribute entity ∨ relationship entity)) ∧
(∃≥1 linked with diamond) ∧
(∀ linked with (circle ∨ diamond)))

Relationships

A relationship is a diamond
that contains its name. It
touches one relationship-
entity and optionally some
attribute-entity connectors.
It is linked with two entities.

relation
ship

n m

relationship ≡
(diamond ∧ named region ∧
(∃=2 linked with) ∧ (∀ linked with entity) ∧
(∃=2 touching) ∧ (∀ touching relationship entity) ∧
(∃≤2 touching (= (touching ◦ text value) 1)) ∧
(∃≤1 touching (= (touching ◦ text value) m)) ∧
(∃≤1 touching (= (touching ◦ text value) n)))

Attributes
An attribute is a circle
that contains its name.
It touches one attribute-
entity connector and is
linked with an entity.

entityattribute

attribute ≡
(circle ∧ named region ∧
(∃=1 linked with) ∧ (∀ linked with entity))

Figure 9: Sketches of the villa example.

3.3.3 Geographic Information Systems

The last example suggests that our approach might also
be usable in the domain of geographic information sys-
tems (GIS). This example demonstrates the advantages
of a forward-chaining parser and the necessity for non-
monotonic reasoning. In the context of an aerial image
interpretation system we assume that there exists a
two-dimensional model of a geographic scene stored in
a GIS. In this system multi-spectral images are inter-
preted, for example, in order to detect changes in the
scene. To speak of an interpretation of an image, e.g. a
change has to be described not only at the geometrical
level but also at the conceptual level. We use GenEd to
create a model of an example world. This small exam-
ple consists of two primitive objects (water surface and
house) that can be easily detected in aerial images by
using spectral analysis. We assume a symmetric rela-
tion ‘near’ that may hold for objects if they are located
next to each other.

A swimming pool is a water surface with at least one
house in its neighborhood (relation ‘near’). A villa is
a house with at least one swimming pool in its neigh-
borhood. The left part of Figure 9 sketches an image
of a scene with several houses along a street. In this
scene no villa has been recognized since there exists
no water surface next to a house. It is important to
note that each house could still incrementally be clas-
sified as villa provided a water surface is found in the
neighborhood. This is visualized in the right part of
Figure 9. This particular house is now classified as
villa and the water surface as swimming pool. This
reclassification is triggered by the newly added water
surface and affects only houses in the neighborhood of
this water surface. It is automatically performed by the
forward-chaining parser and always results in the most-
specialized classification (that is what we are interested
in). A backward-chaining parser would be inadequate
if we imagine a scene with a large amount of houses and
only a small number of water surfaces since we usually
do not know in advance where a water surface might
be detected. Thus, it is also not acceptable to query
the state of all houses. This scenario illustrates that
GenEd might also be a suitable query interface for a
GIS.

6

4 Related Work

Our work on GenEd is especially related to designing
VL editors and to theory of VLs. There exist many
approaches to the theory of visual language specifica-
tions and formalisms, but the number of system imple-
mentations is very limited. Mostly, these approaches
extend string grammar formalisms. A complete and
recent overview is out of scope of this paper. However,
we like to mention a few approaches: generalizations
of attributed grammars (e.g. picture layout grammars
[12]), positional grammars (e.g. [13]), graph grammars
(e.g. [14, 15, 16]), and algebraic or type-theoretic for-
malisms (e.g. [17, 18]). Other work closely related to
our approach uses (constraint) logic or relational for-
malisms (e.g. [19, 20, 21, 22, 23, 24, 25]) for represent-
ing spatial relationships. A more detailed review of
closely related work on VL theory can be found in [4].

GenEd’s philosophy of a free-form general purpose
editor supported by (incremental) visual parsing is in
contrast to the following two approaches. Escalante
[26] is an environment for the rapid construction of VL
applications. It supports the construction of languages
that are based on graph models (nodes and edges). The
emphasis of Escalante is on user interface construction
and not on VL semantics. [17] describes an approach
to generate syntax-oriented visual editors for formally
specified languages. It is embedded into an algebraic
specification formalism but deals only with syntactic
issues of VLs.

We conclude our review with two approaches that
are closely related to GenEd. DiaGen [27] is a gener-
ator for diagram editors providing direct manipulation
and animation of diagrams. Diagrammatic VLs can be
specified by a hypergraph grammar which is used to
generate a specialized editor. The extension of DiaGen
by a parser supporting general editing is in progress.
Another approach [28] is concerned with the automatic
construction of (pen-based) user interfaces for visual
languages specified by constraint multiset grammars.
The VL specification is used to generate a language-
specific parser. A general editor tool utilizes these
parsers to control and support the editing process of
corresponding VLs.

A major distinction to the approaches mentioned in
this section is the focus of GenEd on the design of for-
mal specifications of visual notations. Our experience
suggests that this is an iterative process with mutual
dependencies between the visual notation and its spec-
ification. GenEd supports this development cycle by
offering a free-form graphic editor and object-centered
specifications based on a formal theory with clear se-
mantics. The general, built-in visual parser is directly
driven by these specifications.

5 Future Research

We are currently working on specifications for other
visual notations (e.g. venn diagrams) that represent
mathematical notions. We are planning to incor-
porate concrete domains over the algebra of simple
reals. These concrete domains extend description
logic by reasoning about systems of (in)equalities over
(non)linear polynomials (see [4] for more details). We
also plan to address dynamic semantics of VLs. GenEd
might be extended to support specifications of tempo-
ral relationships and to visualize VL execution through
animations.

References

[1] V. Haarslev, “Formal Semantics of Visual Languages
using Spatial Reasoning”, In VL’95 [29], pp. 156–163.

[2] K.M. Kahn and V.A. Saraswat, “Complete Visualiza-
tions of Concurrent Programs and their Executions”,
in 1990 IEEE Workshop on Visual Languages, Skokie,
Illinois, Oct. 4-6. Oct. 1990, pp. 7–14, IEEE Computer
Society Press.

[3] K.M. Kahn, V.A. Saraswat, and V. Haarslev, “Picto-
rial Janus: A Completely Visual Programming Lan-
guage and its Environment (in German)”, in GI-
Fachgespräch Programmieren multimedialer Anwen-
dungen der GI-Jahrestagung 1991, Darmstadt, Ok-
tober 1991, J. Encarnacao, Ed. 1991, pp. 427–436,
Springer Verlag, Berlin.

[4] V. Haarslev, “A Fully Formalized Theory for Describ-
ing Visual Notations”, in International Workshop on
the Theory of Visual Languages, Gubbio, Italy, May
1996.

[5] M. Wessel, “Development of a concept-oriented
Generic Graphic Editor in Common Lisp (in Ger-
man)”, Jan. 1996, Studienarbeit.

[6] E. Clementini, P. Di Felice, and P. van Oosterom, “A
Small Set of Formal Topological Relationships Suit-
able for End-User Interaction”, in Advances in Spatial
Databases, Third International Symposium, SSD’93,
Singapore, June 23-25, 1993, D. Abel and B.C. Ooi,
Eds. June 1993, vol. 692 of Lecture Notes in Computer
Science, pp. 277–295, Springer Verlag, Berlin.

[7] V. Haarslev, “On Formal Semantics of Visual Nota-
tions”, Technical Report, in preparation, 1996.

[8] R.J. Brachman and J.G. Schmolze, “An overview of
the KL-ONE knowledge representation system”, Cog-
nitive Science, pp. 171–216, Aug. 1985.

[9] R.J. Brachman, D.L. McGuinness, P.F. Patel-
Schneider, L.A. Reswnick, and A. Borgida, “Living
with Classic: When and How to Use a KL-ONE-like
Language”, in Principles of Semantic Networks: Ex-
plorations in the Representation of Knowledge, J.F.
Sowa, Ed., San Mateo, California, 1991, pp. 401–456,
Morgan Kaufmann Publishers.

7

[10] R.J. Brachman, ““Reducing” CLASSIC to Practice:
Knowledge Representation Theory Meets Reality”,
in Principles of Knowledge Representation and Rea-
soning, Third International Conference, Cambridge,
Mass., Oct. 25-29, 1992, Oct. 1992, pp. 247–258.

[11] J.A. Serrano, “The Use of Semantic Constraints on
Diagram Editors”, In VL’95 [29], pp. 211–216.

[12] E.J. Golin, “Parsing Visual Languages with Picture
Layout Grammars”, Journal of Visual Languages and
Computing, vol. 2, no. 4, pp. 371–393, Dec. 1991.

[13] G. Costagliola, M. Tomita, and S.K. Chang, “A Gen-
eralized Parser for 2-D Languages”, in 1991 IEEE
Workshop on Visual Languages, Kobe, Japan, Oct. 8-
11. Oct. 1991, pp. 98–104, IEEE Computer Society
Press.

[14] H. Göttler, “Graph Grammars, a new Paradigm for
Implementing Visual Languages”, in Rewriting Tech-
niques and Applications, 3rd International Conference,
RTA-89, 3-5 April 1989, Chapel Hill, NC. Apr. 1989,
pp. 152–166, Springer Verlag, Berlin.

[15] M.A. Najork and S.M. Kaplan, “Specifying Visual
Languages with Conditional Set Rewrite Systems”, in
1993 IEEE Symposium on Visual Languages, Bergen,
Norway, Aug. 24-27. Aug. 1993, pp. 12–17, IEEE
Computer Society Press.

[16] J. Rekers and A. Schürr, “A Graph Grammar Ap-
proach to Graphical Parsing”, In VL’95 [29], pp. 195–
202.

[17] S.M. Üsküdarli, “Generating Visual Language Editors
for Formally Specified Languages”, In VL’94 [30], pp.
278–285.

[18] D. Wang, J.R. Lee, and H. Zeevat, “Reasoning with
Diagrammatic Representations”, in Diagrammatic
Reasoning: Cognitive and Computational Perspectives,
J. Glasgow, N.H. Narayanan, and B. Chandrasekaran,
Eds., pp. 339–393. AAAI Press / The MIT Press,
Menlo Park, California, 1995.

[19] C. Crimi, A. Guercio, G. Nota, G. Pacini, G. Tortora,
and M. Tucci, “Relation Grammars and their Appli-
cation to Multi-dimensional Languages”, Journal of
Visual Languages and Computing, vol. 2, no. 4, pp.
333–346, Dec. 1991.

[20] R. Helm and K. Marriott, “A Declarative Specifica-
tion and Semantics for Visual Languages”, Journal of
Visual Languages and Computing, vol. 2, no. 4, pp.
311–331, Dec. 1991.

[21] B. Meyer, “Pictures Depicting Pictures: On the Spec-
ification of Visual Languages by Visual Grammars”,
in 1992 IEEE Workshop on Visual Languages, Seattle,
Washington, Sept. 15-18. Sept. 1992, pp. 41–47, IEEE
Computer Society Press.

[22] K. Wittenburg, L. Weitzman, and J. Talley,
“Unification-based Grammars and Tabular Parsing for
Graphical Languages”, Journal of Visual Languages
and Computing, vol. 2, no. 4, pp. 347–370, Dec. 1991.

[23] K. Wittenburg, “Adventures in Multi-dimensional
Parsing: Cycles and Disorders”, in 1993 International
Workshop on Parsing Technologies, Tilburg, Nether-
lands and Durbuy, Belgium, Aug. 8-10, Aug. 1993.

[24] K. Marriott, “Constraint Multiset Grammars”, In
VL’94 [30], pp. 118–125.

[25] A.G. Cohn and J.M. Gooday, “Defining the Syntax
and the Semantics of a Visual Programming Language
in a Spatial Logic”, in AAAI-94, Spatial and Temporal
Reasoning Workshop, 1994, Preprint.

[26] J.D. McWhirter and G.J. Nutt, “Escalante: An En-
vironment for the Rapid Construction of Visual Lan-
guage Applications”, In VL’94 [30], pp. 15–22.

[27] M. Minas and G. Viehstaedt, “DiaGen: A Genera-
tor for Diagram Editors Providing Direct Manipula-
tion and Execution of Diagrams”, In VL’95 [29], pp.
203–210.

[28] S.S. Chok and K. Marriott, “Automatic Construc-
tion of User Interfaces from Constraint Multiset Gram-
mars”, In VL’95 [29], pp. 242–249.

[29] 1995 IEEE Symposium on Visual Languages, Darm-
stadt, Germany, Sep. 5-9. IEEE Computer Society
Press, Sept. 1995.

[30] 1994 IEEE Symposium on Visual Languages, St.
Louis, Missouri, Oct. 4-7. IEEE Computer Society
Press, Oct. 1994.

Appendix: Semantics of DL Elements

Let C be the set of concepts and R the set of roles in a DL
theory. A model is a set D and an assignment function ξ

such that ξ : C −→ 2D, ξ : R −→ 2D2
where 2D is the

powerset of the domain D, where D2 = (D×D) and where
ξ must satisfy the following conditions (concept names are
denoted by c and role names by r):

ξ[concept name] ⊆ D
ξ[role name] ⊆ D × D

ξ[(c1 ∧ . . . ∧ cn)] = ∩n
i=1ξ[ci]

ξ[(c1 ∨ . . . ∨ cn)] = ∪n
i=1ξ[ci]

ξ[(∃≥n r)] = {x| ‖{(x, y)| (x, y) ∈ ξ[r]}‖ ≥ n}
ξ[(∃≥n r c)]] = {x| ‖{(x, y)| (x, y) ∈ ξ[r] ∧ y ∈ ξ[c]}‖ ≥ n}
ξ[(∃≤n r)]] = {x| ‖{(x, y)| (x, y) ∈ ξ[r]}‖ ≤ n}

ξ[(∃≤n r c)] = {x| ‖{(x, y)| (x, y) ∈ ξ[r] ∧ y ∈ ξ[c]}‖ ≤ n}
ξ[(∃=n r)]] = {x| ‖{(x, y)| (x, y) ∈ ξ[r]}‖ = n}

ξ[(∃=n r c)] = {x| ‖{(x, y)| (x, y) ∈ ξ[r] ∧ y ∈ ξ[c]}‖ = n}
ξ[(∀ r c)] = {x| ∀y : (x, y) ∈ ξ[r] ⇒ y ∈ ξ[c]}
ξ[(= r i)] = {x| ∀y : (x, y) ∈ ξ[r] ⇒ y = i}
ξ[(r• c)] = ξ[r] ∩ {(x, y)| y ∈ ξ[c]}
ξ[r1◦ r2] = {(x, y)| ∃z.(x, z) ∈ ξ[r1] ∧ (z, y) ∈ ξ[r2]}

8

