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Abstract. In order to improve the accuracy of image-guided neuro-
surgery, different biomechanical models have been developed to correct
preoperative images w.r.t. intraoperative changes like brain shift or tu-
mor resection. For the simulation of deformations of anatomical struc-
tures with different material properties, all existing biomechanical mod-
els use either appropriate boundary conditions or spatially varying ma-
terial parameter values while assuming the same physical model for all
anatomical structures. In this contribution, we propose a new approach
which allows to couple different physical models. In our case, we simu-
late rigid, elastic, and fluid structures by using the appropriate physical
description for each material, namely the Navier equation and the Stokes
equation. To solve the resulting differential equations, we derive a linear
matrix system for each region by applying the finite element method.
Thereafter, the linear matrix systems are linked to one common linear
matrix system. Our approach has been tested using synthetic as well
as tomographic images. It turns out that the integrated treatment of
rigid, elastic, and fluid structures significantly improves the predicted
deformation results in comparison to a pure linear elastic model.
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1 Introduction

The accuracy of image-guided neurosurgery generally suffers from intraoperative
changes of the brain anatomy due to, e.g., tumor resection or brain shift [1]. To
improve upon navigation accuracy, a variety of biomechanical models were de-
veloped [2-5] to predict brain deformations and thus to correct the preoperative
images w.r.t. surgery induced effects. Additionally, some biomechanical models
exist within the scope of preoperative planning for registration purposes [6—8]
which can be used likewise to predict brain deformations.



Fig. 1. Simulation of fluids while treating them as rigid object: (a) registration result
with overlaid edges of the original postoperative image while none of the correspon-
dences were given within the vicinity of the ventricular system (dark elongated region
in the middle of the image) and (b) while only two parallel correspondences were given
directly at the ventricular system, leading to an unrealistic translation of the latter
one.

All these models simulate different anatomical structures by either spatially
varying the underlying material parameter values while assuming the same phys-
ical model for all anatomical structures [6,2,8,5] or by applying appropriate
boundary conditions [3,4,7]. An example for the latter case is the integration
of the skull bone or the falx as a non-moving part (known as homogeneous
Dirichlet boundary condition). However, this generally leads to a physically in-
adequate simulation, particularly in the case of combined elastic/fluid regions.
For example, the ventricular system in [5] was modeled as a rigid object, which is
motivated by the reported incompressibility of cerebrospinal fluid [9, 10]. Using
this assumption, good registration results were obtained if none of the prescribed
correspondences, which drive the deformation of the model, were given in the
vicinity of the ventricular system. Otherwise the model gives a poor registra-
tion result, leading to an unrealistic deformation of the fluid region as shown in
Figure 1. An approach that directly simulates the physical behaviour of fluids
through the use of the Navier-Stokes equation is the model of Lester et al. [8],
which is motivated by the homogeneous fluid model of Christensen [11]. But in
both cases, 1t is assumed that all anatomical structures behave like fluids which
is generally not the case.

In order to improve the simulation of head deformations, we extend our bio-
mechanical model [5] such that it allows to cope with anatomical structures con-
sisting of rigid, elastic, and fluid materials while using the appropriate physical
descriptions, namely the Navier equation and the Stokes equation. Our approach
is based on the well-established physical theory of continuum mechanics to han-
dle inhomogeneous materials. With this scheme, an inhomogeneous domain is



divided into homogeneous regions, each simulating a different material by using
an appropriate material description. To discretize the problem, we apply the
finite element method (FEM) to each region, resulting in a set of sparse linear
matrix systems. These matrix systems can be assembled together into a single
common matrix system via appropriate boundary conditions, which establish a
physical link between the corresponding regions. Instead of using external forces,
which are hard or even impossible to derive from corresponding images, we use
a set of given correspondences to drive the deformation of the image. In our
approach, it is ensured that the prescribed correspondences are exactly fulfilled.
Experiments with synthetic as well as real tomographic images have been car-
ried out and the results are compared against our previous model to assess the
physical plausibility of the predicted deformations.

2 Approach

Motivated by the physical properties of cerebrospinal fluid [9,10], we use the
Stokes equation as physical description for incompressible fluids:

—Vp+u*Viv+f=0. (1)

This is in contrast to [11,8], where the Navier-Stokes equation has been used
to simulate compressible fluids, and to [3] where the fluid region is allowed to
deform almost freely. The elastic and rigid materials are modeled by the Navier
equation

(A + p)Vdiviu] + pV*a+f = 0, (2)
and 1t 1s furthermore assumed that Cauchy’s formula
on=g (3)

holds on all boundaries. Here, V denotes the common Nabla operator, p the
unknown pressure, p* the viscosity parameter, v the unknown velocity field,
f the applied body forces, A and p the Lamé constants, u the unknown dis-
placement field, o the Fulerian stress tensor, n the unit vector normal to the
surface considered, and g the forces acting on this surface. Applying the finite
element method to (1) and (2) and substitution of (3) yields in both cases a
linear equation system

Ax=f+g, (4)

where x contains all unknown velocity and pressure coefficients or displacement
coeflicients, respectively. However, problems arise in determining the displace-
ment field u for a fluid due to the common formulation of the Stokes equation
in the Eulerian configuration to cope with large deformations. In contrast, the
Navier equation is formulated in the Lagrangian configuration which ensures a
proper definition of the boundaries. To solve this contradiction, we restrict the



deformation field to be infinitesimal, as implicitly done when using the Eulerian
stress tensor and the Navier equation. This restriction allows an approximation
of the displacements u by a multiplication of the velocities v with a small time
interval dt, i.e. u = vdt [12].

So far, each matrix system (4) contains the physical description of a ho-
mogeneous body only. The division of an inhomogeneous body {2 into a set of
homogeneous regions {2; according to the underlying anatomical structures leads
to an appropriate set of linear equation systems which can be physically linked
by the compatibility and equilibrium boundary conditions [13,12]: The former
condition states, that the displacements u’ at the common boundary I' be-
tween, e.g., two subregions £2; and {2; must be equal, while the latter one states
that in the equilibrium case, the sum of all surface forces acting on I" must be
zero. The introduction of these boundary conditions, along with further assum-
ing homogeneous body forces f over 2 = (2; U §2;, allows a coupling of both
linear systems:

o A0 u’ f+g
ri App+ App A | |0 = f . (5)
0 Al AL\ f+g

With A%, etc., we denote the submatrices of the corresponding stiffness matri-
ces A’ and A7 for the subregions f2; and {2;, respectively. An index including
I, as appearing in Af etc., indicates those submatrices which comprise finite
elements belonging to the common boundary I" between both regions. Based on
(5) we are able to simulate the physical behaviour of an inhomogeneous body
comprising rigid, elastic, and fluid parts.

In order to ensure the solvability of (5), we use for the fluid regions so-called
Q2 — Py Crouzeiz-Raviart finite elements [14] with biquadratic polynomials for
the velocity (resp. displacement) approximation and a linear, discontinuous ap-
proximation of the pressure, including two derivatives. At rigid and elastic re-
gions, nine-node quadrilateral finite elements are applied. Nevertheless, problems
arise with both types of elements due to the large number of associated degrees-
of-freedom, which count to 21 resp. 18 per finite element in the 2D case. As a
consequence of the resulting large linear equation system, only 2D images with
a relatively small number of pixels can be handled so far.

To drive the deformation we apply homogeneous Dirichlet boundary condi-
tions at the image borders and use given landmark correspondences instead of
forces [5]. These correspondences can be easily integrated into the linear equa-
tion system, as described in Peckar et al. [15], and are always exactly satisfied
by the resulting deformation.

3 Experiments

Our coupled rigid/elastic/fluid model has been tested for the cases of synthetic
and tomographic images as shown in Figures 2(a) and (c). To assess the physi-
cal plausibility of our new model, we compared the results with those predicted
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Fig.2. Our synthetic image (a) comprises three different materials: rigid skull bone
(black), cerebrospinal fluid (bright grey), and elastic brain tissue (dark grey). The used
tomographic image (c) stems from a section of the ventricular system of the original
preoperative image (b).

by our purely linear elastic model [5] in which we assumed at first a homoge-
neous elastic body and, at second, an inhomogeneous elastic body with elastic
brain tissue, rigid skull bone, and fluid treated as a rigid object. As mentioned
above, this kind of simulation was motivated by the reported incompressibility
of cerebrospinal fluid. In the following, we refer to these three approaches as
homogeneous elastic model, inhomogeneous elastic model, and inhomogeneous
elastic/fluid model, respectively. As material parameter values we used the val-
ues determined in [5] for the Lamé constants and a heuristically chosen value
of 0.01[Ns/m?] for the viscosity parameter y* due to the lack of other reported
values.

In our first experiment, we simulated the movement of a squared, rigid ob-
ject, which may represent an instrument for surgery, a foreign body, or a particle
of skull bone, in the direction of a nearby fluid region, using the synthetic im-
age shown in Figure 2(a). For simplicity, this movement is modeled as pure
translation of the squared object using two parallel correspondences defined by
u = (7.0,—4.0)T. We expect that the resulting deformation leads to a pure
translation of the rigid object in the direction of the fluid region which should
deform accordingly. As can be seen from the calculated results and correspond-
ing grid deformations in Figures 3(a) and (d), the homogeneous elastic model
results in a deformation where both, the object and the surrounding skull bone
were deformed which is in contrast to rigid material behavior. With the inhomo-
geneous elastic model this is not the case, but the assumed rigidity of fluid leads
to physically incorrect violations of the grid topology as depicted in Figures 3(b)
and (e). Additionally, no deformation occurs in the fluid region and the soft
material between the object and fluid regions is no longer visible (note, that the
rigid and elastic parts after deformation lie one above the other). A completely
different, physically adequate behavior shows our inhomogeneous elastic/fluid
model. Here, the shape of the rigid object is still preserved while the complete
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Fig. 3. Calculated images (top row) and corresponding grid deformations (bottom row)
using (a) a homogeneous elastic model, (b) an inhomogeneous elastic model, and (c)
an inhomogeneous elastic/fluid model.

deformation takes place in the fluid and brain tissue regions as shown in Figures
3(c) and (f).

For our second experiment with a real tomographic image, we used a section
of the preoperative MR image shown in Figure 2(b). The resulting image of
size 61 x 61 pixels shows a part of the ventricular system (which is a fluid
region) surrounded by elastic brain tissue as depicted in Figure 2(c). In order to
distinguish between both regions, we applied a Canny edge detector to the image.
Thereafter, the resulting segmentation has been locally corrected to match with
the underlying finite element mesh such that the resulting segmentation follows
exactly the finite element boundaries.

Figure 4 shows the results and corresponding grid deformations for 8 paral-
lel correspondences, defined as u = (7.0,0.0)7, and prescribed at the left side
of the ventricular system. Using the homogeneous elastic model, a remarkably
bended shape of the ventricular system results, see Figure 4(a). As indicated
by the grid deformation in Figure 4(d) and the displacement vector field shown
in Figure 5(a), this bending is symmetric with regard to the applied correspon-
dences. Significant displacements occur in a rather local neighbourhood, i.e. no
displacements are propagated to remote parts of the image. In contrast, the in-
homogeneous elastic model leads to a corrupted and physically incorrect result
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Fig. 4. Calculated images (top row) and corresponding grid deformations (bottom row)
while using (a) the homogeneous elastic model, (b) the inhomogeneous elastic model,
and (c) the inhomogeneous elastic/fluid model.

according to a violation of the underlying topology, which is clearly visible in
the grid deformation shown in Figure 4(e) and the corresponding displacement
vector field in Figure 5(b). Additionally, the shape of the ventricular system is
nearly preserved thus indicating that the inhomogeneous elastic model is insuf-
ficient in this case.

Our inhomogeneous elastic/fluid model again results in a completely differ-
ent, physically plausible behaviour, see Figures 4(c) and (f): According to the
shape of the enclosed fluid region, the predicted deformation is non-symmetric
with regard to the given correspondences. Also, the displacement vectors of the
fluid region clearly spread out to remote parts of the region, i.e. material flows to
the upper part of the image. The result is a roughly straight right border of the
ventricular system. Interestingly, the pressure of the fluid onto the brain tissue
at the right side is nearly uniformly distributed as indicated by the resulting
overall small displacements of the brain tissue there, see Figure 5(c).

4 Summary

We proposed a new biomechanical model of the human head for image correc-
tion purposes based on the finite element method. The model uses the theory of
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Fig.5. Parts of the calculated displacement vector fields for (a) the homogeneous elastic
model, (b) the inhomogeneous elastic model, and (c) the inhomogeneous elastic/fluid
model, respectively. The sections were taken from the middle of the image.

continuum mechanics to simulate the physical deformation behavior of coupled
rigid, elastic, and fluid regions. Experiments with synthetic as well as tomo-
graphic images have been carried out to assess the physical plausibility of the
predicted deformation results. It turns out that our new approach leads to a
significant improvement of the predicted results as compared to a pure linear
elastic model. We expect that the incorporation of more advanced constitutive
equations for brain tissue and other anatomical structures will further improve
the results. Additional work will be carried out to reduce the size of the overall
linear matrix system for the purpose of allowing to handle larger image sizes.
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