In K. M. Hanson, Medical Imaging 1999 - Image Processing, San Diego, USA

Nonrigid matching of tomographic images based on a
biomechanical model of the human head

A. Hagemann', K. Rohr!, H. S. Stiehl!, U. Spetzger?, J. M. Gilsbach?

YUniversitat Hamburg, FB Informatik, AB Kognitive Systeme,
Vogt-Kolln-Strafie 30, D-22527 Hamburg, Germany
Tel.: +49 (40) 42883 2577 Fax: +49 (40) 42883 2572

E-Mail: hagemann@informatik.uni-hamburg.de

*Neurochirurgische Klinik, Universitatsklinik der
Rheinisch-Westfalischen Technischen Hochschule (RWTH),
Pauwelstrale 30, D-52057 Aachen, Germany

ABSTRACT

The accuracy of image-guided neurosurgery generally suffers from brain deformations due to intraoperative changes,
e.g., brain shift or tumor resection. In order to improve the accuracy, we developed a biomechanical model of the
human head which can be employed for the correction of preoperative images. By now, the model comprises two dif-
ferent materials. The correction of the preoperative image is driven by a set of given landmark correspondences. Our
approach has been tested using synthetic images and yields physically plausible results. Additionally, we carried out
registration experiments with a preoperative MR image and a corresponding postoperative image simulating an intra-
operative image. We found, that our approach yields good prediction results, even in the case when correspondences
are given in a small area of the image only.
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1. INTRODUCTION

The accuracy of image-guided neurosurgery generally suffers from brain deformations due to intraoperative changes
like brain shift or tumor resection, which generally result in large changes of the brain anatomy, see e.g. Hill et
al.! To improve upon navigation accuracy, we developed a biomechanical model of the human head which allows to
predict intraoperative brain deformations and thus to correct the preoperative image w.r.t. surgery-induced effects.

Recent work in the field of intraoperative image correction comprises different models of the human head, which
distinguish between anatomical structures with variable material properties. Some of these head models are based
on physical motivations only, like mass-spring systems? or a combination of different energy terms.® However, these
types of models incorporate no real physical material parameters and hence are only weakly related to the physical
behaviour of biological soft tissue. In contrast to these physically motivated models, there are other approaches,
which are based on a direct physical description of the material behaviour.

One approach is the model of Davatzikos,* where linear elasticity theory is used as physical basis. Additional
terms for modelling of material inhomogeneities were introduced into the equilibrium description of the underlying
linear elastic body. The resulting equations were then solved by successive overrelaxation. Despite the general
difficulty to determine forces from images, Davatzikos applied image derived forces to drive the deformation of the
linear elastic body. As material parameter values, the author used heuristic values. Another recent approach is
developed by Kyriacou and Davatzikos® which used the Mooney-Rivlin strain energy function®7 for the simulation
of incompressible materials. However, the authors set the second Mooney-Rivlin parameter to zero which is in
contrast to the value determined, and compared against reported measurements® by Mendis et al.” The resulting
equations are solved by the finite element method. Instead of explicitly modelling different anatomical structures,
the authors introduced appropriate boundary conditions, e.g., the dura mater is integrated as a non moving part
(known as homogeneous Dirichlet boundary condition) and there is no movement between the dura mater and the
brain at the contact surface allowed (so called no-slip boundary condition). The model of Lester et al.” is based on an
inhomogeneous viscous fluid model, i.e. modified Navier-Stokes equations, with locally varying viscosity parameters



for the simulation of different anatomical structures. Also here, forces were used to drive the deformation and the
resulting equations are solved by successive overrelaxation. An apparent problem with this model is the assumption
that all anatomical structures behave like a viscous fluid which is generally not the case. Skrinjar et al.’® used a set
of mass nodes connected by Kelvin models to simulate the behaviour of brain tissue. A Kelvin model is a simplified
mechanical model'''? for viscosity and consists of a parallel connection of a linear spring and a dashpot. The
deformation is driven by applied forces and different anatomical structures are modelled by appropriate boundary
conditions only.

Our approach is based on the well-established physical theory of continuum mechanics to handle inhomogeneous
materials. We apply the finite element method for discretization, resulting in a large linear matrix system. Instead of
using forces, which are generally difficult to determine from images, we use a set of given correspondences to drive the
deformation of the preoperative image. According to the underlying anatomical structure, different materials were
incorporated by physically connecting homogeneous subregions by appropriate boundary conditions. The necessary
material parameter values were determined through a comprehensive literature study. Prior to our registration
experiments with clinical 2D pre- and postoperative MR images, we carried out experiments with synthetic 2D
images in order to assess the physical plausibility of the deformations predicted by our model.

2. APPROACH

Our biomechanical model is based on the equations of motion, which describe the deformation of a body {2 under
externally applied forces,

—dive =f 1in{,

{ (1)

ocn=g onl,

where o denotes the Fulerian stress tensor, f the applied body forces, n the unit vector normal to the surface T,
and g the forces acting on I'. To incorporate material properties of €2, the appropriate constitutive equation, which
describes the stress/strain relationship of the body, has to be substituted into the equations of motion. Assuming -
as a first approximation - linear elastic material properties, we apply Hooke’s law

o = A(tre(u))I + 2pe(u), (2)

to the equations of motion thus yielding the system

(Atre(u))I+ 2pe(u))n=g onT. (3)

{—div[/\(tr e(w)) I+ 2pe(u)] =1 inQ
Here, A and g denote the common Lamé constants, u the unknown displacement vector field, e(-) Cauchy’s infini-
tesimal strain tensor, I the identity matrix, and (tr-) the trace operator.

In order to solve the equations of motion for the unknown function u within a sufficient smooth function space, we
use the method of weighted residuals.'®'* With this method, we demand that the projection, i.e. the inner product
(-, -}, of the residuum onto arbitrary weighting functions w of the function space vanishes over the body €:

/ (=div [A(tre(u))I + 2ue(u)] — £, w) dQ2 = 0. (4)
Q
After some calculus, this can be transformed into

/Q/\(tr e(u))(tre(w)) + 2ule(u),e(w)) dQ2 = /

Q<f,w> dQ+/<g,w> dT. (5)

r

By application of the Galerkin method, 1.e. using only a finite dimensional subspace spanned by a finite number of
basis functions ¢;, we can approximate the function u by a finite sum of basis functions ¢; multiplied with unknown
coefficients wu;,
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Substitution of this approximation into (5) and choosing a weighting function w represented by Zj ¢;, leads to the
expression

S ui [ Altre@)ired)) + 2ute(d),e@;) d = [ (£.60a2+ [ (g.05)ar. M)

which can be written in compact matrix notation as
Au=f+g, (8)

where the matrix A is commonly known as stiffness matrir.

So far, the derived linear equation system (8) contains the description of a homogeneous, linear elastic body only.
By dividing an inhomogeneous body €2 into a set of homogeneous subregions £2; according to the underlying anatom-
ical structure, we are able to simulate inhomogeneous material behaviour with our model. Therefore, all subregions
€; are physically linked by the compatibility and equilibrium boundary conditions!?': The former condition states,
that the displacements u® at the common boundary I' between two subregions €; and € must be equal, while
the latter one states that in the equilibrium, the sum of all stress vectors acting on the boundary I' must be zero.
Introduction of these boundary conditions and assuming homogeneous body forces f over Q = €3 U Qs allows to
couple both linear systems, ending up with one overall linear equation system:

Ah Ahﬂ 0 u! f+ g1
Al Al +ARL AR, u' | = f . (9)
0 Ajr A3,/ \u? f+g’
—— S———
A u b

With A1, etc., we denoted the submatrices of the corresponding stiffness matrices A and A? for the subregions
Q; and Qo respectively. An index I', as appearing in Aip etc., indicates those submatrices which comprise finite
elements belonging to the common boundary I' between both subregions. Due to the underlying pixel grid of the
images, we used quadrilateral finite elements with four nodes, i.e. bilinear interpolation functions ¢; to approximate
the functions u and w. After substitution of the given boundary conditions, the linear matrix system (9) can be
solved for the unknown displacements u by using the numerical method of conjugate gradients.

To calculate the deformation of an anatomical structure due to given spatial correspondences between images,
these correspondences must be integrated into the linear equation system. To this end, we use the procedure described
in Peckar et al.'®: Given a value for the unknown u;, this can be incorporated into the linear equation system by a
subtraction of the product u;A;, where A; denotes the j-th column of the stiffness matrix A, from the righthand
side vector b, followed by a substitution of the given value into the j-th row of b. Thereafter, the j-th row and
column of A are set to zero and, respectively, the diagonal element A;; to one. By repeating this procedure for a
set of correspondences, to be given at the surface of an anatomical structure, a direct mapping from the undeformed
into the deformed state of the anatomical structure results.

3. MATERIAL PARAMETERS

By now, our implemented biomechanical model distinguishes two different materials, namely brain tissue and skull
bone, which can be incorporated by assigning different values of the Lamé constants A and g to the corresponding
subregions. In order to determine appropriate values for both materials, we carried out a comprehensive literature
study, yielding the values summarized in Table 1. Most of the values given there were determined from other
reported values,?123:2426 mainly based on the works of Sauren and Classens®” as well as Nagashima et al.?® Other
authors'®292% incorporated real measured data, reported by, e.g., McElhaney et al.?? or Nahum et al.3° In our
approach, where the deformations are driven by given correspondences, only the ratios of the values of A and p are
necessary. In Table 2, the calculated ratios for the Lamé constant values given in Table 1 are summarized. Analyzing
Table 2 reveals the interesting fact that only a small number of different Lamé constant ratios for brain tissue and
skull bone exists. Application of these ratios in some initial synthetic experiments showed only slight differences in
the resulting deformations. Thus, we concluded that the mean values of the ratios serve as valid estimates for the
corresponding Lamé constants.



material parameter values brain skull

article Aor [kPa] | por [kPa] | As [kPa] | psk [k Pa]
Hosey and Liu 198216 11101.8 22.2482 1334570 1842980
Ward 19827 5270.27 219.595 1334570 1842980
Ruan et al. 1991'® 540.811 22.5338 2093090 | 2663930
Willinger et al. 199219 5472.97 228.041 1388890 | 2083330
Chu et al. 199420 4110.74 83.8926 1805560 | 2708330
Tada et al. 199421 8060.27 164.495 1466820 | 2025600

Takizawa et al. 199422 41.7945 2.66773 - -
Kuijpers et al. 199523 8108.11 337.838 1805560 | 2708330
Kumaresan and Radhakrisnan 1996%* | 540.811 22.5338 1945000 2685950
Whitman et al. 1996%° - - 180556 270833
Hartmann and Kruggel 19982° 12483.3 25.0167 2093090 | 2663930

Table 1. Reported values of the Lamé constants A and p for brain tissue and skull bone. Tada et al., Takizawa et
al., as well as Hartmann and Kruggel distinguished originally between grey matter and white matter, but here; only
the values for grey matter were given. A bar indicates that no values were given by the authors.

ratios of the material parameter values
article | Abr//z‘br | /\sk/ﬂsk | Ask/Abr
Hosey and Liu 19821° 498.998 | 0.724137 | 120.212
Ward 19827 24.0 0.724137 | 253.226
Ruan et al. 1991'® 24.0 0.785715 | 3870.28
Willinger et al. 199219 23.9999 | 0.666668 | 253.773
Chu et al. 199420 49.0 0.666669 | 439.23
Tada et al. 199421 49.0001 | 0.724141 | 181.981
Kuijpers et al. 199523 24.0 0.666669 | 222.686
Kumaresan and Radhakrisnan 1996%* 24.0 0.724139 | 3596.45
Hartmann and Kruggel 19982° 498.999 | 0.785715 | 167.671

Table 2. Calculated ratios for the Lamé constants for brain and skull tissue. Only those articles where material
parameter values have been reported for both, brain tissue and skull bone, have been taken into consideration.

For the simulation of different anatomical structures, we have to determine appropriate ratios for the Lamé con-
stants between those different structures. Following our previous practice for homogeneous materials, we calculated
the ratios for the A-values of skull bone and brain tissue and have also listed them in Table 2. Here, a larger variability
the calculated ratios can be observed. However, it seems reasonable to choose again the mean value as ratio between
the A-values, while keeping the internal Lamé constant ratios of each material constant. To analyze the influence of
our determined Lamé constant values on a deformation, we applied four parallel correspondences to a grid. These
correspondences point in direction of the lower right corner of the grid and remain equal while different material
properties were assumed. As indicated by the resulting grid deformations and calculated displacement vector fields in
Figure 1, the material parameter values for homogeneous skull bone result in a significant stiffer behaviour compared
to homogeneous brain tissue. By dividing the grid into two subregions 2, and €25, we get the result shown in Figure
1(c). In this case, the applied correspondences lead to a pure translation of the simulated bony rectangle, surrounded
by soft brain material. The corresponding displacement vector field reveals, that the behaviour of the surrounding
soft material 1s physically plausible: Along the path of translation, a stretching of the soft material occurs, while two
vortices can be observed due to the lateral inflow of soft material.

4. EXPERIMENTS

Our approach has been tested on 2D synthetic images as well as real tomographic datasets. The synthetic experiments
comprised different types of movements of a rigid object (e.g., translation, rotation, scaling, and shearing) embedded
into an otherwise elastic material. Figure 2 depicts the deformation results for different types of translations. In
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Figure 1. Resulting grid deformation (top row) and displacement vector field (bottom row) for four correspondences
acting on the upper left part of the grid. Homogeneous Dirichlet boundary conditions were assumed at the grid
boundaries. In (a) and (b) homogeneous areas of type brain tissue and skull bone were assumed, respectively. As
expected, the assumed skull material results in a much stiffer behaviour. By spatially different Lamé constants, we
can combine different materials as shown in (c). Here, a (simulated bony) rectangle embedded in simulated brain
tissue results in a pure translation of the rectangle.

both cases, the star remains perfectly rigid while the surrounding soft material is deformed. Note that the visual
impression of the broadening of the grid lines can be traced back to our resampling process. Some problems arise with
objects rotated by an angle larger than 45°, see Figure 3. A possible explanation may be that the linear elasticity
assumption of small deformations is violated in the experiments with large rotation angles.

For the experiments with real data, we used 2D pre- and postoperative MR images which were routinely acquired
in conjunction with the planning and radiological control of a tumor resection. The postoperative image was used
to simulate an intraoperative image. First, the corresponding tumor and resection area outlines were manually
determined by a medical expert in both images, see Figures 4(a) and (b). Thereafter, a snake algorithm has been
applied to determine the correspondences for these outlines, which then have been used as input for our model for the
purpose of matching the pre- with the postoperative image. Figure 5(a) shows a locally erroneous registration result
since only homogeneous soft material for the whole image was assumed. Especially in the vicinity of the ventricular
system larger deviations are visible, see also the enlarged part of the ventricular system depicted in Figure 6(a).

In order to improve the registration result, different materials were incorporated by assigning spatially different
Lamé constants A and p according to the underlying anatomical structures. To this end, the preoperative image
was segmented with an interactive watershed algorithm®! into four different regions, shown in Figure 4(c): combined



(a) (b) (c)

Figure 2. Predicted translation of a rigid star embedded into soft material (a) due to two given correspondences
(b). In (c), only one correspondence was used, resulting in a translation and rotation of the star.

(a) (b) (c)

Figure 3. Predicted clockwise rotation of a rigid block embedded into soft material (a). The rotation angles were 10°
and 45° in subfigures (b) and (c), respectively. In (c), the approach starts to fail as can be seen by the deformation
of the overlaid grid lines inside the rigid block.

skin/skull region (white), brain (dark grey), CSF (light grey), and surrounding air, i.e. image background (black). For
brain tissue and skull bone, the previously determined ratios were used, while CSF and air were roughly approximated
as rigid and very soft materials, respectively. The result is shown in Figure 5(b) as well as 6(b). Here, a global
movement of the head, forced by the given correspondences, can be observed which leads to a surprisingly poor
registration result. However, this global movement can be suppressed by assuming a rigid image background, i.e.
by assigning the Lamé constant values of a rigid body to the image background, see Figure 5(c). In this case, an
overall good registration result can be achieved, even in the vicinity of the ventricular system, as can be seen clearly
in Figure 6(c).

5. SUMMARY AND CONCLUSION

We proposed a novel biomechanical model of the human head based on linear elasticity theory to predict brain
deformations due to surgical interventions. The model is driven by a set of given correspondences and incorporates



(c)

Figure 4. Manually determined outlines in the pre- (a) and postoperative (b) image. In (c), the segmented regions
using an interactive watershed algorithm are depicted.

Figure 5. In (a), the registration result assuming homogeneous soft material properties (with overlaid Canny edges
of the original postoperative image) is depicted. For the result shown in (b), inhomogeneous material properties
based on the segmentation given in Figure 4(c) are assumed. The global head shift can be easily suppressed by
assuming an artificial rigid image background, resulting in an overall good registration result in (c).

different material properties. Appropriate material parameter values were determined from the literature and exper-
imentally validated. By carrying out experiments using synthetic as well as real medical images, it turns out that the
approach leads to physically plausible deformation results. The incorporation of different anatomical structures leads
to a significant enhancement of the registration result for the real MR images. We expect that the incorporation of
more advanced constitutive equations leads to further improvements of the prediction results.
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Figure 6. Enlarged parts of the ventricular systems of Figure 5 with overlaid Canny edges of the original postoper-
ative image. Subfigure (a) shows the result for homogeneous soft material, (b) for the inhomogeneous case, and (c)
for the inhomogeneous case with rigid image background. The improvement of the registration result is obvious.
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