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1 Introduction

”eTraining for the Interpretation of Man-made Scenes (eTRIMS)”
was the official title of an EU project which ended September
2009 after a duration of 42 months. Five research teams con-
stituted the consortium:
• Institute of Photogrammetry, University of Bonn (Wolf-

gang Förstner, coordinator)
• Center for Machine Perception, University of Prague (Radim

Sara)
• Department of Electrical and Electronic Engineering, Im-

perial College, London (Maria Petrou)
• Cognitive Systems Laboratory, University of Hamburg (Bernd

Neumann)
• Hamburg Informatics Technology Center, Hamburg (Lothar

Hotz)
The project was allocated in the ”Cognitive Systems and

Robotics” unit in IST-FP6 and had the main goal to develop
learning methods for models of spatial structures such as roofs
in aerial images or window, balcony and door configurations of
façades. The focus was on learning methods which would allow
to continuously adapt and extend the model base of an image
interpretation system. All partners were engaged in work on this
main topic. In addition, Bonn was responsible for organising a
database of example images and for evaluation. Hamburg had
to develop an infrastructure for the integration of learning results
with an interpretation system.

In this article, we first give an overview of the learning ap-
proaches, the image processing modules, and the interpretation
framework which have been integrated in the infrastructure. We
then describe two learning approaches developed in Hamburg in
more detail, one of which was used for a continuous step-by-
step learning process which provided interesting insights about
an advantageous ordering of examples. Finally, we compare our
experiences with crisp logic-based and probabilistic scene inter-
pretation, both of which haven been realized in eTRIMS.

2 System Overview

We begin the system overview by describing the structure of
the scene interpretation system developed for eTRIMS. Figure
1 illustrates the architecture and the main components.

The system is structured into a layer for low-level image
analysis, a layer for high-level interpretation, and a middle layer
mediating between the two. In addition, a user interface al-
lows manual image selection (usually from the eTRIMS image
database) and screening of annotations.

The knowledge base at the left indicates that learnt declar-
ative models play a part at all levels. In the middle layer, a
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Figure 1: Structure of scene interpretation system. The boxes
represent modules developed by all partners of eTRIMS. Modules
can be configured in various combinations.

learnt decision tree (DT) may be employed for soft classifica-
tion of regions delivered by any of the region detectors of the
low-level layer. High-level interpretation can be guided by learnt
structure models of various kinds, for example by a Bayesian
Compositional Hierarchy (BCH) [1].

The second main part of the system infrastructure is a learn-
ing testbed, illustrated in Figure 2. The boxes in the middle row
denote learning procedures to obtain appearance models for indi-
vidual objects. They can be trained and tested without recourse
to the interpretation system.

The boxes in the lower row denote learning procedures for
structural models whose evaluation may require high-level scene
interpretation. Their output can be embedded into the interpre-
tation system as declarative high-level models. For evaluation, a
Learning Supervisor has been developed which accepts the out-
put of the interpretation system, compares it with corresponding
annotations and determines the next leaning step. Thus, an au-
tomatic learning cycle has been realized.

This architecture allows for testing and evaluating various
combinations of modules and enables a systematic comparison
of different scene interpretation approaches (see [2]).

3 Structural Learning and Continu-
ous Learning

High-level interpretation of scenes is based on a compositional
hierarchy of aggregate models. For the domain of building
façades, these models should describe the typical spatial con-
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Figure 2: Structure of learning system. The boxes in the middle
show learning methods for image analysis and classification. The
boxes below show learning methods for high-level interpretation
support.

figurations of façade objects relative to each other. One of the
central goals of eTRIMS was to develop learning methods which
allow to obtain such models from examples and to adapt models
if new façade structures evolve.

One innovative approach developed in eTRIMS for learn-
ing aggregate models is an extension of Version Space Learning
(VSL) [3] which exploits positive and negative examples (pre-
sented by a teacher) to generate crisp structural models. It
employs an expressive and extensible description language for
spatial properties and relations, embedded in a generalisation
hierarchy.

To establish a version space, the concept description lan-
guage must allow an ordering according to generality, i.e. a
taxonomy of concepts. While simple conjunctive attribute lan-
guages trivially allow such ordering, more expressive description
languages suitable for the façade domain have not been investi-
gated before. In eTRIMS, such a language has been developed
and successfully used for concept learning within the VSL frame-
work.

Particular attention has been given to structural relations,
described in the partonomy section of an aggregate concept.
Structural relations are specified by
• the total number of aggregate parts in terms of an at-

tribute of range type,
• the different types of each part in terms of an attribute

of set type, and
• the number of parts for each type in terms of range at-

tributes.
This way, conceptual structure descriptions can be ordered

according to generality.
In a further learning approach investigated in eTRIMS, prob-

abilistic structural descriptions for aggregates have been ob-
tained, again in a supervised-learning setting, but using only
positive examples. The learning process basically seeks for the
minimal generalisation of all observed spatial structures, but also
anticipates unseen structures to a certain extent. The result is
an aggregate model causing significantly fewer interpretation er-
rors than a crisp model, learnt from the same training set and

evaluated on the same test set. This approach is based on a
new modelling and learning method for aggregate models called
Probabilistic Structure Graphs (PSGs). The main feature of PSG
models is an unrestricted joint probability distribution for the ex-
istence of object parts. This is different from e.g. the Markov
Random Field approach which only allows to model conditional
dependencies of nodes w.r.t. to a subset of all nodes in the
graph because of the Markov Property.

PSG learning makes use of two kinds of generalisations,
structure generalisation and relation generalisation. Structure
generalisation is performed by integrating new examples into the
current model by Attributed Subgraph Isomorphism. By this op-
eration, the structure of the current model remains the same if
the new example is structurally contained in the model, and it is
extended if the new example has a part not yet covered by the
model.

Relational generalisation is performed using a hierarchy of
spatial relations, shown in Figure 3. If corresponding spatial
relations differ between the current model and a new learning
example, the model relation is generalised to include the exam-
ple.

Learnt aggregate concepts have been used for scene interpre-
tation in SCENIC and have shown their potential for aggregate
recognition and for hypothesising missing evidence and thus sup-
porting high-level feedback to low-level image analysis.

One of the long term goals of research in machine learning
is the development of curricula. A curriculum contains the set
of courses, course work and content offered (Wikipedia) to a
scholar. Current learning is either batch learning, i. e. all training
examples are available at the time of learning, or - mostly in the
context of a mobile robot - on-line learning, where the training
examples appear sequentially, in the course of robot activities,
resulting in an uncontrolled sequence of training examples. In
contrast, a curriculum specifies the sequence learning tasks and,
consequently, the sequence of course material.

When learning structural models with VSL, the effect of
different orderings of training examples on the learning rate was
investigated in eTRIMS. The learning rate was determined as the
number of recognition failures remaining after a certain number
of learning examples. In contrast to what one might expect,
learning appeared to be more successful if complex examples,
spanning the space of structural variations, were presented first.

4 Scene Interpretation in eTRIMS

The scene interpretation system SCENIC, developed in Ham-
burg, has the following characteristics:
• Scene interpretation transforms primitive objects into higher-

level meaningful units.
• Scene interpretation is based on declarative conceptual

models.
• Conceptual models are organized as aggregates in a com-

positional hierarchy.
• Concepts distinguish between 3D models and their views.
• Scene interpretation is a stepwise process.
These features are largely undisputed in the scene interpre-

tation community [4, 5, 6], but a few remarks concerning the
realization in SCENIC are in order. First, interpretation is not
considered as a strictly symbolic process. Primitive objects may
have quantitative properties (such as location and shape) and
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Figure 3: Hierarchy of spatial relations used by Probabilistic Structure Graph models

may be related to each other by quantitative relations (such as
distance and orientation). Second, the compositional hierarchy
is not a partonomy in any strict mereological sense. An aggre-
gate (Figure 4) simply a named set of constituents satisfying
certain conditions. For example, a wall, railing, window, and
door in a certain spatial arrangement constitute a balcony. A
third remark concerns the stepwise process, which may not seem
compelling for the interpretation of a static scene. We consider
stepwise interpretation as a general framework for scene inter-
pretation because of the possibility to guide interpretation steps
by an evolving context. This is, of course, indispensable for
real-time interpretation of time-varying scenes.

Figure 4: Aggregate structure of compositional hierarchy of
façade scenes.

In the course of the project, the original logic-based (”crisp”)
interpretation system SCENIC mutated to a probabilistic inter-
pretation system, and it is interesting to review this develop-
ment. In crisp SCENIC, stepwise interpretation was modelled as
a search for a partial ”logical model” of the conceptual knowl-
edge base, conforming to the formal view of scene interpretation
as logical model construction [7]. All evidence must be classi-
fied as instances of concepts, higher-level instances are formed

as required by the compositional hierarchy, and missing evidence
is hypothesized. The conditions for parts of an aggregate were
expressed as crisp constraints (value ranges or possible choices)
and evaluated by a powerful constraint system. Interpretation
steps could be viewed as bottom-up or top-down steps navigat-
ing in compositional and taxonomical hierarchies [8].

The main motivation for introducing probabilistic represen-
tations was to provide a preference measure for logically am-
biguous interpretation steps. For example, a window can be
assigned to an entrance aggregate, a balcony, or a window ar-
ray, and such decisions need guidance to decrease the chance
of logical inconsistencies later in the interpretation process. To
this end, Bayesian Compositional Hierarchies (BCHs) were de-
veloped which replaced the crisp constraints in aggregate con-
cepts by joint probability distributions (JPDs) [1] and allowed
to compute the probabilities for competing partial scene inter-
pretations. Different from a general Bayesian Network, a BCH
has a probabilistic dependency structure homomorphous with
the structure of the compositional hierarchy, but with arbitrary
dependencies within each aggregate. A drawback was, however,
that alternative aggregate structures had to be modelled in al-
ternative BCHs, giving rise to hundreds of alternative façade
models.

In this probabilistic setting, stepwise interpretation decisions
are essentially realized as evidence assignment for primitive ob-
jects of a compositional hierarchy, in parallel for alternative mod-
els. After each assignment, evidence is progated to the rest of
the façade model, providing new prior probabilities for further as-
sigments. This way, a preference measure is available to perform
beam search within a limited set of most probable alternatives.
Finally, higher-level interpretations are obtained as maximally
probable values for hidden aggregate variables. In experiments,
it could be shown that the computation of dynamic priors im-
proves the evidence classification performance [9].

Probabilistic propagation can be compared to hypothesis-
generation steps in logic-based interpretation. Both exploit the
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evolving high-level context, but propagation has the advantages
(i) to generate expectations for complete scenes (given corre-
sponding models) and (ii) to allow updates without backtrack-
ing.

5 Summary

The aim of the project eTRIMS has been to advance the state
of the art of cognitive systems by developing a methodology
for autonomous and continuous learning. The project has con-
centrated on structural learning, where spatial relations between
components and compositional hierarchies play a central role.
Such learning is particularly relevant for the interpretation of
man-made objects, hence, the project has used the recognition
of buildings and parts of buildings in outdoor scenes as its ex-
emplary application domain. Due to the diversity of shapes and
spatial arrangements of the different parts of a building, any
such recognition system must be capable of continually updat-
ing its conceptual knowledge. This was the motivation for the
development of innovative methods for continuous learning.

Published deliverables and articles can be found at the eTRIMS
website www.ipb.uni-bonn.de/projects/etrims. The website also
contains benchmarks that come with ground truth data and eval-
uation criteria for enforcing competitions in the area of scene
interpretation.
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[2] Šára, R.: D4.4: Performance evaluation (2009) eTRIMS project
deliverable.

[3] Mitchell, T.: Version Spaces: An Approach to Concept Learning.
PhD thesis, Stanford University, Cambridge, MA (1978)

[4] Nagel, H.H.: From image sequences towards conceptual descrip-
tions. Image Vision Comput. 6(2) (1988) 59–74

[5] Georis, B., Mazière, M., Brémond, F., Thonnat, M.: Evalua-
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