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Abstract. We define a quantitative constraint language subsum-
ing two calculi well-known in QSR4: Frank’s cone-shaped and
projection-based calculi of cardinal direction relations. The lan-
guage is based on convex constraints of the form(α, β)(x, y), with
α, β ∈ [0, 2π) and(β−α) ∈ [0, π): the meaning of such a constraint
is that pointx belongs to the (convex) cone-shaped area rooted aty,
and bounded by anglesα andβ. The general form of a constraint
is a disjunction of the form[(α1, β1) ∨ · · · ∨ (αn, βn)](x, y), with
(αi, βi)(x, y), i = 1 . . . n, being a convex constraint as described
above: the meaning of such a general constraint is that, for some
i = 1 . . . n, (αi, βi)(x, y) holds. A conjunction of such general
constraints is aTCSP-like CSP, which we will refer to as anSCSP
(Spatial Constraint Satisfaction Problem). We describe how to com-
pute converse, intersection and composition ofSCSPconstraints,
allowing thus to achieve path consistency for anSCSP. We show
how to translate a convex constraint into a conjunction of linear
inequalities on variables consisting of the arguments’ coordinates.
Our approach to effectively solving a generalSCSP is then to
adopt a solution search algorithm using (1) path consistency as the
filtering method during the search, and (2) the Simplex algorithm,
guaranteeing completeness, at the leaves of the search tree.

Keywords: Constraint Satisfaction, Spatial reasoning, Geomet-
ric Reasoning, Knowledge Representation, Qualitative Reasoning,
Quantitative Reasoning

1 Introduction
Conciliating qualitative reasoning and quantitative reasoning in KR&R systems:

a way to systems representationally more flexible, cognitively more plausible, and, computationally, with the advantage of

having the choice between a purely-quantitative and a qualitative-computations-first behaviours.

Knowledge representation (KR) systems allowing for the represen-
tation of both qualitative knowledge and quantitative knowledge are
more than needed by modern applications (see, e.g., [2]), which, de-
pending on the level of detail of the knowledge to be represented,
may feel happy with a high-level, qualitative language, or need to
use a low-level, quantitative language. Qualitative languages suffer

1 TCSPsstands for Temporal Constraint Satisfaction Problems, a well-known
constraint-based temporal framework [6].

2 European Conference on Artificial Intelligence.
3 The reviewsare added to the actual paper, after the references, for potential

people interested in objectivity of conferences’ reviewing processes.
4 Qualitative Spatial Reasoning.

from what Forbus et al. [7] refer to as the poverty conjecture, but have
the advantage of behaving computationally better. On the other hand,
quantitative languages do not suffer from the poverty conjecture, but
have a slow computatinal behaviour. Thus, such a KR system will
feel happier when the knowledge at hand can be represented ina
purely qualitative way, for it can then get rid of heavy numeric cal-
culations, and restrict its computations to a manipulationof symbols,
consisting, in the case of constraint-based languages in the style of
the Region-Connection Calculus RCC-8 [15], mainly in computing
a closure under a composition table.

An important question raised by the above discussion is clearly
how to augment the chances of a qualitative/quantitative KRsys-
tem to remain at the qualitative level. Consider, for instance, QSR
constraint-based, RCC-8-like languages. Given the poverty conjec-
ture, which corresponds to the fact that such a language can make
only a finite number of distinctions, reflected by the number of its
atomic relations, one way of answering the question could beto in-
tegrate more than one QSR language within the same KR system.
The knowledge at hand is then handled in a quantitative way only
in the extreme case when it can be represented by none of the QSR
languages which the system integrates.

One way for a KR system, such as described above, to reason
about its knowledge is to start with reasoning about the qualitative
part of the knowledge, which decomposes, say, into n components,
one for each of the QSR languages the system integrates. For RCC-8-
like languages, this can be done using a constraint propagation algo-
rithm such as the one in [1]. If in either of the n components, an
inconsistency has been detected, then the whole knowledge has been
detected to be inconsistent without the need of going into low-level
details. If no inconsistency has been detected at the high, qualitative
level, then the whole knowledge needs translation into the unifying
quantitative language, and be processed in a purely quantitative way.
But even when the high-level, qualitative computations fail to detect
any inconsistency, they still potentially help the task of the low-level,
purely quantitative computations. The situation can be compared to
standard search algorithms in CSPs, where a local-consistency pre-
processing is applied to the whole knowledge to potentiallyreduce
the search space, and eventually detect the knowledge inconsistency,
before the actual search for a solution starts.

With the above considerations in mind, we consider the integra-
tion of Frank’s cone-shaped and projection-based calculi of cardi-
nal direction relations [8], well-known in QSR. A complete decision
procedure for the projection-based calculus is known from Ligozat’s



work [12]. For the other calculus, based on a uniform 8-sector par-
tition of the plane, making it more flexible and cognitively more
plausible, no such procedure is known. For each of the two cal-
culi, the region of the plane associated with each of the atomic re-
lations is convex, and given by the intersection of two half-planes.
As a consequence, each such relation can be equivalently written as
a conjunction of linear inequalities on variables consisting of the co-
ordinates of the relation’s arguments. We consider a more general,
qualitative/quantitative language, which, at the basic level, expresses
convex constraints of the formr(x, y), wherer is a cone-shaped or
projection-based atomic relation of cardinal directions,or of the form
(α, β)(x, y), with α, β ∈ [0, 2π) and(β−α) ∈ [0, π): the meaning
of (α, β)(x, y), in particular, is that pointx belongs to the (convex)
cone-shaped area rooted aty, and bounded by anglesα andβ. We
refer to such constraints as basic constraints: qualitative basic con-
straint in the former case, and quantitative basic constraint in the lat-
ter. A conjunction of basic constraints can be solved by firstapplying
constraint propagation, based on a composition operation to be de-
fined, which is basically the spatial counterpart of composition of
two TCSP constraints [6]. If the propagation detects no inconsisteny
then the knowledge is translated into a system of linear inequalities,
and solved with the well-known Simplex algorithm. The preprocess-
ing of the qualitative component of the knowledge can be donewith
a constraint propagation algorithm such as the one in [1], and needs
the composition tables of the cardinal direction calculi, which can be
found in [8].

The general form of a constraint is(s1 ∨ · · · ∨ sn)(x, y), which
we also represent as{s1, . . . , sn}(x, y), wheresi(x, y), for all i ∈
{1, . . . , n}, is a basic constraint, either qualitative or quantitative.
The meaning of such a general constraint is that, either of the n ba-
sic constraints is satisfied, i.e.,s1(x, y) ∨ · · · ∨ sn(x, y). A general
constraint is qualitative if it is the disjunction of qualitative basic
constraints of one type, cone-shaped or projection-based;it is quan-
titative otherwise. The language can be looked at as the spatial coun-
terpart of Dechter et al.’s TCSPs [6]: the domain of a TCSP variable
is IR, symbolising continuous time, whereas the domain of an SCSP
variable is the cross productIR × IR, symbolising the continuous
2-dimensional space.

Due to space limitations, we restrict the presentation to the unify-
ing TCSP-like constraint language, will all the tools required to con-
vince the reader that the work is the description of an implementable
KR&R system, consisting in a search algorithm using path consis-
tency as the filtering procedure during the search, and the Simplex
algorithm as a completeness guarantee, at the leaves of the search
space.

2 Constraint satisfaction problems

A constraint satisfaction problem (CSP) of ordern consists of:

1. a finite set ofn variables,x1, . . . , xn;
2. a setU (called the universe of the problem); and
3. a set of constraints on values fromU which may be assigned to

the variables.

An m-ary constraint is of the formR(xi1 , · · · , xim), and asserts that
the valuesai1 , . . . , aim assigned to the variablesxi1 , . . . , xim , re-
spectively, are so that them-tuple(ai1 , . . . , aim) belongs to them-
ary relationR (anm-ary relation over the universeU is any subset
of Um). An m-ary CSP is one of which the constraints arem-ary
constraints. We will be concerned exclusively with binary CSPs.

For any two binary relationsR andS, R∩ S is the intersection of
R andS, R∪S is the union ofR andS, R ◦S is the composition of
R andS, andR⌣ is the converse ofR; these are defined as follows:

R ∩ S = {(a, b) : (a, b) ∈ R and(a, b) ∈ S},
R ∪ S = {(a, b) : (a, b) ∈ R or (a, b) ∈ S},
R ◦ S = {(a, b) : for somec, (a, c) ∈ R and(c, b) ∈ S},
R⌣ = {(a, b) : (b, a) ∈ R}.

Three special binary relations over a universeU are the empty re-
lation ∅ which contains no pairs at all, the identity relationIb

U =
{(a, a) : a ∈ U}, and the universal relation⊤b

U = U × U .

2.1 Constraint matrices

A binary constraint matrix of ordern overU is ann×n-matrix, say
B, of binary relations overU verifying the following:

(∀i ≤ n)(Bii ⊆ I
b
U ) (the diagonal property),

(∀i, j ≤ n)(Bij = (Bji)
⌣) (the converse property).

A binary CSPP of ordern over a universeU can be associated with
the following binary constraint matrix, denotedBP :

1. Initialise all entries to the universal relation:(∀i, j ≤
n)((BP )ij ← ⊤

b
U )

2. Initialise the diagonal elements to the identity relation:
(∀i ≤ n)((BP )ii ← I

b
U )

3. For all pairs(xi, xj) of variables on which a constraint(xi, xj) ∈
R is specified:(BP )ij ← (BP )ij ∩R, (BP )ji ← ((BP )ij)

⌣.

2.2 Strongk-consistency, refinement

Let P be a CSP of ordern, V its set of variables andU its uni-
verse. An instantiation ofP is anyn-tuple (a1, a2, . . . , an) of Un,
representing an assignment of a value to each variable. A consistent
instantiation is an instantiation(a1, a2, . . . , an) which is a solution:
(∀i, j ≤ n)((ai, aj) ∈ (BP )ij). P is consistent if it has at least one
solution; it is inconsistent otherwise. The consistency problem ofP
is the problem of verifying whetherP is consistent.

LetV ′ = {xi1 , . . . , xij
} be a subset ofV . The sub-CSP ofP gen-

erated byV ′, denotedP|V ′ , is the CSP withV ′ as the set of variables,
and whose constraint matrix is obtained by projecting the constraint
matrix of P ontoV ′: (∀k, l ≤ j)((BP|V ′ )kl = (BP )ikil

). P is k-
consistent [9, 10] (see also [4]) if for any subsetV ′ of V containing
k − 1 variables, and for any variableX ∈ V , every solution toP|V ′

can be extended to a solution toP|V ′∪{X}. P is stronglyk-consistent
if it is j-consistent, for allj ≤ k.

1-consistency,2-consistency and3-consistency correspond to
node-consistency, arc-consistency and path-consistency, respectively
[13, 14]. Strongn-consistency ofP corresponds to what is called
global consistency in [5]. Global consistency facilitatesthe impor-
tant task of searching for a solution, which can be done, whenthe
property is met, without backtracking [10].

A refinement ofP is a CSPP ′ with the same set of variables, and
such that:(∀i, j)((BP ′

)ij ⊆ (BP )ij).

3 A spatial counterpart of TCSPs: Spatial
Constraint Satisfaction Problems (SCSPs)

TCSPs (Temporal Constraint Satisfaction Problems) is a constraint-
based framewrok well-known in Temporal Reasoning [6]. We pro-
vide a spatial counterpart ofTCSPs, which we refer to asSCSPs—
Spatial Constraint Satisfaction Problems. The domain of anSCSP



variable is the cross productIR × IR, which we look at as the set of
points of the 2-dimensional space. As for aTCSP, anSCSPwill have
unary constraints and binary constraints, and unary constraints can
be interpreted as special binary constraints by choosing anorigin of
the 2-dimensional space —space(0, 0).

We first define some more terminology to be used in the rest
of the paper. We make use of a Cartesian system of coordinates
(O, x′x, y′y). The x-axis x′x is the origin of angles, and the an-
ticlockwise orientation is the positive orientation for angles. Given
that we use the set[0, 2π) as the universe of angles (measured in
radians), if two anglesα and β are so thatα > β, the interval
〈ıα, β〉 will represent the union〈ıα, 2π) ∪ [0, β〉. Given a posi-
tive real numberα and a strictly positive integern, we denote by
α modn the remainder of the integral division ofα by n. Further-
more, given anyα, β ∈ [0, 2π), the differenceβ ⊖ α will mea-
sure the anticlockwise (angular) distance ofβ relative to α: i.e.,
β ⊖ α = (β−α+2π

π
mod2)π; similarly, the sumα ⊕ β of α and

β is defined asα⊕ β = (α+β

π
mod2)π.

Definition 1 (SCSP) An SCSPconsists of (1) a finite number of
variables ranging over the universe of points of the 2-dimensional
space (henceforth 2D-points); and (2)SCSPconstraints on the vari-
ables.

An SCSPconstraint is either unary or binary, and either basic or dis-
junctive. A basic constraint is (1) of the forme(x, y), e being equal-
ity, or (2) of the general form〈ıα, β〉(x, y) (binary) or〈ıα, β〉(x)
(unary), withα, β ∈ [0, 2π), (β ⊖ α) ∈ [0, π), ı,  ∈ {0, 1}. ‘〈0’
and ‘〈1’ stand, respectively, for the left open bracket ‘(’ and the left
close bracket ‘[’. Similarly, ‘〉0’ and ‘〉1’ stand, respectively, for the
right open bracket ‘)’ and the right close bracket ‘]’. A graphical il-
lustration of a general basic constraint is provided in Figure 1.

A disjunctive constraint is of the form[S1∨· · ·∨Sn](x, y) (binary)
or [S1∨· · ·∨Sn](x) (unary), withSk(x, y) andSk(x), k = 1 . . . n,
being basic constraints as described above: in the binary case, the
meaning of such a disjunctive constraint is that, for somek = 1 . . . n,
Sk(x, y) holds; similarly, in the unary case, the meaning is that, for
somek = 1 . . . n, Sk(x) holds. A unary constraintR(x) may be
seen as a special binary constraint if we consider an origin of the
World (space(0, 0)), represented, say, by a variablex0: R(x) is then
equivalent toR(x, x0). Unless explicitly stated otherwise, we as-
sume, in the rest of the paper, that the constraints of anSCSPare
all binary.

An SCSPconstraintR(x, y) is convex if, given an instantiation
y = a of y, the set of pointsx satisfyingR(x, a) is a convex subset
of the plane. A universalSCSPconstraint is anSCSPconstraint of
the form[0, 2π)(x, y): the knowledge consisting of such a constraint
is equivalent to “no knowledge”, i.e., any instantiation(a, b) of the
pair (x, y) satisfies it. A universal constraint is also a convex con-
straint. A convexSCSPis anSCSPof which all the constraints are
convex. Given its similarity with anSTP(Simple Temporal Problem)
[6], we refer to a convexSCSPas anSSP(Simple Spatial Problem).
An SCSPis basic if all its constraints are basic. We refer to a ba-
sic SCSPas aBSP(Basic Spatial Problem). Note that aBSPmay
have pairs(x, y) of variables on which no constraint is specified (the
implicit constraint on such pairs is then the universal relation [0, π),
which we also refer to as?).

The standard path consistency procedure for binary CSPs is guided
by three algebraic operations, the converse of a constraint, the com-
position of two constraints, and the intersection of two constraints.
These are defined below forSCSPbasic constraints. The case of gen-
eral (possibly disjunctive) constraints is obtainable from the case of

O

s

t

X

y’

Y

x’

D’

D

x

y

Figure 1. Graphical interpretation of the basic constraint〈ıs, t〉(X, Y ):
Given Y , the set of pointsX satisfying the constraint〈ıs, t〉(X, Y ) is the
cone-shaped area centred atY , whose lower bound (open ifı = 0, close
otherwise) and upper bound (open if = 0, close otherwise) are, respec-
tively, the half-lines whose angular distances from thex-axis, with respect to
anticlockwise orientation, ares andt.

basic constraints.

3.1 The converse of anSCSP basic constraint

The converse of anSCSPrelationR is theSCSPrelationR⌣ such
that, for all x, y, R(x, y) iff R⌣(y, x). We refer to the constraint
R⌣(y, x) as the converse of the constraintR(x, y). The converse of
e(x, y) is clearlye(y, x). The converse of anSCSPbasic constraint
〈ıα, β〉(x, y) is theSCSPbasic constraint〈ıα ⊕ π, β ⊕ π〉(y, x),
which can be explained by the simple fact that, given any instan-
tiation (x, y) = (a, b) of the pair (x, y) satisfying the constraint
〈ıα, β〉(x, y), the angle formed by the directed line(ba) with the
x-axis is obtained by addingπ to the angle formed by the directed
line (ab) with thex-axis.

3.2 The composition of twoSCSP basic constraints

Consider a pointy of the plane, and an angleα in [0, π). We de-
note byl(y,α) the directed line throughy forming angleα with the
x-axis x′x. y and α partition the plane into five zones, which are
the left open half-plane bounded byl(y, α), the half-line consist-
ing of the points ofl(y, α) coming beforey (negative half-line), the
point y itself, the half-line consisting of the points ofl(y, α) com-
ing aftery (positive half-line), and the right open hal-plane bounded
by l(y, α). We denote the five regions bylohp (y,α), nhl (y,α),
pt-reg(y,α), phl (y,α), and rohp (y, α), respectively, and the set
of all of them by REGIONS(y, α). Given a fixed angleα in [0, π),
we can thus define a five-atom calculusCALα of binary relations.
The atoms arelohpα, nhlα, EQ, phlα and rohpα, defined as fol-
lows, for all pairs(x, y) of 2D points: lohpα(x, y) iff x belongs
to lohp (y, α), nhlα(x, y) iff x belongs tonhl (y, α), EQ(x, y) iff
x = y, phlα(x, y) iff x belongs tophl (y,α), androhpα(x, y) iff x

belongs torohp (y, α). We denote byATOMS(α) the set of all five
atoms. Clearly,lohpα(x, y) iff rohpα(y, x), nhlα(x, y) iff phlα(y, x),
and EQ(x, y) iff EQ(y, x). In other words,lohpα and rohpα are
each other’s converses, and so arenhlα and phlα; whereasEQ is
its own converse. We consider now two fixed anglesα andβ from
[0, π) and compute the compositionR1 ◦ R2 of R1 andR2, with
R1 ∈ ATOMS(α) andR2 ∈ ATOMS(β). R1 ◦ R2 is the relation
R = {(x, z) : for somey, R1(x, y) andR2(y, z)}. Clearly, if R1



is EQ thenR1 ◦ R2 = R2, and if R2 = EQ thenR1 ◦ R2 = R1.
We use the standard notation for (possibly) disjunctive relations. The
other possibilities are presented in the (composition) table of Figure
2(Top), where:

◦ lohpβ nhlβ phlβ rohpβ

lohpα ct0 ct1 ct2 ?

nhlα ct3 ct4 ct5 ct6
phlα ct1 ct7 ct8 ct9
rohpα ? cta ctb ctc

〈ıα, β〉 s.t. Translation of〈ıα, β〉(x, y)

α ∈ [0, π), β ∈ [0, π) (〈lhpα〉
ı ∩ 〈rhpβ〉

)(x, y)

α ∈ [0, π), β ∈ [π, 2π) (〈lhpα〉
ı ∩ 〈lhpβ−π〉

)(x, y)

α ∈ [π, 2π), β ∈ [π, 2π) (〈rhpα−π〉
ı ∩ 〈lhpβ−π〉

)(x, y)

α ∈ [π2, π), β ∈ [0, π) (〈rhpα−π〉
ı ∩ 〈rhpβ〉

)(x, y)

Figure 2. (Top) CompositionR ◦ S, with R atom ofCALα andS atom
of CALβ . (Bottom) Translation of basic relation〈ıα, β〉 into R ∩ S, with
R (possibly disjunctive)CALα relation, andS (possibly disjunctive)CALβ

relation.

• ct0 is lohpα if α = β, ? otherwise;
• ct1 is lohpβ if α ≥ β, ? otherwise;
• ct2 is lohpα if α ≤ β, ? otherwise;
• ct3 is lohpβ if α ≤ β, ? othrwise;
• ct4 is lohpα ∩ rohpβ if α > β, nhlα if α = β, rohpα ∩ lohpβ

otherwise;
• ct5 is lohpα ∩ lohpβ if α < β, ?α if α = β, rohpα ∩ rohpβ

otherwise;
• ct6 is rohpβ if α ≥ β, ? otherwise;
• ct7 is lohpα ∩ lohpβ if α > β, ?α if α = β, rohpα ∩ rohpβ

otherwise;
• ct8 is lohpα ∩ rohpβ is α < β, phlα if α = β, rohpα ∩ lohpβ

otherwise;
• ct9 is rohpβ if α < β, phlα is α = β, ? othrwise;
• cta is rohpα if α ≤ β, ? otherwise;
• ctb is rohpα if α ≥ β, ? otherwise;
• ctc is rohpα if α = β, ? otherwise;
• ? = {(p, q) : p andq planar points} (i.e.,? is the universal binary

relation on 2D points);
• ?α = {(x, y) ∈? : x ∈ l(y, α)} = {nhlα, EQ, phlα} (i.e., the

set of pairs(x, y) of 2D points s.t.x ∈ l(y,α)).

It follows from the above that, givenα, β ∈ [0, π), the composition
R1 ◦ R2 of R1 ∈ ATOMS(α) andR2 ∈ ATOMS(β) is a convex
relation.

It is now easy to derive the composition,R◦S, of two SCSPbasic
constraintsR = 〈ı1α, β〉1 andS = 〈ı2γ, δ〉2 . It is sufficient to
know how to translate anSCSPbasic relationR = 〈ıα, β〉 into a
conjunctionR1∩R2, whereR1 is aCALα or aCALπ−α convex re-
lation, andR2 aCALβ or aCALπ−β convex relation: this is done in
the table of Figure 2(Bottom), where the following notationis used.
Givenα ∈ [0, π), we denote bylchpα (resp.rchpα) the disjunctive
relation {lohpα, nhlα, e, phlα} (resp. {nhlα, e, phlα, rohpα}). The
constraintlchpα(x, y) (resp.rchpα(x, y)) means thatx belongs to
the Left (resp. Right) Close Half Plane bounded byl(y, α). Given
α ∈ [0, π) andı ∈ {0, 1}, the notation〈lhpα〉

ı (resp.〈rhpα〉
ı) stands

for lohpα (resp.rohpα) if ı = 0, and forlchpα (resp.rchpα) if ı = 1.
It is important to keep in mind, when reading the table of Figure
2(Bottom), thatα ∈ [π, 2π) implies(α− π) ∈ [0, π).

The compositionR ◦ S of basic constraintsR = 〈ı1α, β〉1 and
S = 〈ı2γ, δ〉2 can thus be written asR ◦ S = f(α) ◦ f(γ) ∩
f(α) ◦ f(δ) ∩ f(β) ◦ f(γ) ∩ f(β) ◦ f(δ), wheref(x), for all x ∈
{α, β, γ, δ}, is aCALx atom if x ∈ [0, π), and aCALπ−x atom
if x ∈ [π, 2π). Given that, for allα, β ∈ [0, π), the composition
R1 ◦ R2 of R1 ∈ ATOMS(α) andR2 ∈ ATOMS(β) is a convex
relation, we infer that the composition of twoSCSPbasic constraint
is anSCSPconvex constraint.

3.3 The intersection of twoSCSP basic constraints

Clearly,e∩e = e; e∩〈ıα, β〉 = e if ı =  = 1; ande∩〈ıα, β〉 = ∅
if ı = 0 or  = 0.

Given a basic relationR = 〈ıα, β〉 andγ ∈ [0, 2π), γ is an-
ticlockwisely insideR (notation acwi(γ, R)) iff (1) γ = α and
ı = 1; (2) γ = β and  = 1; or (3) γ 6= α and γ 6= β and
β ⊖ α = (γ ⊖ α) + (β ⊖ γ).

It is now easy to derive the intersection,R ∩ S, of two SCSP
basic constraintsR = 〈ı1α, β〉1 and S = 〈ı2γ, δ〉2 . If neither
of acwi(α, S), acwi(β, S), acwi(γ, R) and acwi(δ,R) holds, then
R ∩ S = ∅. Otherwise, the intersection is nonempty:R ∩ S =
〈ıφ, θ〉. If acwi(α, S) thenφ = α andı = ı1, otherwiseφ = γ and
ı = ı2. If acwi(β, S) thenθ = β and = 1, otherwiseθ = δ and
 = 2. Clearly, ifR ∩ S 6= ∅ then it is a basic constraint.

The converse of anSCSPbasic constraint is anSCSPbasic con-
straint. The composition of twoSCSPbasic constraints is either a
basic constraint or the universal constraint. Finally, theintersection
of two SCSPbasic constraints is anSCSPbasic constraint. Now, the
only SCSPconstraint that may (implicitly) appear in aBSP is, as
already alluded to, the universal relation?. Furthermore, the con-
verse of? is ?, ?∩? =?, ?◦? =?, and, for all basic relationsR,
R∩? =? ∩R = R andR◦? =? ◦R =?. This leads to the following
theorem.

Theorem 1 The class ofBSPsis closed under path consistency: ap-
plying path consistency to aBSPeither detects inconsistency of the
latter, or leads to a (path consistent)BSP.

It remains, however, to be proven that path consistency terminates
when applied to aBSP. Furthermore, if path consistency is to be used
as the filtering method during the search for a path consistent BSP
refinement of a generalSCSP, then it should also be proven that path
consistency terminates when applied to a generalSCSP-it may be
worth noting here that path consistency applied to a generalTCSP
[6] may lead to what is known as the fragmentation problem [16]. We
do this through the explanation of what we refer to as a “qualitative
behaviour” of path consistency when applied to a generalSCSP.

3.4 Qualitative behaviour of path consistency

Let P be a generalSCSPandHOLES(P ) the set of allγ ∈ [0, 2π)
such that there exists a constraint[S1 ∨ · · · ∨ Sn](x, y) of P with,
for somei ∈ {1, . . . , n}, Si of the form 〈ıα, β〉, and such that
γ ∈ {α, β}. We also denote byHOLES+(P ) the setHOLES(P ) ∪
{α ∈ [0, π) : (α + π) ∈ HOLES(P )} ∪ {α ∈ [π, 2π) : (α− π) ∈
HOLES(P )}. Given a setA, we denote by|A| the cardinality of
A. Clearly |HOLES+(P )| ≤ 2 × |HOLES(P )|. The qualitative be-
haviour comes from properties of the operations of converse, inter-
section and composition when applied toSCSPbasic constraints. The
intersectionR ∩ S of two SCSPbasic constraintsR = 〈ı1α, β〉1

and S = 〈ı2γ, δ〉2 is of the form〈ıφ, θ〉, with both φ and θ in
{α, β, γ, δ}. The converse of anSCSPbasic constraint〈ıα, β〉 is



α = 0 0 < α < π
2

α = π
2

π
2

< α < π

lohpα(X, Y ) yX > yY yX − yY > tgα.(xX − xY ) yX < yY yX − yY > tg(π − α).(xX − xY )

lchpα(X, Y ) yX ≥ yY yX − yY ≥ tgα.(xX − xY ) yX ≤ yY yX − yY ≥ tg(π − α).(xX − xY )

rohpα(X, Y ) yX < yY yX − yY < tgα.(xX − xY ) yX > yY yX − yY < tg(π − α).(xX − xY )

rchpα(X, Y ) yX ≤ yY yX − yY ≤ tgα.(xX − xY ) yX ≥ yY yX − yY ≤ tg(π − α).(xX − xY )

Figure 3. Translation of anSCSPbasic constraint into a conjunction of linear inequalities.

〈ıα⊕ π, β ⊕ π〉: but such an operation will not create new “holes”,
since if a basic constraint of the form〈ıα, β〉(x, y) appears inP
then we would have bothα andβ in HOLES(P ), and bothα⊕π and
β ⊕ π in HOLES+(P ).

Path consistency using, as usual, a queueQUEUE where to put
edges ofP whose label has been updated, would thus, for each edge
(i.e., pair of variables)(x, y), successfully update the label at most
HOLES+(P ) times. The number of edges is bounded byn2, n being
the number of variables ofP . Furthermore, when an edge is taken
from Queue for propagation,O(n) operations of converse, intersec-
tion and composition are performed. This leads to the following the-
orem stating termination, and providing a worst-case computational
complexity, of path consistency applied to a generalSCSP.

Theorem 2 Applying path consistency to a generalSCSPP with n

variables terminates inO(|HOLES(P )| × n3).

3.5 Translating anSCSP basic constraint into a
conjunction of linear inequalities

We now provide a translation of anSCSPbasic constraint into (a
conjunction of) linear inequalities. We will then be able totrans-
late anyBSP into a conjunction of linear inequalities, and solve it
with the well-known Simplex algorithm (see, e.g., [3]). This will
give a complete solution search algorithm for generalSCSPs, us-
ing path consistency at the internal nodes of the search space, as a
filtering procedure, and the Simplex at the level of the leaves, as a
completeness-guaranteeing procedure (theSCSPat the level of a leaf
is a path-consistentBSP, but since we know nothing about complete-
ness of path-consistency forBSPs, we need to translate into linear
inequalities and solve with the Simplex).

Given a pointX of the plane, we denote by(xX , yX) its co-
ordinates. The translation ofe(X, Y ) is obvious: xX − xY ≤
0∧xY −xX ≤ 0∧yX−yY ≤ 0∧yY −yX ≤ 0. For the translation
of a general basic constraint〈ıα, β〉(X, Y ), the results reported in
the table of Figure 2(Bottom) imply that all we need is to showhow
to represent with a linear inequality each of the following relations
on pointsX andY , whereα ∈ [0, π): lohpα(X, Y ); lchpα(X, Y );
rohpα(X, Y ); andrchpα(X, Y ). We split the study into four cases:
α = 0, 0 < α < π

2
, α = π

2
, π

2
< α < π. The result is given by

Figure 3, where, given an angleα, tgα denotes the tangent ofα. We
remind the reader that in a system of linear inequalities, there is a
way of turning a strict inequality into a large one [3].

4 Summary

We have provided aTCSP-like decidable constraint language for rea-
soning about relative position of points of the 2-dimensional space.
The language,SCSPs(Spatial Constraint Satisfaction Problems),
subsumes two existing qualitative calculi of relations of cardinal di-
rections [8], and is particularly suited for applications of large-scale

high-level vision, such as, e.g., satellite-like surveillance of a geo-
graphic area. We have provided all the required tools for theimple-
mentation of the presented work; in particular, the algebraic opera-
tions of converse, intersection and composition, which areneeded by
path consistency. An adaptation of a solution search algorithm, such
as, e.g., the one in [11] (see also [6]), which would use path con-
sistency as the filtering procedure during the search, can beused to
search for a path consistentBSPrefinement of an inputSCSP. But,
because we know nothing about completeness of path consistency for
BSPs, even when a path consistentBSPrefinement exists, this does
not say anything about consistency of the originalSCSP. To make
the search complete forSCSPs, we have proposed to augment it with
the Simplex algorithm, by translating, whenever a leaf of the search
space is successfully reached, the corresponding path consistentBSP
into a conjunction of linear inequalities, which can be solved with
the well-known Simplex algorithm [3].
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