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@) ing two calculi well-known in QSR Frank's cone-shaped and

projection-based calculi of cardinal direction relatioi$he lan-
guage is based on convex constraints of the foam3) (z, y), with
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from what Forbus et al_{7] refer to as the poverty conjecthut have

We define a quantitative constraint language subsumihe advantage of behaving computationally better. On therdtand,

guantitative languages do not suffer from the poverty ainje, but
have a slow computatinal behaviour. Thus, such a KR systdm wi
feel happier when the knowledge at hand can be representad in

purely qualitative way, for it can then get rid of heavy nuroeal-
culations, and restrict its computations to a manipulatiosymbols,
consisting, in the case of constraint-based language<istife of

a, B € ]0,2r) and(8—a) € [0, 7): the meaning of such a constraint
N\l is that pointz belongs to the (convex) cone-shaped area rootgd at
and bounded by angles and 3. The general form of a constraint

is a disjunction of the formi(aui, 81) V - -+ V (am, Bn)](z, y), with

the Region-Connection Calculus RCCE8I[15], mainly in cotmmu

(i, Bi)(z,y), i = 1...n, being a convex constraint as described & closure under a composition table.

above: the meaning of such a general constraint is that,diores
yA—
<I" constraints is @CSRlike CSP, which we will refer to as a8CSP
(Spatial Constraint Satisfaction Problem). We describe toocom-
pute converse, intersection and compositionS@SPconstraints,
o allowing thus to achieve path consistency for 8@8SP We show
ﬂ' how to translate a convex constraint into a conjunction onédr
QO inequalities on variables consisting of the arguments'rdioates.
— our approach to effectively solving a genei@CSPis then to
adopt a solution search algorithm using (1) path consigtesche
= filtering method during the search, and (2) the Simplex dtigar,
guaranteeing completeness, at the leaves of the search tree
.C'J. Keywords: Constraint Satisfaction, Spatial reasoningpréet-
= ric Reasoning, Knowledge Representation, QualitativesBeiag,
'>2 Quantitative Reasoning
—

© 1 Introduction

Conciliating qualitative reasoning and quantitative ogaisg in KR&R systems:
a way to systems representationally more flexible, cogglitimore plausible, and, computationally, with the advgataf

having the choice between a purely-quantitative and a tige-computations-first behaviours.

Knowledge representation (KR) systems allowing for theesen-
tation of both qualitative knowledge and quantitative kiexlige are
more than needed by modern applications (see, Elg., [2i3hwHe-
pending on the level of detail of the knowledge to be represtn
may feel happy with a high-level, qualitative language, eed to
use a low-level, quantitative language. Qualitative laggs suffer

1 TCSPsstands for Temporal Constraint Satisfaction Problems,lbkmewn
constraint-based temporal framewdrk [6].

2 European Conference on Artificial Intelligence.

3 The reviewsare added to the actual paper, after the references, fantizite
people interested in objectivity of conferences’ reviegvprocesses.

4 Qualitative Spatial Reasoning.

1...n, (a4, Bi)(z,y) holds. A conjunction of such general

An important question raised by the above discussion iglglea
how to augment the chances of a qualitative/quantitative &
tem to remain at the qualitative level. Consider, for ins@mMQSR
constraint-based, RCC-8-like languages. Given the ppwemjec-
ture, which corresponds to the fact that such a language ede m
only a finite number of distinctions, reflected by the numbkeito
atomic relations, one way of answering the question coultbbe-
tegrate more than one QSR language within the same KR system.
The knowledge at hand is then handled in a quantitative wady on
in the extreme case when it can be represented by none of tRe QS
languages which the system integrates.

One way for a KR system, such as described above, to reason
about its knowledge is to start with reasoning about theitgtizie
part of the knowledge, which decomposes, say, into n comyene
one for each of the QSR languages the system integrates (Rev&R
like languages, this can be done using a constraint projoagalgo-
rithm such as the one inl[1]. If in either of the n components, a
inconsistency has been detected, then the whole knowletigkeden
detected to be inconsistent without the need of going intel&vel
details. If no inconsistency has been detected at the higdlitgtive
level, then the whole knowledge needs translation into tiifying
guantitative language, and be processed in a purely qatwditvay.
But even when the high-level, qualitative computationkttadetect
any inconsistency, they still potentially help the taskief bow-level,
purely quantitative computations. The situation can bepamed to
standard search algorithms in CSPs, where a local-consistae-
processing is applied to the whole knowledge to potentiatjuce
the search space, and eventually detect the knowledgesistency,
before the actual search for a solution starts.

With the above considerations in mind, we consider the nateg
tion of Frank’s cone-shaped and projection-based caldutiacdi-
nal direction relation<]8], well-known in QSR. A completeaision
procedure for the projection-based calculus is known fragotat’s



work [1Z]. For the other calculus, based on a uniform 8-gepéo- For any two binary relation® and.S, RN S is the intersection of
tition of the plane, making it more flexible and cognitivelyora R andS, RU S is the union ofR andS, R o S is the composition of
plausible, no such procedure is known. For each of the twe calR andS, andR ™ is the converse aR; these are defined as follows:
culi, the region of the plane associated with each of the mtoes

lations is convex, and given by the intersection of two Ipddfaes. EnS = {(a,b):(a,b) € Rand(a,b) € 5},
. . ; RUS = {(a,b):(a,b) € Ror(a,b) € S},
As a consequence, each such relation can be equivalentbgnvas
a conjunction of linear inequalities on variables consigbf the co- BoS§ = {(a,b):forsomec, (a,c) € Rand(c,b) € S},
) q 4 R= = {(a,b):(ba)€ R}

ordinates of the relation’s arguments. We consider a monergé
qualitative/quantitative language, which, at the basielleexpresses  Three special binary relations over a univetere the empty re-
convex constraints of the form(z, y), wherer is a cone-shaped or lation ) which contains no pairs at all, the identity relatidp =
projection-based atomic relation of cardinal directians)f the form  {(a, a) : a € U}, and the universal relatioh?, = U x U.

(o, B)(z,y), witha, 8 € [0, 27) and(8 — «) € [0, 7): the meaning

of («, 8)(z,y), in particular, is that point belongs to the (convex) 2.1 Constraint matrices

cone-shaped area rootediatand bounded by angles and 8. We

refer to such constraints as basic constraints: qualktatasic con- A binary constraint matrix of ordet overU is ann x n-matrix, say
straint in the former case, and quantitative basic comgtiithe lat- 3, of binary relations ovet/ verifying the following:

ter. A cqnjunction of_basic constraints can be_;olved by:ﬁi_mﬂying (Vi < n)(B C T4) (the diagonal property)
constraint propagation, based on a composition operatidre tde- (Vi,j <n)(Bi; = (B;;)~) (the converse property)
fined, which is basically the spatial counterpart of comipasiof = Y 7
two TCSP constraint§][6]. If the propagation detects nornisesieny A binary CSPP of ordern over a universé/ can be associated with
then the knowledge is translated into a system of lineaniakties,  the following binary constraint matrix, denotéf :

and solved with the well-known Simplex algorithm. The prpss-
ing of the qualitative component of the knowledge can be duitie
a constraint propagation algorithm such as the onglin [4,reeeds
the composition tables of the cardinal direction calcuhjetn can be

1. Initialise all entries to the universal relationvi,; <
n)((BY)i; — Ty)

2. Initialise the diagonal elements to the identity relatio
(Vi < n)((B")is — Th)

found in [&]. h . . .

The general form of a constraint s, \V - - - VV s,,) (2, %), which 3. Forall pairg(z;, xg) of varlaibjles on Wh'CQ a ConStralth“ z;) €
we also represent g1, . .., sn }(, y), wheres;(z,y), for all i € Ris specified(B")i; — (B")i; N R, (B7)5i — ((B7)ig) ™
{1,...,n}, is a basic constraint, either qualitative or quantitative

The meaning of such a general constraint is that, eitheroftha- 2.2 Strongk-consistency, refinement
sic constraints is satisfied, i.e4(x,y) V --- V sn(x,y). A general

. AR . . ) - Let P be a CSP of orden, V its set of variables and’ its uni-
constraint is qualitative if it is the disjunction of qualiive basic

traints of t haped oction-baki verse. An instantiation of is anyn-tuple (a1, a2, ...,a,) of U™,
;:;)nts ralrt]hs 0 .oneTﬁpel, cone-shape borl pr(k)JL:jC I(t)n- th':}snut?n- representing an assignment of a value to each variable. gistent
tative otherwise. The language can be fooked at as patn- instantiation is an instantiatiofa, as, . . ., a,) which is a solution:

terpart of Dechter et al.'s TCSH¢ [6]: the domain of a TCSiatxe
is IR, symbolising continuous time, whereas the domain of an SCS
variable is the cross produ@® x IR, symbolising the continuous

FQVz‘,j < n)((as,a;) € (BY):;). Pis consistent if it has at least one
solution; it is inconsistent otherwise. The consisten@bfem of P

: : is the problem of verifying whetheP is consistent.

2-dimensional space. LetV' = {xi,,...,x;, } be asubset df . The sub-CSP aP gen-

~ Dueto space Ilmltqtlons, we restrict the presentatlon.emthIfy- erated by/”’, denotedP|,.1, is the CSP with” as the set of variables,
ing TCSRIlike constraint language, will all the tools required taeo and whose constraint matrix is obtained by projecting thestraint

\}Qgcz?the r(teader that_tf:_e work is the dﬁST”pt.'tc;]n of an 'mm?gpe matrix of P onto V": (Vk,1 < 5)((BV' ) = (B )ii,). Pis k-
i sytshen;,lthnss g 'g a szarg alk?on m lrj]smgdpa In consistent{[BI_10] (see alsd [4]) if for any sub3&tof V' containing
ency as the filtering procedure during the search, and tpi8k k — 1 variables, and for any variabl¥ < V', every solution taPy

algorithm as a completeness guarantee, at the leaves oédnehs can be extended 10 a solution/y, ¢ x ;. P is stronglyk-consistent

space. ifitis j-consistent, for alj < k.
1-consistency,2-consistency and3-consistency correspond to
2 Constraint satisfaction problems node-consistency, arc-consistency and path-consistezspectively
[13,[14]. Strongn-consistency ofP corresponds to what is called
A constraint satisfaction problem (CSP) of ordeconsists of: global consistency ir[5]. Global consistency facilitates impor-
tant task of searching for a solution, which can be done, wthen
1. afinite set of: variablesx1,. .., zn; property is met, without backtracking10].
2. aset (called the universe of the problem); and A refinement ofP is a CSPP’ with the same set of variables, and

3. a set of constraints on values frdihwhich may be assigned to such thata(Vi,j)((BPl)ij C (B")4).
the variables.

3 A spatial counterpart of TCSPs. Spatial

An m-ary constraint is of th_e formk (z;,, - - - ,_mm), and asserts that Constraint Satisfaction Problems G6CSPS)
the valuesa;,, ..., a;,, assigned to the variables,, ..., z;,,, re-
spectively, are so that the-tuple (a;,, . .., as,, ) belongs to then- TCSPs (Temporal Constraint Satisfaction Problems) is atcaint-

ary relationR (anme-ary relation over the universg is any subset based framewrok well-known in Temporal Reasoning [6]. We- pr
of U™). An m-ary CSP is one of which the constraints aneary vide a spatial counterpart GiCSPswhich we refer to aSCSPs—
constraints. We will be concerned exclusively with binaiyRs. Spatial Constraint Satisfaction Problems. The domain oS&$P



variable is the cross produl x IR, which we look at as the set of y
points of the 2-dimensional space. As foF@SP anSCSPwill have
unary constraints and binary constraints, and unary cainssrcan
be interpreted as special binary constraints by choosirgyigm of
the 2-dimensional space —sp&c€e0).
We first define some more terminology to be used in the rest
of the paper. We make use of a Cartesian system of coordinates
(O, z'z,y'y). The z-axis =z is the origin of angles, and the an-
ticlockwise orientation is the positive orientation forghes. Given
that we use the sd0, 2x) as the universe of angles (measured in X
radians), if two anglesy and 8 are so thate > £, the interval
(*a, B)? will represent the unior{*a, 27r) U [0, 8). Given a posi-
tive real numbern and a strictly positive integeti, we denote by
a modn the remainder of the integral division of by n. Further-
more, given anyx, 3 € [0, 2r), the differenced © « will mea- Figure 1. Graphical interpretation of the basic constrajht, ¢)7(X,Y):

sure the anticlockwise (angular) distance ®frelative to«: i.e., GivenY’, the set of pointsX satisfying the constrainf's, t)7(X,Y) is the
BOa = (ﬁL:Q” m0d2)ﬂ'; similarly, the suma @ 8 of a and cone-shaped area centredYat whose lower bound (open if = 0, close
3 is defined agy @ 8 = (M mod2). otherwise) and upper bound (openyif= 0, close otherwise) are, respec-

o ] o tively, the half-lines whose angular distances fromdhaxis, with respect to
Definition 1 (SCSP) An SCSPconsists of (1) a finite number of apticlockwise orientation, areandt.

variables ranging over the universe of points of the 2-disiamal
space (henceforth 2D-points); and (RCSPconstraints on the vari-  basic constraints.
ables.

An SCSPconstraint is either unary or binary, and either basic or dis 3.1 The converse of arBCSP basic constraint
junctive. A basic constraint is (1) of the forefz, y), e being equal- ) ) )
ity, or (2) of the general fornf’a, 8)?(z, ) (binary) or (*a, 8)(z) The converse of aSCSPr_eIatlonR is theSCSPrelation R~ such
(unary), witha,, 8 € [0,27), (82 @) € [0,7), 1,7 € {0,1}. (* that, for allz, y, R(x,y) iff R~ (y,z). We refer to the constraint
and (" stand, respectively, for the left open bracket ‘(' and thét | B~ (y, ) as the converse of the constrafiitz, y). The converse of
close bracket ‘['. Similarly, %" and )"’ stand, respectively, for the ~€(#,y) is clearlye(y, ). The converse of aBCSPbasic constraint
right open bracket )’ and the right close bracket 7. A gragal il- ('@ 8)’(x,y) is theSCSPbasic constrain{'a: & 7, 3 & m)’ (y, z),
lustration of a general basic constraint is provided in Fel which can be explained by the simple fact that, given anyaimst
A disjunctive constraint is of the forfi$y V- - VS, (z, ) (binary) ~ tiation (z,y) = (a,b) of the pair(z,y) satisfying the constraint
or[S1V -+ -V Sy](x) (unary), withS(z, y) andSi (z),k = 1...n, (*a, BY(x,y), the angle formed by the directed lifiga) with the
being basic constraints as described above: in the binaiy, ¢ae  *-2Xis is obtained by adding to the angle formed by the directed
meaning of such a disjunctive constraint is that, for séme1...n,  line (ab) with thez-axis.
Sk(x,y) holds; similarly, in the unary case, the meaning is that, for
somek = 1...n, Si(z) holds. A unary constraink(x) may be 3 5 The composition of twoSCSP basic constraints
seen as a special binary constraint if we consider an orifjithe
World (spac€0, 0)), represented, say, by a variabig R(z) isthen  Consider a poiny of the plane, and an angte in [0, 7). We de-
equivalent toR(z, zo). Unless explicitly stated otherwise, we as- note byl(y, «) the directed line through forming anglex with the
sume, in the rest of the paper, that the constraints dB@8Pare  z-axis z'z. y and « partition the plane into five zones, which are
all binary. the left open half-plane bounded Bgy, ), the half-line consist-
An SCSPconstraintR(z,y) is convex if, given an instantiation ing of the points of(y, a) coming beforey (negative half-line), the
y = a of y, the set of points satisfyingR(z, a) is a convex subset pointy itself, the half-line consisting of the points &fy, o) com-
of the plane. A universaBCSPconstraint is arBCSPconstraint of  ing aftery (positive half-line), and the right open hal-plane bounded
the form|0, 27)(z, y): the knowledge consisting of such a constraint by I(y, ). We denote the five regions biphp (y,«), nhl(y,a),
is equivalent to “no knowledge”, i.e., any instantiatian b) of the pt-reg (v, «), phl(y, «), and rohp (y, ), respectively, and the set
pair (z,y) satisfies it. A universal constraint is also a convex con-of all of them by REGIONS(y, «). Given a fixed anglex in [0, 7),
straint. A convexSCSPis an SCSPof which all the constraints are we can thus define a five-atom calcultiglL,, of binary relations.
convex. Given its similarity with aBTP(Simple Temporal Problem) The atoms ardohp,, nhl,, EQ, phl, androhp_, defined as fol-
[B], we refer to a conve8CSPas anSSP(Simple Spatial Problem). lows, for all pairs(z,y) of 2D points:lohp, (z,y) iff = belongs
An SCSPis basic if all its constraints are basic. We refer to a ba-to lohp (y, ), nhl.(z, y) iff = belongs tonhl (y, o), EQ(z, y) iff
sic SCSPas aBSP (Basic Spatial Problem). Note thatBSPmay  z = y, phl_(z,y) iff  belongs tophl (y, ), androhp, (z,y) iff z
have pairgz, y) of variables on which no constraint is specified (the belongs torohp (y, «). We denote byATOMS«) the set of all five
implicit constraint on such pairs is then the universaltiete]0, ), atoms. Clearlfiohp, (x, y) iff rohp_ (y, =), nhl. (z, y) iff phl , (y, ),
which we also refer to a®). and EQ(z, y) iff EQ(y, z). In other words,lohp, androhp, are
The standard path consistency procedure for binary CSRg&ed)  each other’s converses, and so até, and phl,; whereaseQ is
by three algebraic operations, the converse of a consttaltcom-  its own converse. We consider now two fixed angleand 3 from
position of two constraints, and the intersection of twostaaints. [0, 7) and compute the compositiaR; o R2 of R; and R», with
These are defined below fBICSPhasic constraints. The case of gen- R1 € ATOMSa) and R, € ATOMSS). R1 o R» is the relation
eral (possibly disjunctive) constraints is obtainablerfrthe case of R = {(z,z) : for somey, Ri(z,y) andRa(y, z)}. Clearly, if R,



is EQthenR; o R; = Ry, and if R, = EQthenR; o Ry = Rj.

We use the standard notation for (possibly) disjunctivatiehs. The
other possibilities are presented in the (compositionletabFigure
BR(Top), where:

B

|| lohp, | nhis | phi, | rohp, |

thpa cto ct1 cto ?
nhl, cts cta cts cte
phla ct1 ctr cts ctg
rohp, || 7 ctq cty cte
| (o, B) s.t. || Translation of(’a, )7 (z,y) |

a€l0,7),B€0,m)
0,7),08 € [m,27)

((Ihp, )" N (rhpg)") (z, y)
ac€] ((Ihp, )" N (Ihpy_)7) (, )
a€[m2m), B € [m27) || (thpy )" N (Ihpy_)7)(z, )
a€[r2,m),Be(0,m) | (rhp, )" N (rhpg)’)(z,y)

Figure 2. (Top) CompositionR o S, with R atom of CAL, and .S atom
of CALg. (Bottom) Translation of basic relatiofic, 3)? into R N S, with
R (possibly disjunctivel’ AL, relation, andS (possibly disjunctivell’ AL g
relation.

cto islohp,, if o = 3, 7 otherwise;

ct1 islohpy if @ > 3, 7 otherwise;

cta islohp, if o < 3, 7 otherwise;

cts Is Iohpﬁ if a < 3,7 othrwise;

cta is lohp, Nrohp, if a > B, nhl, if @ = B, rohp, N lohp,
otherwise;

e cts islohp, N lohp; if o < B, 74 if @ = S, rohp, N rohp,
otherwise;

e clg IS rohpﬁ if « > 3,7 otherwise;

e cty islohp, Nlohp; if o > B, 74 if @ = S, rohp, N rohp,

otherwise;
e cts is lohp, Nrohp, is a < B, phl, if a = 3, rohp, N lohp,
otherwise;
ctg isrohpy if a < 3, phl, isa = 3, ? othrwise;
ctq isrohp, if o < 3, 7 otherwise;
cty isrohp, if a > (3, 7 otherwise;
ctc isrohp, if a = (3, 7 otherwise;
? ={(p,q) : pandq planar point$ (i.e.,? is the universal binary
relation on 2D points);
o 7o = {(z,y) €7 : z € l(y,a)} = {nhl,EQ,phl,} (i.e., the
set of pairyz, y) of 2D points s.tz € I(y, «)).

It follows from the above that, givea, 8 € [0, ), the composition
Ry o Ry of Ri € ATOMS«a) and R, € ATOMSJ3) is a convex
relation.

Itis now easy to derive the compositiaRc S, of two SCSFbhasic
constraintsR = ("', 8)’* and.S = ("2, d)’2. It is sufficient to
know how to translate aBCSPbasic relationR = (*«, )’ into a
conjunctionR; N Rz, whereR; isaC AL, oraCAL~_, convex re-
lation, andR> aC.ALg or aCAL_ s convex relation: this is done in
the table of Figur&l2(Bottom), where the following notatisrused.
Givena € [0, 7), we denote bychp, (resp.rchp,) the disjunctive
relation {lohp,, nhl., e, phl,} (resp.{nhl., e, phl,,rohp,}). The
constraintichp,, (z, y) (resp.rchp, (z,y)) means that: belongs to
the Left (resp. Right) Close Half Plane boundediby, «). Given
a € [0,7) andz € {0, 1}, the notation(lhp,,)* (resp.{rhp,)*) stands
for lohp,, (resp.rohp,) if « = 0, and forlchp,, (resp.rchp,) if « = 1.

It is important to keep in mind, when reading the table of Fégu
B(Bottom), thaiw € [, 27) implies (o — 7)) € [0, 7).

The compositionR? o S of basic constraint® = (**«, 5)’* and
S = (*?~,6)’? can thus be written a® o S = f(a) o f(y) N
f(@) o £(8) N F(B) o f(7) N f(B) o f(5), wheref (x), for all z €
{a, B,7,0}, isaCAL, atom ifz € [0,7), and aCAL,_, atom
if x € [r,2m). Given that, for allo,, 3 € [0, 7), the composition
Ry o Ry of Ry € ATOMSa) and R, € ATOMSj3) is a convex
relation, we infer that the composition of tv8CSPbasic constraint
is anSCSPconvex constraint.

3.3 The intersection of twoSCSP basic constraints

Clearly,ene = e; en(’a, 8)! = eif 1 = 3 = 1;anden(*a, 3)? =
if:=0o0ry=0.

Given a basic relatiolR = ("o, 8)? andy € [0,27), v is an-
ticlockwisely inside R (notation acwi(y, R)) iff (1) v = « and
1=1;(2 v = pandy = 1;0or B)y # aandy # § and
Boa=MHwoa)+(Bon).

It is now easy to derive the intersectioR, N S, of two SCSP
basic constraintR = (", )’ and S = (*2v,4§)’2. If neither
of acwi(a, S), acwi(3, S), acwi(v, R) andacwi(d, R) holds, then
RN S = (. Otherwise, the intersection is nonempfy:N S =
("¢,0)’. If acwi(a, S) theng = o ande = 41, otherwisep =  and
v = 22. If acwi(3, S) thend = B andy = j, otherwised = ¢ and
7= 72. Clearly, if RN S # () then it is a basic constraint.

The converse of aBCSPbasic constraint is aBCSPbasic con-
straint. The composition of tw8CSPbasic constraints is either a
basic constraint or the universal constraint. Finally, ititersection
of two SCSPhasic constraints is 88CSPbasic constraint. Now, the
only SCSPconstraint that may (implicitly) appear in BSPis, as
already alluded to, the universal relati@n Furthermore, the con-
verse of? is 7, 7N? =7, 70? =7, and, for all basic relation®,
RN? =7N R = RandRo? =? o R =7. This leads to the following
theorem.

Theorem 1 The class o0BSPsis closed under path consistency: ap-
plying path consistency to BSPeither detects inconsistency of the
latter, or leads to a (path consisterBSP.

It remains, however, to be proven that path consistencyitaites
when applied to 8SP. Furthermore, if path consistency is to be used
as the filtering method during the search for a path condig&r
refinement of a gener&fCSRthen it should also be proven that path
consistency terminates when applied to a gen8@SP-it may be
worth noting here that path consistency applied to a gerfeZ&P

[6] may lead to what is known as the fragmentation problenj. (A&

do this through the explanation of what we refer to as a “datale
behaviour” of path consistency when applied to a gere&sP

3.4 Qualitative behaviour of path consistency

Let P be a generaBCSPandHOLES P) the set of ally € [0, 27)
such that there exists a constrajft Vv - -- vV Sy](z,y) of P with,
for somei € {1,...,n}, S; of the form (", 3)7, and such that
v € {a, 3}. We also denote bIAOLES" (P) the setHOLES P) U
{a€[0,7): (a+7) € HOLESP)} U{a € [r,27): (a—) €
HOLES P)}. Given a setd, we denote byl A| the cardinality of
A. Clearly|HOLES" (P)| < 2 x |[HOLESP)|. The qualitative be-
haviour comes from properties of the operations of convenser-
section and composition when applied6 SFbasic constraints. The
intersectionk N .S of two SCSPbasic constraint® = (*'«, 5)7!
andS = ("+,4)’? is of the form ("¢, 8)?, with both ¢ and @ in
{a, B,7,0}. The converse of aBCSPbasic constraint’«, 3)” is



| |a=0 0<a<3 la=% [F<a<m |

lohp, (X,Y) || yx > yy | yx —yy > tga.(zx —xy) | yx <yy | yx —yy > tg(r — a).(xx —zy)
Ichp, (X,Y) || yx 2 yv | yx —yy 2 tga.(zx —ov) | yx Sy | yx —yy 2 tg(m — o) .(zx — 2v)
rohp, (X,Y) || yx <yv | yx —yy <tga.(zx —=v) | yx > yv | yx —yy <tg(m —a).(zx —zv)
rehp, (X, Y) || yx <yy | yx —yy <tga(zx —2y) | yx 2 yy | yx —yy <tg(m — a).(zx — zv)

Figure 3. Translation of arlBCSPbasic constraint into a conjunction of linear inequalities
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