
Knowledge-based Inference Methods for Modeling Technical Systems
Gerd Kamp and Bernd Neumann

University of Hamburg, Vogt-KO~ln-Str.30,0-22527 Hamburg
Email:{ kamp,neumann} Oinfonnatik. uni-hamburg.de

Abstract
Description Logics with concrete domains present an ap-

proach to realize a general engineering workbench. They
provide a representation language that enables us to de-
scribe in a uniform way devices, assemblies and compo-
nents along with their structure, constraints on attributes
and physical laws as well as models of their correct and
fado behavio,: Furthermore, sound and complete algo-
rithms can be given for a set of basic inferences. These
basic inferences render it possible to simulate the behav-
ior of the devices and provide the basic building blocks for
consistency-based diagnosis. In addition they enable us to
devise procedures for finding errors, omissions and incon-
sistencies in model libraries.

1. Introduction

During the design and engineering phase of a new tech-
nical device it is necessary to develop solutions for several
tasks, such as configuration from components and assem-
blies, determination of parameter values, simulation of be-
havior, intelligent selection from parts catalogs and diagno-
sis of prototypes. Traditionally these problems are tackled
with a number of specific tools. These tools most often be
stand-alone systems and are not designed to communicate
with each other. In other words, every tool realizes its own
language to describe the device, thereby preventing results
obtained by one tool to be employed in other tools.

In this paper we present an approach for an integrated en-
gineering workbench based on description logics extended
with concrete domains. The knowledge representation lan-
guage that is supplied by this approach enables us to de-
scribe important model features in a uniform language, e.g.:
component types, component structures, physical laws and
models of correct and faulty behavior. A number of basic
inference services can be defined, and sound and complete
algorithms for these inferences can be given for the descrip-
tion language used. First results show that by making use
of these basic inference services it is not only possible to
simulate the behavior and support the diagnosis of the sys-
tem, but also to detect errors, inconsistencies and lacunae in
model libraries.

The remainder of this paper is organized as follows: First

we give a brief introduction to description logics and the
following enhancements needed in technical domains: con-
crete domains, model generation and calculation of admissi-
ble parameter ranges. We then focus on how different engi-
neering tasks can be tacklled with this approach. In Section
2 we show how the basic concepts needed to describe gear-
wheel mechanisms can be represented within the descrip-
tion language. Section 3 shows how simulation behavior
can be accomplished via model generation and calculation
of admissible parameter values. Section 4 presents an ap-
proach to diagnosis based on object classification. Section
5 shows how the inference service of concept classification
is useful for building and maintaining large model libraries.
A summary and an outlook conclude the paper.

1.1. Description Logiics

Description logics (DL) have a long tradition in organiz-
ing information with a powerful object-oriented representa-
tion scheme and clearly defined semantics. Description log-
ics systems mainly consist of two parts: a Terminological
Box (TBox) and an Asserlional Box (ABox)':

1.1.1. TBox At the core of description logics lies the
notion of concept terms. Starting with primitive concept and
role terms, new concept terms can be constructed from oth-
ers by a set of concept forming operators. There are mainly
the following categories of such operators [6]:

1. Boolean operators (and C D ...), (or C D ...), (not C),
allowing for the combination of concepts without a ref-
erence to their internal structure.

2. Role forming operators that allow new roles to be de-
fined, e.g. composition of roles (compose rs).

3 . Operators on role Jillers that operate on the internal
structure of the concept terms, e.g. provide quantifica-
tion over role fillers (some r C).

Terminological axioms of the form (define-concept CN
C) associate a concept naime CN with a concept term C and
are used to define the relevant concepts of an application.

We cannot elaborate on the basics of description logics and refer the
reader to [11 for a more detailed introduction.

1060-3425197 $10.00 0 1997 IEEE 297

http://uni-hamburg.de

Terminological axioms are roughly comparable to the class
definitions of an object-oriented representation language2.
Finally a TBox T is a finite set of terminological axioms.

1.1.2. ABox Concrete objects are realized as instances
of concepts. New instances o can be introduced into the
ABox via (define-distinct-individual o), and assertions con-
cerning the membership of an instance o to a concept C, or
about existing reIations r between two objects o and p can
be made through (state (instance o C)) resp. (state (related
o p r)) . The set of assertions finally constitutes the ABox A.

1.2. Basic Inference Services

What sets description logics apart from other knowledge
representation approaches, is that one is able to formally
define a model-theoretic semantics by means of an interpre-
tation function I. This formal semantics allows a formal def-
inition of a number of powerful inferences. In our context
the following inference services are of particular interest:

Classification Classification is the most prominent TBox
inference service. Classification calculates the con-
cept subsumption hierarchy, i.e. the subconcept-
superconcept relations between pairs of concepts.
Technically a concept C subsumes another concept D
if each model for C is also a model for D (i.e. I(C) 2
I(@).

Object Classification Object Classification is an ABox in-
ference service that, given an object o of the ABox,
determines the set of most specific concepts in the con-
cept hierarchy { C D . . .} to which this object is a mem-
ber.

Retrieval The retrieval problem is dual to the Object Clas-
sification problem. Here the set of ABox objects (in-
stances) {o p ...} are retumed that are members of a
given concept C.

All these inference services can be reduced to the consis-
tency problem of an ABox. An ABox is consistent if it has
a model, i.e. the set of interpretations I(A) is not empty (see
e.g. [2] for detail's). Further it can be shown that there exist
sound and complete algorithms for certain description lan-
guages, especially for the language ALCF which we have
chosen for our system (for a description of ALCF see [6]).

1.3. Concrete Domains

The previous section more or less gave the general
framework for a standard description logics system. But
in order to use description logics in technical domains more

'The class hierarchy of object oriented systems could be translated into
conjunctive concept terms with the slot definitions resulting in appropriate
role definitions.

expressive representation languages are needed. In addi-
tion to the abstract domain of definable concepts presented
above several concrete domains, such as numbers, strings
and symbols must be added to the language and the infer-
ence services of the description logic3. These are needed in
order to describe parameter values and constraints between
different parameters.

For example, in order to represent, simulate and diagnose
the simple bike drive train in Fig.1 at least the following
knowledge must be representable within such a system:

The different types of components, e.g. wheels, gear-,
wheels, chains, along with their attributes like force F,
radius r and torque M?
The structure of assemblies, e.g the kinematic structure
of the mechanisms using kinematic pairs.

Physical laws like M = Fr and constraints imposed on
the attributes like F>= 0 and DO.
The normal and faulty behaviors (often called mod-
els in consistency-based diagnosis) of components and
assemblies, e.g. the propagation of torques from one
wheel to another (M1=M2) with a correct or faulty
chain drive.

Therefore, in order to describe physical laws and models
of behavior we need at least a concrete domain for which
one is able to reason with linear systems of inequalities be-
tween multivariate polynomials. But current terminological
systems such as LOOM, CLASSIC, KRIS and TAXON real-
ize only a concrete domain [9] where it is possible to express
comparisons of parameters with constant values.

Bottom bracket

Figure 1 : A simple bike drive train

A scheme for the integration of admissible concrete do-
mains was developed by Baader and Hanschke [2, 61. An

3This requirement arises in other domains, too. But in technical do-
mains it is vital.

41n this paper we model these attributes using scalar numeric values
resulting in quantitative models of behavior. Altematively a qualitative
model using symbolic values as it is used in qualitative physics is possible.

298

admissible concrete domain is mainly a base data type to-
gether with a set of so-called concrete predicates (n-ary rela-
tions over the base data type). In order to be admissible such
a structure has to fulfill a number of constraints. The most
important of these constraints requires that the satisfiability
of a finite conjunction of concrete predicates must be decid-
able. Baader and Hanschke then show that if a concrete do-
main is admissible the resulting concept language ALCF(D)
is still decidable. Hence, there exist sound and complete al-
gorithms for the above inference services in ALCF(D). To
our knowledge, TAXON is the only description logic system
that uses this approach to realize concrete domains. But as
already mentioned, so far the concrete domains are too in-
expressive.

Fortunately it can be shown [9] that systems of inequali-
ties are an admissible concrete domain. Therefore it is pos-
sible to build a description logic system that is able to repre-
sent and handle the above mentioned component types, the
laws of physics and the models of behavior. Thus we de-
veloped CTL, a system where admissible concrete domains
are realized through a well-defined interface to external al-
gorithms [9]. In particular, we are currently able to handle
systems of arbitrary linear polynomials with the help of an
CLP(R)-system.

In order to express concrete predicates we extended the
description language with the following constructs: (define-
constraint PN (x7 . . . xN) expr) defines a new concrete pred-
icate (normally an (in)equality) between a number of vari-
ables. Further (constrain R7 .._ RN P) is an additional con-
cept term operator for associating a number of parameters
R7 . . . RN with the variables of a defined concrete predicate
P. Alternatively, it is possible to write (constrain R7 ... RN
((x7 . . . xN) expr)) if one does not want to introduce a predi-
cate name but rather use anonymous concrete predicates.

1.4. Model Generation

Description logic systems with sound and complete in-
ference algorithms are based on a tableaux calculus. This
means that in order to determine if an B o x is consistent,
the consistency test explicitly generates a consistent model.
That model obeys and enforces the constraints imposed on
the ABox objects by the TBox concepts. Not only are the
restrictions enforced on the ABox instances introduced by
the user, but additional instances may be generated by oper-
ators on role fillers, especially the operator some. The latter
fact comes in handy, e.g. if one wants to check if there are
any instances that were automatically generated and not in-
troduced by the user. It is also the base for configuration
systems and useful during the construction phase of a de-
vice model in simulation and diagnosis.

Description logic systems normally display only the re-
sult of the consistency test and the constructed model is
more or less thrown away. But at least in technical domains

we are not only interested in the existence of a solution, we
want to see the solution, e:.g. the set of instances and the
relations between them. Therefore, the calculated model is
the main object of interest, not the result of the consistency
test. Thus we extended CTL with a method that enables us
to access the model which is generated during the consis-
tency test.

1.5. Calculating Admissible Parameter Ranges

If a description logic is enhanced with concrete domains,
it must provide a means to check the consistency of the con-
crete domain. As we have: seen this is mainly the task of
checking whether a finite conjunction of predicates is sat-
isfiable. In our case this means checking if a system of in-
equalities between polynornials has a solution. But in anal-
ogy to model generation we are not only interested in the
existence of a solution, but in how this solution looks like.

Both tasks can be accom!plished by using quantifier elim-
ination techniques from computer algebra (in the field of
CLP(R) this technique is called variable elimination or pro-
jection). Quantifier elimination [171 is a method that trans-
forms an arbitrary first-order formula of the theory of the
elementary algebra over the reals (more or less “real arith-
metic”) into an equivalent formula without (or with fewer)
quantifiers. Since the solvability of a system of inequalities
can be expressed as an existential sentence of elementary
algebra (for details see [9])1, checking for the existence of a
solution of such a system is simply done by eliminating all
quantifiers from that sentence.

Besides checking the validity of a sentence, quantifier
elimination can also be used for the calculation of admis-
sible parameter ranges. This is realized by eliminating all
parameters but the one whose restrictions should be calcu-
lated. Quantifier elimination transforms the sentence into an
equivalent one containing only one quantified variable. The
resulting sentence describes the restrictions on the range of
the respective parameters admissible values. Since this pro-
cedure is independent of the actual parameter, it can be used
to determine the admissible ranges of all parameters con-
tained in the model that is ,generated during the consistency
test.

Over the years quantifier elimination techniques have
been vastly improved. On one side more efficient general
algorithms than Tarskis have been devised (e.g. Cylindri-
cal Algebraic Decomposition (CAD) [3]) and further im-
proved (e.g. PCAD [7]). But these are still too inefficient to
be actually useful and no implementation is publicly avail-
able. On the other side specialized algorithms for subsets
of the theory of elementary algebra have been found and
implemented. Most important, more or less all CLP(R)-
systems implement some kind of the Fourier-Motzkin al-
gorithm that realizes quantifier elimination for linear SYS-
tems of inequalities (see e.g. [111). Since quite a number of

299

CLP(R)-systems are freely available and are sufficient for
our representation needs, we have chosen a CLP(R)-system
as the decision procedure over systems of linear inequali-
ties. CLP(R)-systems can also be used for nonlinear sys-
tems, but in this case complete inferences can not be guar-
anteed. Since the only non-linear expression in the above
examples is the law of torque, this restriction does not really
impose a problem on our example. At the moment we are
implementing an interface to a quantifier elimination proce-
dure of a computer algebra system. This elimination proce-
dure allows us to'handle arbitrary quadratic sentences of the
theory of the elementary algebra over the reals. With this
system we can guarantee sound and complete inferences for
our example'.

In the following we will use a simple example itom me-
chanics to illustrate how description logics based on CTL
can be used for the representation, the simulation and the
diagnosis of simple linear systems.

2. Representation

The first task is to describe the different kinds of knowl-
edge to be captured by the provided description language.
First, we must be able to describe the different component
types of a mechanism as well as the kinematic structure. In
kinematics this is normally done with links and kinematic
pairs [16,8]. In the following we show how these concepts
can be described in the description language of CTL, which
is based on the proposed KRSS standard [151 for description
logic languages.

2.1. Links

In order to describe the different component types of the
drive train of Fig. 1, it is sufficient to define rotational links
and tension links as specializations of general links. The
terminology in Fig2 defines links as something that carries
a force (link.force). Rotational links (rotational-link) are links
that in addition have attributes for a radius (rot.radius) and a
torque (rottorque). link.force and rot.torque are not negative,
rot.radius is strictly positive, and the torque is the product
of radius and applied force. Finally we define a number of
additional links such as wheel, chain etc. without detailing
them further.

2.2. Kinematic Pairs

In order to describe the behavioral structure of a mecha-
nism, kinematic pairs are used. A kinematic-pair describes
the connection between two links pair.link1 and pair.link2.
Depending on the relative motion of the links and the type
of connection different types of pairs can be identified. The

sWe already used this system to calculate the parameter restrictions in
the following examples

(define-primitive-attribute 1ink.force Top)
(define-primitive-concept link
(and Top (some 1ink.force (minimum 0))))

(define-primitive-attribute rot.radius Top)
(define-primitive-attribute rot.torque Top)
(define-constraint -0 (?x) (> ?x 0))
(define-constraint -=O (?x) (>= ?x 0))

(define-constraint x * p z (?x ?y ? z)

(define-primitive-concept rotational-link
(= (* ?X ?y) ? z))

(and link
(constrain rot.radius e o)
(constrain rot.torque -=O)
(constrain rot.radius 1ink.force rot.torque

x*y=z)) 1

(define-primitive-concept tension-link link)
(define-primitive-concept crank rotational-link)
(define-primitive-concept wheel rotational-link)
(define-primitive-concept gearwheel

(define-primitive-concept spindle rotational-link)
(define-primitive-concept chain tension-link)

rotational-link)

Figure 2: Links

terminology shown in Fig.3 is restricted to the descrip-
tion of pairs of two rotational-links (rot-pair) and pairs of a
rotational-link and a tension-link (rot-tension-pair). Note that
it is possible to describe rot-tension-pair via an or construct,
something which is not possible within object-oriented rep-
resentation systems.

(define-primitive-attribute pair-link1 top)
(define-primitive-attribute pair.link.2 top)
(define-primitive-concept kinematic-pair

(and (all pair.link1 link)
(all pair. link2 link) 1)

(define-concept rot-pair
(and kinematic-pair
(all pair.link1 rotational-link)
(all pair.link2 rotational-link)) I

(define-concept rot-tension-gaix
(and kinematic-pair
(or (and (all pair.link1 rotational-link)

(and (all pair.link2 rotational-link)
(all pair.link2 tension-link))

(all pair.link1 tension-link)))))

Figure 3: Kmematic pairs

2.3. Models of Behavior

In addition to the component types and the structure of
the device, descriptions of the correct and of different faulty
behaviors are needed for the consistency-based diagnosis as
well as the simulation of the device. The terminology in

300

Fig.4 describes the correct behavior of rotational-pairs and
rot-tension-pairs. The torque is propagated in ok-rot-pair,
the force is propagated in ok-rot-tension-pair.

(define-constraint x=y (?x ? y) (= ?x ?y))
(define-concept ok-rot-pair
(and rot-pair
(constrain (compose pair.link1 rot.torque)

(compose pair.link2 rot.torque)
x=y)))

(define-concept ok-rot-tension-pair
(and rot-tension-pair
(constrain (compose pair.link1 1ink.force)

(compose pair.link2 1ink.force)
x=y)))

Figure 4: The correct behavior of the kinematic-pairs

The terminology in Fig.5 shows some exemplary faulty
behaviors of a rotational pair. A pair is slipping (slipping-
rot-pair) if both torques are strictly positive and different.
A pair is broken (broken-rot-pair) if one torque is strictly
positive, the other zero.

(define-concept slipping-rot-pair
(and rot-pair
(constrain (compose pair.link1 rot.torque)

(constrain (compose pair.link2 rot.torque)

(or (constrain (compose pair.link1 rot.torque)
(compose pair.link2 rot.torque)

(constrain (compose pair.link2 rot.torque)
(compose pair.link1 rot.torque)

-0 1

*O)

-Y)

m y))))

(define-constraint x=O (?XI (Number) (= ?x 0))
(define-concept broken-rot-pair
(and rot-pair
(or
(and
(constrain (compose pair.link2 rot.torque)

(constrain (compose pair.link1 rot.torque)
-0 1

x=O)) .
(and
(constrain (compose pair.link1 rot.torque)

(constrain (compose pair.link2 rot.torque)
-0)

x=o)) 1) 1

Figure 5: Faulty behaviors of a rotational pair (I)

A second developer might distinguish between strong
and weak slipping pairs (strong-slipping-rot-pair resp. weak-
slipping-rot-pair) as it is depicted in Fig.6. Note that in our
language it is possible to describe the weak slipping pair as
the negation of a strong one. This allows for a simple de-
scription of a weak slipping pair, and reduces the sources

of possible faults. It further eases the modification of the
knowledge base, e.g. a change of the limiting value between
strong and weak slipping pairs is local to one definition and
not spread across two defiinitions.

(define-constraint x<.3y (?x ?y)

(define-concept str0n.g-slipping-rot-pair
(< ?x (* 3/10 ? y)))

(and rot-pair
(constrain (compose pair.link1 rot.torque)

(constrain (compose pair.link2 rot.torque)

(or

- 0)

-0)

(constrain (compose pair.link1 rot.torque)
(compose pair.link2 rot.torque)

x<. 3y)
(constrain (compose pair.link2 rot.torque)

(compose pair.link1 rot.torque)
X<.3Y)) 1)

(define-concept weak-slipping-rot-pair
(and slipping-rot-pair
(not strong-slipping-rot-pair)))

Figure 6: Faulty behaviors of a rotational-pair (11)

Fig.7 depicts the concept hierarchy after concept classi-
fication of the terminologks shown in Fig.:! through Fig.6.

I.‘”.

Figure 7: The classified TBox

3. Simulation of Behavior

In this section we illustrate how model generation based
on the consistency test together with parameter range calcu-
lation can be used for the simulation.

As we have seen, one part of the consistency test is to
check whether the constraints which are implied by the as-
sertions in the ABox are satisfiable. This holds true es-
pecially with respect to constraints specified in the defini-
tions of behavior models and links. If for example we as-
sert that link-I is a rotational link with (state (instance link1
rotational-link)), the law of torque must hold for link-I in a
consistent ABox. Additionally, it must be true that the force
and the torque are positive and that the radius is strictly pos-
itive.

In order to check all these constraints a constraint net in
form of a system of inequalities is constructed in the course

30 1

of the consistency test. All constraints are automatically en-
tered into this constraint net and its satisfiability is automat-
ically checked. If one additionally gives the values of some
parameters (e.g. via (state (related linkl 10 1ink.force)) these
values are also automatically entered into the constraint net.
Furthermore, every assertion about parameters constrains
the range of admissible values of at least this parameter, but
most often also a number of additional parameters (e.g. via
the law of torque).

Using this approach, it is unnecessary to define a fixed set
of input parameters for the simulation. The consistency test
and hence the model generation and calculation of parame-
ter ranges works whichever set of assertions is given. Since
the consistency test can be initiated after every ABox asser-
tion, i.e. after every (state . . .), this approach renders it pos-
sible to interactively and incrementally determine the model
and the parameter ranges. Moreover it is possible to freely
intermix assertions about parameter values (e.g. (state (re-
lated linkl 10 1ink.force))) and behavior models (e.g. (state
(instance pairl ok-rot-pair)), giving the developer a maxi-
mum amount of freedom. We illustrate this procedure using
the bike drive train from Figure 1 as an example.

3.1. Describing the device

Before a device can be simulated, its structure must be
described. To do so, firstly the instances are created and
appropriate primitive concepts are assigned to the freshly
created instances:

(define-distinct-individual crankarm-1)
(define-distinct-individual chainring-1)
(define-distinct-individual

(define-distinct-individual chain-1)
(define-distinct-individual sprocket-1)
(define-distinct-individual rear-axle-1)
(define-distinct-individual rear-wheel-1)
(state

bottom-bracket-spindle-1)

(and (instance crankarm-1 crank)
(instance chainring-1 gearwheel)
(instance bottom-bracket-spindle-1

(instance chain-1 chain)
(instance sprocket-1 gearwheel)
(instance rear-axle-1 spindle)
(instance rear-wheel-1
rotational-link)))

(define-distinct-individual pairl)

(define-distinct-individual pair6)
(state

spindle)

...

(and (instance pairl kinematic-pair)
...

(instance pair6 kinematic-pair)))

Secondly, the links are related to the respective kinematic
pairs and the kinematic chain is set up:
(state

(and
(related
(related

(related

(related
(related
(related

pairl crankarm-1 pair.link1)
pairl bottom-bracket-spindle-1
pair. link2)
pair2 bottom-bracket-spindle-1
pair. linkl)

pair5 rear-axle-1 pair.link2)
pair6 rear-axle-1 pair.link1)
pair6 rear-wheel-1 pair.link2)))

This concludes the description of the structure of the
drive train. Since neither parameter values nor behavior
models are given at this point, the generated model only
reflects the constraints imposed on the parameter vaIues by
the concept definitions of their respective concepts (see Fig-
ure 8).

Figure 8: Simulation: Describing a device

3.2. Simulation with parameter values

The simplest form of simulation uses exact parameter
values for some parameters in order to determine the admis-
sible parameter ranges for the other parameters contained
in the calculated model. If there are no disjunctions, or
inequalities are contained in the models of behavior, the
ranges for the dependent parameters are restricted to a sin-
gle exact value. Simulation proceeds as follows:

1 Determine of some parameter values in order to start
the simulation.
In our example we set the radii of the crankarm
crankarm-1 , the chain ring chainring-1 , the sprocket
sprocket-1 and the rear wheel rear-wheel-I , as well as
the value of the force applied to the crank arm:

(state (and
(related crankarm-1 .175 rot.radius)
(related chainring-1 .1 rot.radius)
(related sprocket-1 .05 rot.radius)
(related rear-wheel-1 0.6858 rot.radius)))

302

2. Determine of the behavior models for the components.

In our example all kinematic pairs (pairl . . . pair6) ex-
pose their normal behavior:

(state
(and (instance pairl ok-rot-pair)

(instance pair2 ok-rot-pair)
(instance pair3 ok-rot-tension-pair)
(instance pair4 ok-rot-tension-pair)
(instance pair5 ok-rot-pair)
(instance pair6 ok-rot-pair)))

These assertions add new constraints to the constraint
net (see Figure 9) but executing the consistency test
does not reveal any new information since giving only
some radii does not trigger the restriction of any pa-
rameter within the constraint net.

Figure 9: Simulation with parameter values: Initial pa-
rameters and behaviors

3. Determine some additional parameter values.
With additional parameter values enough information
is available to trigger propagation through the con-
straint net. In our example we choose to assert a value
for the force that is applied to the crankarm by stating6:

(state (related crankarm-1 200 1ink.force))

Now the values for nearly all missing parameter values
can be calculated (see Figure 10). W.r.t. the bottom-
bracket-spindle-1 and the rear-axle-1 the value 0 could
be excluded from the admissible ranges of the respec-
tive forces (since the force applied to the crankarm is
strictly positive). It is not surprising that no further
restriction is possible, given the fact that no radius is
given for these links. Nevertheless the propagation of
the respective torques to their adjoining links is pos-
sible because the law of torque is applicable to intact
rotation pairs.

"00N is a reasonable value for an average cyclist.

Figure 10: Simulation with parameter values: Final
Model

3.3. Simulation with complex parameter
restrictions

We now consider simulation using complex parameter
restrictions instead of simple parameter values. The quan-
tifier elimination method allows us to use arbitrary con-
crete predicates as parameter restrictions, i.e. linear (resp.
quadratic) sentences over the elementary algebra of the re-
als.

This kind of simulation is especially interesting for per-
forming What-If analysis during the design phase of a tech-
nical device. But it allows us also to describe more com-
plex devices. The following example combines both as-
pects. Consider a drive itrain that consists not only of a
single chainring and a single sprocket but which has two
chainrings and a freewheel block with sprockets in 3 differ-
ent sizes. This can be described using our drive train set-up
from above and the following parameter restrictions:

(state (and
(related crankarm-1 .i75 rot.radius)
(related rear-wheel-1 0 .6858 rot.radius)
(instance chainring-1

(constrain rot.rad.ius
((?x) (or (= ?x 0.1)(= ? x 0.125)))))

(instance sprocket-1
(constrain rot.radiius

((? x) (or (= ?x 0.05) (= ?x 0.0625)
(= ? x 0.075)))))))

Additionally we restrict the force applied to the crankarm
to a range typical for a moderately trained cyclist:

(state (instance crankarm-i
(constrain link. force
((?x) (and (>= ?x 200) (<= ?x 300) 1)) 1)

For these restrictions the model shown in Fig. 11 is gener-
ated. Actually the quadratic elimination procedure delivers
much more information since the different chainring free-
wheel combinations are handled separately. For example
the formula actually computed for the force at the rear wheel
(frw) is the following:

303

Furs : 1ZO.llb57.4141

Figure 11: Simulation with complex parameter restric-
tions

(or (= (* 429 frw) 70000) (= (* 3429 frw) 87500)
(= (* 3429 frw) 109375) (= (* 2286 frw) 109375)
(= (* 1143 frw) 35000) (= (* 1143 frwl 43750)
(= (* 381 frw) 17500) (= (* 381 frw) 21875)
(and (> (* 1143 frw) 43750)

(< (* 381 frw) 21875))
(and (> (*.3429 frw) 109375)

(< (* 2286 frw) 109375))
(and (> (* 3429 frw) 70000)

(< (* 1143 frw) 35000))
(and (> (* 1143 frw) 35000)

(< (* 381 frw) 17500))
(and (> (* 3429 frw! 87500)

(< (* 1143 frw) 43750)))

One can instantly recognize two facts from this formula.
First, there are only 5 intervals instead of the expected 2 . 3
= 6. An inspection of the given radii reveals that 0.05.0.125
= 0.625-0.1, and hence there are only 5 different gears. The
second observation is that only 8 interval endpoints are re-
turned, indicating that there are two occurrences of intervals
that actually meet.

As already mentioned in Section 1.2. all inferences of a
description logic, such as concept- or object classification,
instantiation and retrieval can be reduced to the consistency
test. Object classification computes the set of concepts to
which the object belongs for sure, whereas weak object clas-
sification calculates the set of concepts to which it is still
possible to classify this object. These two inferences, to-
gether with a set of behavior models - models of normal
and faulty behavior - can be used to realize some kind of
consistency-based7 diagnosis.

The first step is similar to the simulation approach pre-
sented in the previous section: Describing the device to be
diagnosed. But rather than asserting concrete models of be-
havior together with a small set of input parameters (like in
simulation), one starts by asserting very general models of

behavior and incrementally adds values of observed param-
eters. After each assertion of new parameter values object
classification is called. This inference service not only com-
putes the set of most special models of behavior, but the em-
bedded consistency test also calculates - as we have seen in
the previous section - the restrictions for the various param-
eters. Weak object classification computes the set of behav-
ior models to which it is still possible to classify the object.
In our case this are the models of behavior that are still pos-
sible but can only be confirmed if new information is (e.g.
new parameter values) available. Therefore weak classifi-
cation, together with computed parameter restrictions gives
hints which parameter values should be determined in the
next step. Also note that weak object classification is not
identical to the set of subconcepts of the concepts returned
by the strong object classification. Some of these may be
excluded due to the fact that they are not consistent with the
calculated parameter restrictions.

Hence strong and weak object classification compute an
upper and a lower boundary within the concept graph, de-
noting the possible models of behavior. Each new asser-
tion of a parameter value moves these boundaries until the
user has gathered enough information for a decision or both
boundaries meet and the diagnosis is firm. We will illustrate
this procedure by using a rotational-pair as an example:

First we describe the structure of the device (similar to
simulation):

(define-distinct-individual rot-pairl)
(define-distinct-individual linkl.1)
(define-distinct-individual linkl.2)
(state (and (instance rot-pair1 kinematic-pair)

(instance linkl.2 rotational-link)
(instance linkl.1 rotational-link)
(related rot-pair1 linkl.1

(related rot-pair1 linkl.2
pair.link1)

pair.link2)))
Next, we assert general model of behavior:

(state (instance rot-pair1 kinematic-pair))

Finally, we assert the observed parameter values and call
the object classification inference. Since different sets of pa-
rameter values should lead to different diagnosis, we illus-
trate the effect of this step by using three different parameter
sets.

1. Giving two identical torques as parameter values leads
to the classification as an ok-rot-pair, as it should be
expected:

(state (and (related linkl.1 10

(related linkl.2 10
rot.torque)

rot. torque)))

7a kind of model-based diagnosis.

304

2. The diagnostic process becomes clearer if one uses an-
other set of parameter values, as shown below. The
first assertion, together with the law of torque and the
constraint that a radius is strictly positive enforces that
the torque of linkl.l is strictly positive. Therefore the
second assertion, giving a zero value for the torque of
linkl.2 suffices to classify rot-pair1 as a broken-rot-pair.
Note that only 2 of the 6 parameters are needed for cor-
rect classification.

(state (related linkl.2 0 rot.torque))
(state (related linkl.1 8 1ink.force))

3.

5.

The last example illustrates how the rot-pair1 can be
classified as a weak-slipping-rot-pair. This is possible
due to the calculation of the torque of linkl.2 via the
law of torque and the calculation of the ratio of the
two torques. This example also illustrates the role of
weak object classification. After the second assertion
broken-rot-pair can be excluded from the list of possi-
ble behavior models since - using the same argumenta-
tion as above - the torque of linkl.2 is strictly positive.
Hence both torques of rot-pairl are strictly positive and
it is impossible that it is a broken-rot-pair.

(state (related linkl.1 20 rot.torque))
(state (related linkl.2 8 1ink.force))
(state (related linkl.2 3 rot.radius))

Model Libraries

In this section we will briefly describe how concept clas-
sification can be used for the organization and maintenance
of model libraries. The following observations are impor-
tant w.r.t this aspect:

1. All concept definitions are different from bottom.
Therefore all definitions are satisfiable. That guaran-
tees that no model of behavior is mistakenly defined in
a way such that exists no parameter combination that
may lead to .this behavior (e.g. through a parameter re-
striction like (and (constrain force x>O) (constrain force
x<O)).

2. All concept definitions are distinct from each other.
This means that there are no two models of behavior
that are equivalent, something which could easily hap-
pen when two model libraries are merged. If for exam-
ple a third knowledge engineer has modeled a slipping
rot pair as

(and rot-pair
(constrain (compose pair.link1 rot.torque)

(constrain (compose pair. link2 rot. torque)

(constrain (compose pair.link1 rot.torque)

x>o

x>o)

(compose pair.link2 rot.torque)
X U Y) 1)

the system would detect that both definitions are equiv-
alent.

3. The strong and weak slipping pairs in Fig.6 are mod-
eled as specializations of rot-pair, but not of slipping-
rot-pair. Situations like this may occur easily if dif-
ferent people develop models of behavior simultane-
ously, or when model libraries are complex. The clas-
sification service detects the missing subsumption re-
lation between slipping-rot-pair and strong-slipping-rot-
pair. In other situations it may be the case that a com-
puted subsumption relation is not missing but fortu-
itous in a sense that it is caused by some error or lax-
ness in the description of the models of behavior.

Errors like the ones describe above are very likely to occur
in large and complex model libraries. Therefore the detec-
tion of these errors is crucial for the development of such
libraries. Since all inferences are sound and complete8 in
CTL, we can guarantee that all missing and fortuitous sub-
sumption relations in the model library are detected.

6. Summary and Outlook

Description Logics with concrete domains present an ap-
proach to realize a general engineering workbench. They
provide a representation language that enables us to de-
scribe in a uniform way the devices, their assemblies and
components along with their structure, constraints on their
attributes and physical laws as well as models of their cor-
rect and faulty behavior. Furthermore sound and complete
algorithms can be given for a set of basic inferences.

These basic inferences render it possible to simulate
the behavior of the devices and provide the basic building
blocks for consistency-based diagnosis. In addition they en-
able us to devise procedurles for finding errors, omissions
and inconsistencies in model libraries.

The approaches that are most similar to ours are systems
that were developed within the Knowledge Sharing Effort,
e.g. SHADE [13, 14, 121 and the systems derived from it
like PACT [4] and PARMAN [lo]. In contrast to our more
basic research oriented approach, these projects investigate
to which extent it is possible to define a common knowledge
representation for a set of existing systems. The exchange of
information is accomplished through a translation approach

(define-concept another-slipping-rot-pair %t least for linear systems of inequalities in our current implementation

305

between a common interlingua and the representation lan-
guage of the target system. In practice that proved to bc
difficult, since different systems employ a different seman-
tics for the same terms.

The results presented in this paper are first steps to-
wards an integrated knowledge-based engineering work-
bench. Actual work focuses on realizing quantifier elimi-
nation over quadratic sentences of the elementary algebra
by implementing an interface to an computer algebra sys-
tem [I8,5]. Further work concentrates on concrete domains
over other base types, e.g. using CLP(FD) systems for de-
scribing qualitative models. This would allow us to directly
compare our approach to methods developed in qualitative
physics.

Parallel to these more theoretical questions we are in-
vestigating how the basic mechanisms can be further en-
hanced in ordcr to obtain systems that can actually be used
by engineers. Finally we explore the possibility to integrate
other modules of our envisioned workbench like eonfigu-
ration and intclligent retrieval from parts catalogs into the
framework presented in this paper.

References
[I] E Baader, H. Burckert, B. Hollunder, A. Laux, and W. Nutt.

Terminologische Logiken. KI, (3):23-33, 1992.
[Z] F. Baader and P. Hanschke. A Scheme for Integrating Con-

crete Domains into Concept Languages. Research Report
RR-91-10, DFKI, Kaiserslautem, Germany, April 1991.

[3] G. E. Collins. Quantifier Elimination for Real Closed Fields
by Cylindrical Algebraic Decomposition. In Proc. of the
Second GI Conference on Automata Theory and Formal
Languages, number 33 in LNCS, pages 512-532. Springer,
1975.

[4] M.R. Cutkosky, R.S. Engelmore, R.E. Fikes, M.R. Gene-
sereth, T.R. Gruber, W.S. Mark, J.M. Tenenbaum, and J.C.
Weber. PACT: An Experiment in Integrating Concurrent En-
gineering Systems. IEEE Computer, (1):28-37, 1993.

[5] Andreas Dolzmann and Thomas Sturm. REDLOG - Com-
puter Algebra Meets Computer Logic. Technical Report
MIP-9603, Universitat Passau, Passau, Germany, February
1996.

[6] P. Hanschke. A Declarative Integration of Terminological,
Constraint-Bused, Datu-driven, and Goal-directed Reuson-
ing. Dissertation, Universitat Kaiserslautem, 1993.

[7] H. Hong. RISC-CLP(Rea1): Constraint Logic Programming
over the real numbers. In Constraint Logic Programming:
Selected Research. MIT Press, Cambridge, MA, 1993.

[8] ISO. IS0 I0303 Part 105: Integrated Application Ressource:
Kinematics. ISO, 1994.

[9] Gerd Kamp and Holger Wache. CTL - a description logic
with expressive concrete domains. Technical report, LKI,
1996.

[IO] Daniel Kuokka and Brian Livezey. A Collaborative Paramet-
ric Design Agent. In B. Hayes-Roth and R. Korf, editors,
Proc. of the Twelfth National Conference on Artificial Intel-
ligence (AAAI-94), volume 1, pages 387-393, Seattle, WA,
1994. AAAI Press.

[1 I] Jean-Louis Lassez. Parametric queries, linear constraints and
variable elimination. In A. Miola, editor, Design and im-
plemenlation of Symbolic Computation Systems, volume 429
of LNCS, pages 164-173, Capri, Italy, April 1990. Springer
Verlag.

[I21 J.G. McGuire, Daniel R. Kuokka, J.C. Weber, J.M. Tenen-
baum, T. Gruber, and G. Olsen. SHADE: Technology for
Knowledge-Based Collaborative Engineering. Concurrenl
Engineering: Research & Applications, 1(3), 1993.

1131 J.G. McGuire, R.N. Pelavin, J.C. Weber, J.M. Tenenbaum,
T. Gruber, and G . Olsen. SHADE: A Medium for Sharing
Design Knowledge among Engineering Tools. Annual re-
port, 1992.

[14] J.G. McGuire, R.N. Pelavin, J.C. Weber, J.M. Tenenbaum,
T. Gruber, and G. Olsen. SHADE: Knowledge-Based Tech-
nology for the Re-Engineering Problem. Annual report,
1993.

[15] P. E Patel-Schneider and B. Swartout. Description Logic
Specification from the KRSS Effort. November 1993.

[161 E Reuleaux. The Kinematics of machinery - outlines of a
theory of machines. Macmillan & Co, New York, NY, 1876.

[171 A. Tarski. A Decision Method for Elementary Algebra and
Geometry. In Collected Works of A. Tarski, volume 3, pages
300-364.

[181 Volker Weispfenning. Applying Quantifier Elimination to
ProbIems in Simulation and Optimization. Technical Report
MIP-9607, Universitat Passau, Passau, Germany, April 1996.

306

