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Abstract. This paper discusses the problem of selecting appropriate
scales for region detection prior to feature localization. We argue that
an approach in morphological opening-closing scale-space is better than
one in Gaussian scale-space. The proposed operator is based on a new
shape decomposition method called morphological band-pass filter that
decomposes an image into structures of different size and different cur-
vature polarity. Local appropriate scale 1s then defined as the scale that
maximizes the response of the band-pass filter at each point. This op-
erator gives constant scale values in a region of constant width, and its
zero-crossings coincide with local maxima of the gradient magnitudes.
Its usefulness is demonstrated by some examples.

1 Introduction

Since their introduction by Witkin [14] scale-space representations have become
a universal approach to a wide variety of computer vision tasks. They are based
on the observation that real world objects and their projections onto images
exist as meaningful entities only over certain ranges of scale. By making scale a
parameter, an image can be transformed into a family of gradually simplyfied
versions of itself. The scale parameter controls the amount of smoothing, thus
the greater it is the more fine scale information is suppressed.

The most common implementation of this idea is the Gaussian scale-space
which is defined by a convolution of the image f(x) with a Gaussian kernel
where the scale parameter determines the width of the Gaussian. The properties
of this scale-space have been studied intensively by several researchers, see e.g.
Lindeberg [8]. Since it is a ”pure scale-space”, i.e. it does not require any prior
knowledge about the image content and treets all scales equally, an important
question arises: If no scale is special in any way, how do we know at which scale
level the interesting information can be found?

A very interesting answer to this question was given by Lindeberg [7]. He pro-
posed to measure local appropriate scales which optimize the trade-off between
smoothing and feature visibility. These measurements are then used to appro-
priately tune subsequent operators. Lindeberg defines the appropriate scale as
the scale that maximizes the response of certain nonlinear operators w.r.t. scale.
For example, a measure for the sizes of blobs and ridges, i.e. local extrema of



image brightness, is obtained by maximizing (w.r.t. scale) the magnitudes of
scale-normalized Laplaceans of Gaussian [7] or second directional derivatives of
Gaussians [2], [4]. These operators give good results near the centers of blobs.
However, near edges they reflect the sharpness of the edges rather than the blob
sizes as is illustrated by figure 1 (center). Consequently, one has to localize blobs
and edges before the results of these operators can be interpreted correctly.
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Fig. 1. Left: test image containing regions that have different constant widths, Cen-
ter: appropriate scales measured by second directional derivatives are always small
near edges, Right: magnitude of appropriate scales measured by our new method are
constant within each region

In our opinion, appropriate scale measurements would be even more useful
if they were available prior to feature detection. Hence we need an operator
that works uniformely all over the image, regardless of what feature type a
pixel belongs to. This could be achieved most naturally if appropriate scale
were always associated with blob size, i.e. the edge response were supressed. In
particlular all points in a region with constant width should have the same scale
value - see the right image in figure 1. Two main problems must be solved:

1. A point may belong to regions at different scales simultaneously. These dif-
ferent regions must be identified, and the size of the most salient among
them should determine the appropriate scale.

2. The width of a region must be defined and measured at every point without
making unnecessary assumptions about possible region properties.

In this paper we propose to use greyscale morphology [12] to solve these
problems. As opposed to convolution morphological operations are sensitive to
geometrical shape. Morphological shape decomposition methods exploiting this
fact have been developed by several researchers, e.g. [9], [11], [1], and [13]. More-
over, in [5] and [3] a solid theory of morphological scale-space is developed. This
enables us to define local appropriate scales on the basis of morphological band-
pass filters that will be defined as a generalisation of Wang et al. [13]. Due to
space limitations all proofs have been omitted. Interested readers should refer

to [6].



2 Morphological scale-space

2.1 Definition

Morphological scale-space has been developed into a coherent theory indepen-
dently by Jackway [5] and van den Boomgaard and Smeulders [3]. Erosions and
dilations or openings and closings are the basic operations needed to built the
scale-space:

Erosion: (fog)(x) = xl,%fG (flx+x') —g(x))
Dilation:  (f @ g)(x) = ;IuEpG (f(x = %) +g(x")) (1)
Opening:  (fog)(x) = ((f©9) D) (x)

Closing: (feg)(x)=((fDg)Oyg)(x) (2)

The function g(x) is called structuring function, and the region G its support.

Definition1. A morphological opening-closing scale-space is defined [5] as

(fegs)(x) ifs>0
F(x,s) =< f(x) ifs=0 (3)
(fog—s)(x) if s<0

The unification of opening and closing in one single scale-space with positive
and negative scale values is possible because the two operations are non-self-
dual - the former operates on local maxima of f(x), while the latter operates on
minima. The subscript at g, indicates that we are using a family of structuring
functions scaled by s (gs(x) = g(x/|s|)). If the structuring function g(x) is anti-

convex the resulting scale-space satisfies a causality theorem, i.e. no new detail
is introduced by the smoothing operations [5].

2.2 Morphological low-pass and high-pass filters

As we want to decompose images w.r.t. to region size we must choose the struc-
turing function accordingly. To make as few assumptions as possible about the re-
gions we model them as blobs, i.e. local extrema of f(x) and their neighborhood’.
Shape and size of a region can then be measured by anlysing the iso-contour lines
each point belongs to. Formally, we get:

Definition2. A point xq constitutes a light (dark) blob or ridge of size s if
there exists a closed disk Dy of radius s that contains xq so that f(x) > f(xo)
(f(x) < f(x0)) for every point in the disk, and no such disk exists for any s’ > s.
All points in the disk are said to lie inside a blob of size s.

! Regions where the local extrema property holds only in certain directions will be
called ridges.



Consequently, a point may lie inside blobs of different sizes. To identify the
most salient of all possible blob sizes for a point will become the idea behind
appropriate scale identification.

Definition3. A low-pass filter with respect to blob size is characterized by the
following properties (s is the limiting blob size of the filter):

1. The filter is isotropic.
2. Blobs smaller than |s| are not present in the filtered image.
3. Blobs larger than |s| are not be affected by the filtering.

A special case of property 3 is that a blob of infinite size, e.g. a single step edge,
must not be changed for any finite |s|. This leads to the following proposition:

Proposition4. The only isotropic, anti-conver structuring functions that do
not change a blob of infinite size under opening or closing are the disks with

radius s (proof see [6]):
0 of[x| < s

—o0  otherwise (4)
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The relationship between blobs as defined above and opening-closing with
disk structuring functions is established by the following proposition:

Proposition5. Morphological opening and closing with disk structuring func-
tions ds(x) are perfect low-pass filters w.r.t. blob size. (proof see [6])

Note also that only ”flat” structuring functions (like disks) ensure invariance
of morphological operations w.r.t. brightness scaling (i.e. (Af o g) = A(f o g),
see [10]). Therefore we will use disk structuring functions throughout this paper.
Now we define a high-pass with respect to feature size by the relationship:

Hix,5) = f(x) - F(x,5) (5)
which gives rise to the following proposition:

Proposition6. An image morphologically high-pass filtered according to (5)
does not contain blobs of size s and larger. (proof see [6])

2.3 Morphological band-pass filters

In the next step we combine low- and high-pass filters to define a band-pass filter
with respect to blob size.

Definition7. A band-pass filter w.r.t. blob size has the following properties (s;,
sy are lower and upper limiting sizes, |s;| < [sy], su5 > 0):

1. The filter should act isotropically.
2. Blobs smaller than [s;| are not present in the filtered image B} (x).
3. Blobs larger than |s,| are not present in the filtered image.



Generalizing an idea from Wang et al. [13] to our scale-space definition we
get the following recursive algorithm that alternately high- and low-pass filters
the image starting with high-pass filtering at the coarsest scales:

Proposition8. A family of perfect morphological band-pass filters with limiting
blob sizes —00 = s_p_1 < s_p < ... < so0=0< ... < sp < Spp1 = 00 1§
obtained by the following formula (s, must be larger than the image diagonal):

forsp >0 H3n+1(x)
Bt (x)
Hy, (x)

f(x)

(Hopp, o diy)(x)
Hop (%) = B (x)

and for sy <0: H,_, f(x)
= (Hs\y 0 ds,)(x)

Hsk—l(x) - Bi:_l (X)

S

H

EEE

Sk

where the resulting B! (x) represent a morphological decomposition of the image
into bands of different blob sizes and curvature polarities (Hs, are intermediate
high-pass filtered images). The original image can be exactly reconstructed from
both the positive and the negative parts of the decomposition (proof see [6]):

n 0

dYoBut(x)= ) Bi(x) = f(x) (7)

k=0 k=—n

Figure 2 shows a family of band-pass filtered images using (6). s is sampled in
octaves. It is clearly visible how the image is decomposed into different structure
sizes by the filter family.

3 Appropriate scale measurements in opening-closing
scale-space

Similar to the proposal of Lindeberg [7], we identify the local appropriate
scale as the scale that maximizes the response of a normalized band-pass filter
with respect to scale:

Definition9. The local appropriate scale of a blob at x is defined as:

) (8)

where si_1 applies if s > 0 and sg41 if s < 0. The expression ngq:l( x)/(sk —

Bl (%)
SkF1

k=%—n,-H5—1,
EEREEE) Sn

s4(x) = arg,, (S _ max

Sk — Skl

sgx1) will be called normalized band-pass filter.

Figure 1 (right) shows the result of this operator on a test image. Note that
the scale values within a region of constant width are constant. Figure 3 illus-
trates the application of the new appropriate scale operator to a natural image.
Again the scale values correspond to the width of the region a pixel belongs



Fig. 2. Decomposition of an image (center) with respect to structure sizes. Left from
top to bottom: s = 2,4, 8 - dark blobs and ridges. Right: s = —2, —4, —8 - light blobs
and ridges.

to. Scales are positive if this region is darker than its surroundings, negative
otherwise.

Another fact is, however, somewhat surprising: The borders between areas of
positive and negative scale (”zero-crossings” of the appropriate scale) correspond
to image edges (local maxima of the image gradient). Although this behavior
has been justified experimentally on a large number of images, we do not yet
have a full theoretical explanation in 2D. An analysis of the scale operator in
1D indicates, however, that maxima of the normalized bandpass B¥_| (2)/(sk —
sgx1) are indeed correlated with local maxima of the gradient f/(z).

Consider the function in figure 4. The effect of morphological opening is
best visualized by ”fitting the structuring function under the original function”.
Opening with d;(z) therefore replaces the function between f(z1) and f(z2) with
a straight line (where 25 — 21 = 2s). Likewise, opening with d,/(z) results in
the straight line between f(z}) and f(x%) (with 2z}, — 2] = 2s'). Now normalized
band-pass filtering between z1 and z3 yields

_ fle) = f(&h) _ flwa) — f(=5)

- - /

s — s s — s

B;'(x)

s'—s
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Fig. 3. Appropriate scale measurements. For better visibility positive and negative
scales are decomposed into two images (top: positive scales, bottom: magnitude of
negative scales).

If we expand the r.h.s. into a Taylor series we arrive at

B (@) _, (|f,(1m)| * If’(la:2)|>_1

s'—s

Hence the result of the morphological band-pass filter is proportional to the
harmonic mean of the gradients at the points where the structuring function
touches the original function. The gradients are maximized at edge points, thus
the appropriate scale is obtained when the structuring function just fits between
two edge points.

The following proposition establishes that the appropriate scale is invariant
under rotation, translation, and brightness scaling while it scales accordingly

Iim

sl—s

when the spatial coordinates are uniformely scaled. This result is a major pre-
requisite for practical applications of approproate scales (like tuning of scale
dependent operators towards suitable scales).
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Fig. 4. Analysis of the appropriate scale operator in 1D (see text).

Proposition10. Let f()Nc) be the image after similarity transformation and
brightness rescaling, i.e. f(uRx+x0) = Af(x) where R. denotes an arbitrary 2D
rotation matriz, xo an arbitrary translation, and A, p > 0 are scalars. Then the

appropriate scale $4 of the transformed image f(x) is given by (proof see [6]):

Sa(pRx +x0) = psa(x) (9)

4 Applications

4.1 Appropriate scale ridges

In this section we demonstrate that our new appropriate scale operator can
be combined with Gaussian scale-space to select appropriate scales for ridge
detection. We measure the scale-dependent ridge strength in Gaussian scale-
space by the eigenvalues of the Hessian matrix (@4z(x,s) etc. denote second
derivatives at scale s):

71,2(x,8) =
3 (@rnloe,5) + By 3, 5) £ /(@ra (5,5 = By )7 F 405, (7))

Now we use the appropriate scale s4(x) to select the correct scale, where the
larger eigenvalue is taken for positive scales and the smaller for negative scales:

r(x) =

v1(x,54(x)) (54(x) > 0)
{ _72(){) _SA(X)) (SA(X) < 0) (11)

Since the appropriate scale depends only on the width of the ridge and does
not change near edges, the ridge strength operator r(x) shows very good step
edge supression as is illustrated by figure 5.

4.2 Parameter-free binarization

The fact that the zero-crossings of the appropriate scales often coincide with
image edges suggests to use the sign of the scales as a simple means to binarize
the image:
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Fig.5. Appropriate scale ridges. Center: ridge strength, Right: ridge location after

non-maxima supression

1 (sa(x) <0)

=10 (a0 (12

This technique has two important advantages over thresholding: The bina-

rization is invariant under brightness rescaling (Proposition 10) and the positions

of the zero-crossings are insensitive to large scale shading. Figure 6 illustrates
this by comparing classical thresholding with the new binarization method.

5 Conclusions

In this paper we discussed the problem of selecting appropriate scales uniformly
at each pixel, regardless of the feature type the pixel belongs to. This led to
a new appropriate scale operator built upon a morphological band-pass filter
which proved more suitable to define uniform region based appropriate scale
measurements than approaches based on Gaussian scale-space. In particular it
has the following very interesting properties:

— The scale value obtained at any point does reflect the width of the most
salient region the point belongs to.

— Tt is invariant w.r.t. brightness rescaling of the image.

— If the image undergoes a similarity transform it is scaled by the same amount
as the spatial coordinates.

— The positions of zero-crossings of the appropriate scale seem to be correlated
with maxima of the gradient magnitudes of the image.

Further investigation is needed to theoretically establish the last property in 2D.

Two applications illustrate that the new operator can indeed be used to im-
prove other operators in making them invariant under similarity transformations
and brightness scaling or tuning them towards the best scale of operation. We
expect very interesting results from further research in this direction.



Fig. 6. Left: conventional thresholding with hand-tuned threshold, Right: parame-
ter-free binarization
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