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Abstract

This paper presents a novel approach to selecting appropriate scales in
morphological opening-closing scale-space. It is based on a morphological
band-pass filter that decomposes an image into structures of different size
and different curvature polarity ("light and dark blobs”). Appropriate
scale is defined as the scale that maximizes the response of the bandpass.
The resulting scale measurements allow to automatically select window
sizes (scales) for segmentation operators. The application of this idea to
region segmentation gives very satisfying results.

1 Introduction

When extracting low-level features from images, traditionally one has to adjust
a number of parameters, most notably window and filter sizes. Often the ad-
Justment of these parameters is done by hand thus adapting a certain algorithm
to a particular class of images (or in some cases just one particular image).
The elimination of these parameters (or their automatic adaption) has been the
focus of much research in the past.

A new basis for the solution of this problem was laid by the observation that
choosing window sizes is actually a problem of scale selection: Any image feature
is only visible over a certain range of scale. By introducing a new dimension that
represents scale we can transform the image into a family of gradually simplifyed
versions of itself, the so called scale-space (Witkin 1983 [9]).

Depending on the particular algorithm used for smoothing different scale-
spaces will result. Gaussian scale-space is the only linear and thus most common
variant of this idea. It is defined by a convolution of the image f(Z) with a Gaus-
sian kernel where the scale parameter determines the width of the Gaussian. A
number of nonlinear scale-spaces have also been defined, and the morphological
opening-closing scale-space will be used in this paper.

Based on the scale-space representation of the image Lindeberg [7] proposed
an elegant solution to our original problem of selecting appropriate window sizes
(scales) for feature detection. He defines a local appropriate scale as the scale
that maximizes the salience of certain image properties w.r.t. scale. These scale
measurements are then used to tune subsequent feature detectors towards their
optimal window size. For example, a measure for the sizes of blobs and ridges,
i.e. local extrema of image brightness, is obtained by maximizing (w.r.t. scale)
the magnitudes of the scale normalized Laplacean of Gaussian (Lindeberg [7])
or the magnitudes of second directional derivatives of Gaussians (Burns et al.
[2], Dana and Wildes [3]).

These functions give good results near the centers of blobs. However, near
edges they reflect the sharpness of the edges rather than the sizes of the nearest
blob as is illustrated by figure 1 (center). Consequently, one has to localize blobs
resp. edges before the results of these operators can be interpreted correctly.

However, to adapt to appropriate scales completely automatically we need
an operator that can be applied prior to feature detection and works uniformely
all over the image. This could be achieved most naturally if appropriate scale
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Figure 1: Left: test image containing regions that have different constant widths,
Center: appropriate scales measured by eq. (3) are always small near edges,
Right: magnitude of appropriate scales measured by the new method are con-
stant within each region

were always associated with blob size, i.e. the edge response were supressed. In
particlular all points in a region with constant width should have the same scale
value - see the right image in figure 1. Two main problems must be solved:

1. A point may belong to regions at different scales simultaneously. These
different regions must be identified, and the size of the most salient among
them should determine the appropriate scale.

2. The width of a region must be defined and measured at every point without
making unnecessary assumptions about possible region properties.

In a recent paper [6] we proposed to use greyscale morphology to solve these
problems because morphological operations are more sensitive to geometrical
shape than convolution based operators. Here we will summarize the theoreti-
cal results from this paper and cover the aplication aspects in more detail. In
particular, an intergrated algorithm that uses the appropriate scale measure-
ments for region segmentation will be described.

2 Morphological opening-closing scale-space

Morphological opening-closing scale-space has been developed into a coherent
theory by Jackway [4]. The basic operations are defined as follows:

Frosion:  (f0g)(#) = inf (f(F+¥)—g(¥))
Dilation: (£ ®9)(&) = sup (f(F = &) +9(¥) (1)
Opening:  (fog)(Z) = ((f©9) D) ()

Closing:  (feg)(#) = ((f®g)Oy)(&) (2)

The function g(Z) is called structuring function, and the region G its support.

We requires g(#) < 0 and g(0) = 0 so that a constant function f(Z) = const
will not be altered by the morphological operations. Opening/closing are dual

(fog)(@) = —((=F) *3) () (3)

—

and vice versa (§(%) = g(—%)).

operations, 1.e.:



Definition 1 A morphological opening-closing scale-space is defined [4] as

(foeg)(®)  ifs>0
F(Zs)=q [(Z) ifs=0 4)
(fog_s)(@) ifs<0

The unification of opening and closing in one single scale-space with positive
and negative scale values is possible because the two operations are non-self-
dual - the former operates on local maxima of f(#), while the latter operates on
minima. The subscript at g, indicates that we are using a family of structuring
functions scaled by s (g;(Z) = g(£/|s|)). If all those structuring functions are
anti-convex the resulting scale-space satisfies a causality theorem, i.e. no new
detail is introduced by the smoothing operations [4].

3 Morphological bandpass filters

The general definition if morphological scale-space does not yet specify which
structuring functions should be chosen. In [6] we proved that an appropriate
choice allows us to interpret the opening-closing scale-space as a lowpass filter
w.r.t. region size. Here we will outline this only briefly.

Regions shall be represented by blobs (local maxima or minima of the
greylavel) which are formally defined as:

Definition 2 A point ¥y constitutes a light blob or ridge of size s if there exists
a closed disk Dy of radius s that contains Zy so that f(Z) > f(¥o) for every
point in the disk, and no such disk exists for any s’ > s. Conversely, for dark
blobs or ridges we require f(Z¥) < f(Zo) everywhere in the disk. All points in the
disk are said to lie inside a blob of size s.

Consequently, a point may lie inside blobs of different sizes. To identify the
most salient of all possible blob sizes for a point will become the idea behind
appropriate scale identification.

Definition 3 A low-pass filter with respect to blob size is characterized by the
following properties (s is the limiting blob size of the filter):

1. The filter is isotropic.
2. Blobs smaller than |s| are not present in the filtered image.

3. Blobs larger than |s| are not be affected by the filtering.

A special case of property 3 is that a blob of infinite size, e.g. a single step edge,
must not be changed for any finite |s|. This leads to the following proposition:

Proposition 1 The only isotropic, anti-conver structuring functions that do
not change a blob of infinite size under opening or closing are the disks with

radius s (proof see [6]):

0 iflE< sl
—00 otherwise

ma=¢@={ 5)

The relationship between blobs as defined above and the opening-closing

operations is established by the following proposition:

Proposition 2 Morphological opening and closing with disk structuring func-
tions dg are perfect low-pass filters w.r.t. blob size. (proof see [6])



Now we use this property to build a morphological bandpass filter similar to
the well known Difference-of-Gaussian filter in Gaussian scale-space.

Definition 4 A band-pass filter w.r.t. blob size has the following properties (s,
and s, are lower and upper limiting sizes with |s;| < |sy| and s,s; > 0):

1. The filter should act isotropically.
2. Structures smaller than |s;| are not present in the filtered image B (%).
3. Structures larger than |sy| are not present in the filtered image.

Generalizing an idea from Wang et al. [8] to our scale-space definition we
get the following recursive algorithm that alternately high- and low-pass filters
the image starting with high-pass filtering at the coarsest scales:

Proposition 3 A family of perfect morphological band-pass filters with limiting
blob sizes —0o = s_p_1 < S_p < ... < S50 =0< ... < 8y < Spp1 = 00 18
obtained by the following formula (s, must be larger than the image diagonal):

for sp >0: H§Z+i (?) = f(@ )
BSk+ (1‘) = (H3k+1 * d%)(f)
Hsk(f) = H3k+1(f) - BS:+1 (f)

(6)

and for s <0: H, ... (&) = [f(@
BESE) = (Ha, 0d,)(@)
Hs (%) = Hs (%) — Bs, 7' (%)

where the resulting B;! (¥) represent a morphological decomposition of the image
into bands of different blob sizes and curvature polarities (H,, are intermediate
high-pass filtered images). The original image can be exactly reconstructed from
both the positive and the negative parts of the decomposition (proof see [6]):

n 0
YoBE(@ =) B = f(@) (7)
k=0 k=—n
4 Appropriate scale measurements in
opening-closing scale-space
Similar to the proposal of Lindeberg [7], we identify the local appropriate
scale as the scale that maximizes the response of a normalized band-pass filter

with respect to scale:
Definition 5 The local appropriate scale of the image at ¥ is defined as:

Btz () ) .

Sk — SkF1
where s, _1 applies if sy > 0 and sg41 if sy < 0. The expression Bi:xl (%)/(sx —
sp1) will be called normalized band-pass filter.

54 (%) = arg,, (skmznc}?s

Figure 1 (right) shows the result of this operator on a test image (bright-
ness encodes the magnitude of the appropriate scale). Note that the scale values
within a region of constant width are constant. Figure 2 illustrates the appli-
cation of the new appropriate scale operator to a natural image. As in the test
image, the scale values correspond to the width of the region a pixel belongs
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Figure 2: Appropriate scale measurements in an example image. For better

visibility positive and negative scales are decomposed into two images (left:
positive scales, right: magnitude of negative scales).

to. Scales are positive if this region is darker then its surroundings, negative
otherwise. Another fact is, however, somewhat surprising: The borders between
areas of positive and negative scale (”zero-crossings” of the appropriate scale)
correspond to image edges (local maxima of the image gradient). Although this
very desirable behavior (which can be used to obtain a parameter-free binariza-
tion) has been justified experimentally on a large number of images, we do not
yet have a full theoretical explanation in 2D. An analysis of the scale opera-
tor in 1D indicates, however, that the maximum of the normalized bandpass

Bix_ (z)/(sk — skx1) is indeed correlated with local maxima of the gradient

' (z) (see [6]).

5 Application to Region Segmentation

We now use the appropriate scale measurements to derive paremeter-free egde
detection and ridge detection methods. These are then combined into a seeded
region growing algorithm as described in [5].

The observation that zero crossings of the approriate scales coincide with
local maxima of the gradients suggests that we apply a standard zero crossing
detector to the scale image to get an parameter free edge operator. Figure 3
left shows the result of this operator on a subregion of figure 2. Regions can
be determined by inverting the edge image. Due to missing edges these regions
tend to be undersegmented.

A parameter free ridge operator is obtained by tunig a standard ridge de-
tector in Gaussian scale-space towards the appropriate scales measured in mor-
phological scale-space. We measure the ridge strength by the eigenvalues of the



Figure 3: Left: Edges obtained as zero crossings of the appropriate scale im-
age (detail). Right: Nonmaxima suppression of appropriate scale ridges (black:
maxima, white: minima) (detail)

Hessian matrix (P44 (Z, s) etc. denote second derivatives at scale s in Gaussian
scale-space):

=)

By (7, 5)

— _ éx
H(Z,s) = < B,y (7,5)

Y
Yy

The eigenvalues are functions of scale:

m,2(F, 8) =
5 (0 (7,5) + 0y (7, 5) 2 /[Bra (7o) = By (723 F Wy (7,37
(9)
Now we use the appropriate scale s4(#) to select the correct scale of the
ridges, where the larger eigenvalue is used for positive scales and the smaller for
negative scales:

) >0)
) <0)

8] &)

T(f) :{ 71(5’514(5)) (SA( (10)

72(% —sa(F))  (sal

Since the appropriate scale depends only on the width of the ridge and does
not change near edges, this operator shows a very good step edge supression.
The actual ridges are now found by a standard non-maxima suppression in the
direction of largest curvature (figure 3 right).

One problem with this technique has not been resolved completely: The
appropriate scales measured within one region change rapidly when the region’s
width changes rapidly. Due to the sampling of the scale coordinate this causes
a jump in the scale measurements (see for example the sky in figure 2). This
in turn causes a jump in the ridge strength measurements which may lead to
incorrect maxima detection (typically several collinear ridges are found instead
of one long ridge). Currently we are simply smoothing the measured scales to
avoid this effect. However, this does not always work, so a better technique is
still needed.

To overcome the shortcomings of these two operators they are combinded
using a technique described in [5]. The segmentation is partitioned into two
steps: seed selection and region growing. Seed selection results in a partial seg-
mentation, where all regions of the final segmentation are already present, but
only a few pixels ("seeds”) are assigned to each region, while most pixels re-
main unlabeled. The actual shape of each region is then found using seeded
region growing [1]: The similarity of pixels w.r.t to an adjacent region (seed) is
measured using an appropriate fitness function (e.g. the local gradient). These



Figure 4: Left: Seeds used to start region growing. Right: Resulting segmenta-
tion.

similarity values are inserted into a global priority queue so that pixels with
high similarity are aggregated first. This procedure ensures that regions always
meet at the pixels that are most distinct from all their neighboring regions. If
the initial seeds represented the desired regions correctly (in particular there
was the right number of seeds) the estimated shapes are very accurate (see [5]).

The process of seed selection is critical for the success of the segmentation.
Therefore [5] proposed a method to combine different sources of seeds according
to their reliability, namely:

1. homogeneous regions. These regions can be found easily by thresholding
the gradients of the image, where the threshold is determined by the noise
distribution as measured in the gradient histogramm. This method pro-
duces oversegmentation (if a conservative threshold is chosen), so we use
it only for large regions that are hard to find with the other methods due
to the large windows that were required then.

2. regions detected by inverting an edge map. These regions tend to be un-
dersegmented due to missed edge segments. The probability that a region
contains missed edges is very low if the region is (almost) convex, so only
those regions are used as seeds.

3. ridges detected by an ridge detection algorithm. These seeds tend to pro-
duce oversegmentation thus we use them only where none of the other
seeds is available.

Using the edge and ridge detection methods outlined above the combined
segmentation algorithm can be adjusted to varying scales in the image. The
seeds used and the resulting segmentation are shown in figure 4. The accuracy
of the segmentation can be seen in figure 5.

6 Conclusions

In this paper we discussed the problem of selecting appropriate window sizes,
i.e. appropriate scales for low-level segmentation algorithms. The lead to the
need of an operator that works prior to feature detection and uniformely all
over the image.

Generalizing morphological decomposition methods we developed a mor-
phological band-pass filter in opening-closing scale-space. It decomposes images
into geometrical structures of different sizes and different curvature (?dark and



Figure 5: Accuracy of segmentation: edges overlaid over original image.

light blobs”) and may be viewed as a morphological analogy to the well-known
Laplacian of Gaussian operator.

Our new appropriate scale operator built upon this morphological band-pass
filter fulfills the outlined reqirements and proved suitable to tune different fea-
ture detectors towards appropriate scales. Using this idea we defined parameter
free edge and ridge detection operators. Combining these operators according to
their strengths resulted in a very satisfying segmentation. Improvements are still
possible by further improving the basic operators and by better understanding
and measuring their specific strengths and weaknesses.
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