
Recognizing User Intentions in Incremental Configuration Processes

Thorsten Krebs
Labor for

Artificial Intelligence
University of Hamburg

Germany
krebs@informatik.uni-hamburg.de

Thomas Wagner
Center for

Computing Technology
University of Bremen

Germany
twagner@tzi.de

Wolfgang Runte
Center for

Computing Technology
University of Bremen

Germany
woru@tzi.de

Abstract

Increasing market demands concerning customer
requirements and market pressure from competitors
force several enterprises to diversify their product
range. Offering more and more product variants
has the implicit impact of growing development
process complexity. Although many configuration
problems can be solved with knowledge-based con-
figuration, the usage of configuration tools is very
often restricted to domain experts. In this paper
we extend knowledge-based configuration with a
novel plan recognition approach. We show that the
combination of configuration and plan recognition
simplifies the use of configuration tools for non-
configuration experts and non-domain experts.

1 Introduction
Increasing market demands concerning customer require-
ments and market pressure from competitors force enterprises
to diversify their product range. Offering more and more
product variants has the implicit impact of growing develop-
ment process complexity[Pulm, 2002].

Configuration is perhaps one of the most successful ar-
eas of application for AI-methods. Many real world prob-
lems were solved by using a wide range of approaches vary-
ing from consistency checking methods, intelligent heuristic
search to ontology-based methods, according to the require-
ments of the problem domain[Stumptner, 1997]. Although
many configuration problems can be solved using knowledge-
based configuration, the use of the configuration engine is
very often restricted to domain experts. This is due to the
fact that relation between the selection of components and
the related functionality is often very complex to represent.
These requirements are usually met e.g. in B2B-scenarios1

where the costumer also is a domain expert. However in B2C-
scenarios2 the customer usually has very restricted knowl-
edge about the problem domain and almost none concern-
ing configuration methods. Moreover, it is difficult for the
customer to define his requirements in terms of the solution.
Given he wants to configure a multimedia-PC for watching

1Business To Business
2Business To Costumer

DVD movies and game playing, without expert assistance he
will not be able to choose appropriate attribute value pairs for
e.g. video card chips, processor speed or front side bus rate
(FSB) and is hardly aware of the consequences. Thus, the
quality of generated solutions can differ substantially in com-
parison to expert solutions. The knowledge base itself offers
only little help since the domain knowledge usually is defined
in terms of the solution: objects and restrictions between ob-
jects and their properties are defined by a domain expert who
has detailed knowledge about the underlying domain theory.
Furthermore, the knowledge base is built with respect to dif-
ferent technological aspects like updating and maintaining the
knowledge, the configuration method used (i.e. the express-
ibility of the knowledge representation language) and opti-
mality aspects. As a result, the knowledge base rarely reflects
the problem-oriented view of amateur customers.

In order to support users in a custom fashion, configuration
methods should be used in combination with methods that
help to compensate the lack of expert knowledge. The three
major aspects are:

Generating Explanations: The generation of explanations
(e.g. reasoning maintenance systems: TMS, ATMS,
JMTS)can provide a user with useful information about
consequences of decisions during the configuration pro-
cess.

Incremental Configuration: An incremental configuration
approach supports the user with direct feedback about
each decision made during the configuration process.
This way the user is enabled to browse through the space
of possible solutions and has a better basis for the next
decisions. This approach also simplifies the choice of
configuration decisions to retract (e.g.undo).

Plan Recognition: Another promising approach is the use of
plan recognition. This method can be used to infer user
intentions and to use this information to guide the con-
figuration process, i.e. the extended use of appropriate
(automatic) calculation methods and defaults to disbur-
den the user from difficult decisions.

In this paper we focus on the use of plan recognition in
an incremental configuration process. We show that recent
approaches can be successfully integrated in order to guide
non-expert users through the configuration process. We use
the configuration of personal computers as an example. This



is a simple but well understood domain concerning the pos-
sible dependencies between hardware components and their
properties.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief survey on incremental configuration with
focus on the configuration engine EngCon3. Section 3 gives
a short overview about plan recognition methods with focus
on applicability in incremental configuration scenarios and in
Section 4.2 we describe the application of plan recognition
in an incremental configuration approach. Section 5 gives a
survey about related work and Section 6 succeeds with a final
discussion.

2 Incremental Configuration
In an incremental configuration process the user enters data
to influence the process and thereby to adapt the solution
to his specific problem description. Almost all recent con-
figuration systems integrate user interaction in the decision
process and thus try to generate a solution that fits best the
customer requirements. The used methods of some prod-
uct configuration engines are quite simple:CAS Configurator
andCameleon EPOS4 (formerly ET-EPOS) for example use
rules and decision trees to manage the configuration process.
While the knowledge base in the CAS Configurator has to
be modeled in the programming language C++, the decision
trees in Cameleon EPOS can be modeled without any pro-
gramming skills using the spread sheet of a standard office
suite.

The camos.Configurator5 (formerly SECON) assists the
interactive configuration process by bidirectional evaluated
rules, calledpassive constraints. By request of the user, it
is possible to break such a restriction. This results in an in-
consistent configuration but it also increases the acceptance
of the system for sales and distribution.

Due to the fact that these tools use simple mechanisms,
they provide a good consumer acceptance. They are suitable
for domains with a manageable amount of possible solutions.
But the use of rules and/or decision trees makes it impossible
to represent complex relations and dependencies.

The intention of our approach is to support engines which
are able to handle large scenarios with complex relations
and dependencies. Examples for this class of configuration
engines areILOG JConfigurator, Selectica ACE Enterprise,
Tacton Configurator6 (formerly SICS Obelics) andEngCon.
Except for EngCon all of these configurators are focused on
constraint propagation techniques.

Modern constraint-based configuration engines mostly use
a form of dynamic extension of the traditional (static) con-
straint paradigm:generativeconstraint satisfaction[Stumpt-
neret al., 1998]. A generative constraint satisfaction problem
(CSP) is an extension of dynamic CSPs[Mittal and Falken-
hainer, 1990] which complies with the characteristics of con-
figuration tasks. During each configuration step the config-
uration is potentially expanded by additional components.

3www.encoway.de
4www.solyp.de, www.access-commerce.com
5www.camos.de
6www.ilog.com, www.selectica.com, www.tacton.com

Generative CSP is an elegant way to handle problems where
the number of involved components is not known from the
beginning.

In contrast to most configuration engines EngCon does not
focus on a single approach (rules, decision trees, constraints,
etc.). It combines different approaches for the configuration
of complex scenarios. The outcome of an incremental con-
figuration process in EngCon is exactly one solution, or none
if the customer requirements are not compliant with the com-
ponents’ dependencies.

2.1 Configuration in EngCon
Configuration describes composing a complex product from
individual components, out of a vast amount of possible prod-
uct variants with respect to customer requirements and depen-
dencies between and within these components. For achieving
this, the configuration stepsparameterization(i.e. setting at-
tribute values),decomposition(i.e. instantiating parts of an
aggregate) andspecialization(i.e. “casting” an object to a
more specific concept) are used.

The configuration knowledge is separated into object de-
scriptions and their attributes (domain knowledge), the pro-
cess describing a sequence of configuration steps (procedural
knowledge) and atask specification[Ranzeet al., 2002]. This
is further elaborated in the following subsections.

Domain Knowledge
Objects in the application domain (domain objects) are de-
scribed by means ofconcepts. Concepts are represented
through a name, their parameters (e.g. numbers, string, inter-
vals or sets of numbers) and their relations to other concepts.
There exist taxonomic (is-a) and compositional (has-parts)
relations and restrictions (i.e. constraints) between domain
objects and / or their properties.

Procedural Knowledge
While configuration steps affect the configuration (e.g. spec-
ifying object types or their attributes), procedural decisions
have a strong influence on dynamic configuration flow of the
configuration process (i.e. the order in which the configura-
tion steps are evaluated). Thus, declarative procedural knowl-
edge defines knowledge for the explicit navigation in the so-
lution space.

The mechanisms used to control the configuration pro-
cess are calledstrategies. Strategies are executed in a pre-
defined order, based on assigned priorities. Different knowl-
edge types for controlling the configuration process are cov-
ered. These includefocal knowledge, describing which com-
ponents are important,agenda selection criteriafor selecting
which configuration steps in the agenda should be executed
andcalculation methodsstating how a configuration step is
executed.

The configuration procedure in EngCon is cyclic. The fol-
lowing steps recur for each configuration step:

1. The current partial configuration is examined for possi-
ble actions that can further develop this configuration.
These configuration steps are collected in an agenda.

2. Definable agenda selection criteria are evaluated to gen-
erate a ranking for the possible actions. These criteria



are based on the concepts defined in the knowledge base
and their attributes.

3. The selected configuration step is executed. Different
calculation methods like user interaction or using default
values can be applied.

4. The constraint net is propagated. Inconsistencies in the
current partial configuration can be detected.

Task Specification
The task specification describes the configuration objective.
This specifies the demands a created configuration has to ac-
complish. An object out of the knowledge base is declared to
begoal conceptand gets specified in its attributes during the
configuration process.

3 Plan Recognition
Plan recognition has been applied to many fields of AI result-
ing in a wide range of AI-applications ranging from medi-
cal and technical diagnoses, natural language understanding
to story interpretation and planning (e.g.[Ng and Mooney,
1991; Hobbset al., 1993]). Approaches to plan recognition
usually focus on one of the following objectives:

1. prediction of future actions of a system or an agent, and

2. generation of explanations of observed actions based on
some background theory.

The latter objective is usually directly associated with ab-
ductive inference. Abduction was introduced C.S. Pierce in
his theory of science but has not gained much attention in
AI until the early 90’s (perhaps except for[Pople, 1973]).
Beginning with [E. Charniak, 1985], plan recognition and
especially abductive inferences have been promoted in AI-
research. Abductive inference can be described by the fol-
lowing inference rule:

α→ β, β

α

Given some observationβ, an abductive inference infers
from β to the causeα. Given a logical background theory,
∆ can be described by two key properties (a)α ∪ ∆ ` β
and (b)α ∪ ∆ 6`⊥7. Therefore, abductive inference can be
viewed as an inversion ofmodus ponenswith some important
differences. Abduction is a non-monotonic inference with a
much less strict interpretation of logical implication (material
implication). In order to generate reasonable results on ab-
duction logical implication has to be interpreted as a relation
from cause to effect (which is clearly not the case formodus
ponens) (for detailed discussion on the precise semantics of
abductive reasoning refer to[Kautz, 1987]).

Generating explanations by abductive inference can be di-
vided into two phases:

1. hypothesis generation and

2. hypothesis selection.

7Inconsistency

In the first step all valid hypothesis are generated. Different
methods have been proposed for this process depending on
the underlying formal model of the represented knowledge.
In the second step, an appropriate hypothesis has to be cho-
sen among the candidates generated in the first phase8. The
choice of the appropriate selection criteria is essential and
strongly depends on the problem domain. In technical do-
mains like diagnosis of technical devices syntactic selection
criteria like global, syntactic minimality (Occam’s Razor) can
be used successfully since an expert is able to choose among
different plausible candidate sets. On the other hand, in do-
mains like natural language understanding and pragmatics,
domain-dependent selection criteria seem to provide better
results. They allow e.g. to define different levels of granu-
larity.

But considering prediction, the abductive approach pro-
vides only a weak indirect support: the generated explana-
tion can be used to build up a rough prediction. Furthermore,
the representational restriction on horn clauses together with
the results concerning the complexity of abduction makes it
difficult to use in configuration approaches.

The abductive approach to plan recognition clearly fo-
cuses on generating explanations and is based on aclosed-
world-assumption(CWA) and is therefore not able to handle
new knowledge/observations without extending the knowl-
edge base. With the focus on prediction of future events, dy-
namic and static belief networks have been introduced (e.g.
[Albrecht et al., 1998], [Intille and Bobick, 1998]). Based
on observations of previous actions, the aim is to predict pre-
cise future behavior in uncertain environments with incom-
plete knowledge. Dynamic belief networks (DBN) are char-
acterized by an incremental growth over time. The nodes rep-
resent the domain variables at different points of time as an
ordered sequence integrated in a belief network. DBN have
been proved to be a successful approach in domains with a
restricted set of relevant variables. However in configuration
domains with up to thousands of domain variables, the com-
plexity of this approach suffers from inefficient inference.

4 Extending the Goal Graph
4.1 Goal Graph
In order to support users with different background knowl-
edge, both effective prediction of future actions and gener-
ating explanations is needed. A graph-based approach that
captures these requirements was introduced by Hong[Hong,
2001]. A goal graph is used to recognize user intentions
and therefore provides the configuration context. This can be
used to generate explanations. In the context of knowledge-
based configuration, goals represent configuration solutions –
i.e. special characteristics of the selected goal concept from
the configuration model. The PC for instance potentially can
serve for hundreds of features. This wide range of function-
ality is not easy to overview for the user.

This approach is influenced byplanning graphsas defined
by [Blum and Furst, 1997] andconsistency graphsby [Lesh

8Often these phases are tightly coupled in order to minimize the
generation of redundant hypothesis i.e. the hypothesis selection cri-
teria are already used during generation.



Figure 1: Goal Graph

and Etzioni, 1995]. Goal graphs are constructed and analyzed
in two stages. First, the graph is constructed with the knowl-
edge of observations. After that, the content of the graph is
evaluated, concluding in goal assumptions.

Figure 1 depicts a goal graph that represents two time steps.
The first recorded configuration step is the integration of a fast
VGA card; this leads to two goal assumptions: a multimedia
PC and a PC for game playing. In the second time step, the
integration of a DVD-ROM was observed. This strengthens
the assumption that the multimedia PC is the user intention
and makes the goal assumption of a PC for games playing
redundant, i.e. negligible.

A goal graph is growing incrementally with the amount of
observed configuration steps and the states reached by these
actions. There is always an initial node where the actions,
states and goals are successively attached in chronological
state levels. Different kinds of edges are used to combine
nodes in the graph, depending on the types of nodes (see Fig-
ure 1). Goal nodes in the current state level describe potential
user intentions.

4.2 Extending the Goal Graph for Incremental
Configuration

The goal graph cannot directly be adopted for usage in
EngCon. As we will further elaborate, a few adaptations are
necessary in order to gain assumptions which are sufficiently
accurate e.g. for dynamically changing the configuration pro-
cedure. Using goal graphs, a known problem is the potential
recognition of equally plausible plans (as shown in Figure 1
where in the first time step no clear assumption can be given).
The following two aspects are identified in order to improve
the quality of goal assumptions in the domain of incremental
configuration:

Emphasizing User Actions: In the original algorithm, the
number of relevant actions is used to minimize this prob-
lem, but this way the content of actions remains hidden.
Actions (i.e. configuration steps) are triggered by user
interaction as well as system sided. But the user has
no explicit impact on system sided decisions (e.g. taxo-
nomic inferences or constraint propagation). Thus, em-
phasizing user actions in contrast to system decisions
should yield to a more precise recognition of user in-
tentions. When the user for example selects a specific
motherboard for his PC, only one processor type might
stay admissible. In this case the system would automati-

cally specialize the processor without the user choosing
such a configuration step.

Weighting of Goal Descriptions: Goals have a set of goal
descriptions that make this goal a possible user inten-
tion. Such goal descriptions are not equally assessing the
decision of an assumption and thus should not be seen
equally significant. While some goal descriptions can be
considered essential for a specific goal, others may only
be casual hints. Defining a weighting for goal descrip-
tions should also help advancing the quality of assump-
tions. While network cards are essential in servers, they
may also exists in other PC types. Integrating a joystick
for example gives a much stronger hint that the desired
PC might be used for gaming.

The first criterion for computing the respective goals is
based on the observed actions. All relevant actionsArel (i.e.
actions within a path leading from the initial state to the par-
ticular goal) are summed up and divided by the number of ac-
tionsA in the whole graph. As actions are not seen as equally
significant, their emphasized9 values are used. A number be-
tween0 (no action is relevant) and1 (all actions are relevant)
is computed:

Criterionaction =
∑
Arel∑
A
7→ [0 .. 1] with A > ∅

The second criterion is the relation between valid goal de-
scriptions and the descriptions of the particular goal. Like in
the previous paragraph, here the emphasized values are used
too, because goal descriptions are also not equally significant
as well. The number of valid goal descriptionsDgraph is
divided by the number of descriptions that point to the partic-
ular goalDgoal. This also computes a number between0 and
1.

Criteriondescription =
∑
Dgraph∑
Dgoal

7→ [0 .. 1]

In order to consider both of the above criteria, they have
to be combined. Multiplying them computes a stochastically
interpretable value inside the interval[0 .. 1]. This value is rel-
atively small since empirically proved only a small amount of

9During the test phase, different values for multiplying the num-
ber of user interactions have been used (see also the evaluation in
4.4)



the observed actions (i.e. the configuration steps) is relevant
for a particular goal. Optimization is gained by stretching the
values for all potential goals so that the probabilities forn
(partially) recognized goalsg ∈ G sum up to1:

Psum =
n∑
i=0

P (gi) = 1

4.3 Algorithms
Goal Graph Construction The initial state is represented
by a first state node. Actions are attached to states which
describe a precondition for this action, and then states again
are attached to actions as effects of these actions. Goals are
attached to states which are valid goal descriptions for this
goal. Over consecutive time steps, a structure alternating be-
tween states, actions and goals is constructed. Goal nodes in
the current time step are potential user intentions.

In the following we present simplified pseudo-code algo-
rithms for the action and goal expansion of the goal graphG
in any time stepi.

actionExpansion(A)

1. For all valid statesS in G iterate all actionsa ∈ A
2. If anys ∈ S is precondition fora anda 6∈ G

(a) AttachAction(a) toG
(b) AttachPreconditionEdge(s, a) toG
(c) For every effecte of a

i. Attachstate(e) toG
ii. Attach effectEdge(a,e)toG

3. For all valids ∈ S also valid in in the state leveli+ 1
(a) Attachs′ = state(s) toG in i+ 1
(b) AttachpersistenceEdge(s, s′) toG

goalExpansion()

1. For all valid statesS in G iterate all goalsg ∈ G
2. If ¬(g ∈ G) and if anys ∈ S is goal description forg

(a) Attachgoal(g) toG
(b) AttachdescriptionEdge(s, g) toG

Goal Graph Analysis

Definition 4.1 (Valid Plan) Given a goal g and a plan
p =< A,C > with A a set of recorded actions andC a set
of temporal constraints (ai < aj) overA. Given the set of
initial statesI, p is a valid plan forg overI if and only if the
actions inA can be executed inI in any order consistent with
C, andg is fully achieved after that.

Also, goals can be partially recognized, i.e. only a part
of the goal descriptions of the particular goal are validated
through states in the goal graph. In this case the particular
characteristics of the configuration solution are not yet recog-
nized but a subset of goal descriptions is.

In the following we also present a pseudo-code algorithm
for the goal graph analysis.

goalGraphraphAnalysis()

1. Set countersi = 0, j = 0 and the set of recognized goals
Grec ← ∅

2. For allg ∈ G in state leveli iterate all actionsa ∈ A
3. If there is a path froma to g

(a) Incrementi by the weighting ofa
(b) Incrementj by the weighting of the corresponding

goal descriptiondg

4. Set probability ofg to i∑
a∈G
× j∑

dg inG

5. Addg with this probability toGrec

Using goal graphs, one major problem is that concurrent
goals may be recognized (in our example: multimedia PC
and PC for game playing). This is the case when some of
the goals have the same goal descriptions. A partial goal is
redundantif the set of valid goal descriptions is a subset of
another partial or fully recognized goal at the same time. A
fully recognized goal isredundantif the set of valid goal de-
scriptions is a subset of another fully recognized goal.

This mechanism consumes very little resources for plan
recognition. It is proved that the algorithm can be executed
in polynomial time. Furthermore, an efficiency growth could
be seen in contrast to other graph-based methods like consis-
tency graphs.

Theorem 4.1 (Goal Graph Construction is polynomial)
Given a goal graph witha observed actions,t time steps,
i initial states andg goals. Givenae the largest number
of effects of any action andgd the largest number of goal
descriptions of any goal. In any time step the complexity of
constructing the goal graph is polynomial ina, ae, g, gd, i
andt.

Proof 4.1 The maximum number of state nodes int is i +
aea, the maximum number of action and goal nodesa andg
respectively. Thus, int there exist at mostn = i+aea+a+g
nodes and int+1 there existn+aea+a+g. The complexity
for generating the nodes new int+ 1 isO(aea+ a+ g) and
is therefore polynomial.

In t + 1 there exist at maximumi + aea persistence,
(i + aea)a precondition, aea effect and ggd goal de-
scription edges. The complexity for generating all edges
isO(aea2 +2aea+ ia+ i+ggd) and is thus also polynomial.

Theorem 4.2 (Goal Graph Analysis is polynomial)Given
a goal graph witht time steps andg complete or partial
recognized goals at time stept. Givengd the largest number
of any goal description anda the number of observed ac-
tions. The number of possible paths between goals and their
relevant actions and the time for recognizing all consistent
goals is polynomial ina, g andgd.

Proof 4.2 For any given goal in the graph, the maximum
number of paths between relevant actions and the goal is the
number of goal descriptions, i.e.gd. At time stept there are
at maximumg goals anda actions that are possibly relevant
to this goal. Thus, the complexity for computing these paths
isO(g(gda)) and therefore polynomial at any given time step.



4.4 Evaluation

Note: The results presented in this paper can be seen as pre-
liminary results. The tests have been carried out with a small
number of students at the Center for Computing Technolo-
gies10, University of Bremen.

The major issue about accuracy of an algorithm is the fre-
quency of right assumptions. Moreover, the point in time dur-
ing the configuration process, when these decisions are made
can be important. This way they can have an explicit impact
on the further configuration procedure.

The plan recognizer identifies user intentions in early con-
figuration phases. This is not necessarily the case, since the
generated probability values fluctuate and sometimes even
lead to false assumptions. In general however, an increas-
ing certainty in identifying the right goals can be noticed and
very good assumptions are already made in early configura-
tion stages. The generated results are very different concern-
ing user-specific characteristics of the predefined goals and
user skills (i.e. both, background knowledge in the current
domain and the ability to use EngCon).

For general statements about the algorithm, results are
evaluated in a combined fashion – i.e. probabilities for recog-
nized goals have been averaged. In early stages of the config-
uration process, this averaged probability for correct assump-
tions starts with ca. 40%. But this value increases very fast
over time with every observed action. In average, a probabil-
ity of over 70% is gained for correctly predicting user inten-
tions. This value may seem low at first sight, but one has to
take into account that in an example with 5 partially recog-
nized goals, the correct assumption reaches these 70% while
the other 4 goals together make up the missing 30%.

Quantifier Result
1 58.2%
2 61.6%
3 63.8%
4 63.8%
5 63.9%

Result
with 63.8%
without 57.3%

Table 1: Enhancements through Algorithm Adaptations

The adaptations proposed in this paper (Section 4.2) im-
proved the accuracy of the generated assumptions in the do-
main of incremental configuration. A probability growth of
ca. 5% was reached for both, emphasizing on user interac-
tions in contrast to system decisions (Table 1 on the left) and
also for treating goal descriptions with various significance
(Table 1 on the right). During the test phase, the quantifiers1
to 5 have been used to emphasize user decisions. As shown in
Table 1 on the left, accuracy of the predictions could be im-
proved. Also, different quantifiers for goal descriptions have
increased the accuracy of the algorithm. Attaching a laser
printer e.g. is treated to point more likely to an office PC than
integrating much memory points to a multimedia PC’s as the
latter may also yield to other PC types like data servers. Table
1 on the right shows the enhancement of differently signif-

10www.tzi.org

icant goal descriptions (with) in contrast to treating all goal
descriptions alike (without).

5 Related Work
Plan recognition has been successfully applied to various do-
mains[Carberry, 2001]. One example domain for the usage
of goal graphs is the recognition of UNIX commands being
the original field of Hong’s algorithms. Also, several ap-
proaches for making the configuration process easier for non-
expert users exist. Feature-oriented approaches[Kanget al.,
1990; Heinet al., 2000] e.g. aim at hiding technical details
from the user of configuration engines by abstracting the sys-
tem functionality in terms of features. The integration of goal
graphs in the domain of incremental configuration shown in
this work is a novel approach.

6 Conclusion
In this paper we have shown how a graph-based plan recogni-
tion approach can be applied to an incremental configuration
process in order to predict user intentions. The proposed al-
gorithm recognizes configuration goals with high accuracy.
Due to short processing times, good results are also expected
for growing knowledge bases and plan libraries. A problem
is the relatively high error rate at configuration start. This can
be covered with methods from machine learning; user spe-
cific knowledge (e.g. knowledge about domain parts in which
the user is expert or novice) can be collected. Every time a
known user starts a configuration, his recorded preferences
can be loaded and information about his behavior is present
at early stages in the configuration process.

In the domain of knowledge-based configuration, goal
recognition can be deployed for generating a better flow of
configuration steps. Information about the context of config-
uration decisions can help in dynamically creating a config-
uration process that supports users with different background
knowledge. For all application areas of the approach pre-
sented in this paper the major aspect is the classification of
potential configuration goals.

Moreover, information gained from the goal recognizer
can be deployed in other fields, e.g. in generating explana-
tions. On basis of the current context, situations with un-
reachable goals can be recognized and explained to the user.
Also, explanations are needed to justify system-sided choices
(e.g. automatic specializations based on taxonomic infer-
ences)[Bauer, 1996]. This way, the user’s confidence in col-
laborating with such components can be advanced.

The configuration process can be divided into phases.
Within a domain a user might have detailed background
knowledge for some parts and less or even no knowledge
about other parts. Such context sensitive coherence can be
recognized within phases and e.g. the granularity of expla-
nations or system decisions can be modified to fit the current
situation.

References
[Albrechtet al., 1998] D. W. Albrecht, I. Zukerman, and

A. E. Nicholson. Bayesian Models for Keyhole Plan



Recognition in an Adventure Game.User Modeling and
User-Adapted Interaction, 8(1-2):5–47, 1998.

[Bauer, 1996] M. Bauer. Justification of Plan Recognition
Results. InProceedings of 12th European Conference on
Artificial Intelligence (ECAI-96), pages 647–651, 1996.

[Blum and Furst, 1997] A. L. Blum and M. L. Furst. Fast
Planning through Planning Graph Analysis.Artificial In-
telligence, 90:281–300, 1997.

[Carberry, 2001] S. Carberry. Techniques for Plan Recog-
nition. User Modeling and User-adapted Interactions,
11:31–38, 2001.

[E. Charniak, 1985] P. McDermott E. Charniak. Introduction
to Artificial Intelligence. InAddison Wesley, Meleno Park,
California, 1985.

[Heinet al., 2000] A. Hein, M. Schlick, and R. Vinga-
Martins. Applying Feature Models in Industrial Settings.
In Proc. of First Software Product Line Conference - Work-
shop on Generative Techniques in Product Lines, Denver,
USA, August, 29th 2000.

[Hobbset al., 1993] J.R. Hobbs, M.E. Stickel, D.E. Appelt,
and P.Martin. Interptetation as Abduction. InAI 63 / 69–
142, 1993.

[Hong, 2001] J. Hong. Goal Recognition Through Goal
Graph Analysis. Journal of Artificial Intelligence Re-
search, 15:1–30, 2001.

[Intille and Bobick, 1998] S. Intille and A. Bobick. Rep-
resentation and Visual Recognition of Complex, Multi-
Agent Actions using Belief Networks, 1998.

[Kanget al., 1990] K. Kang, S. Cohen, J. Hess, W. No-
vak, and S. Peterson. Feature-oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-
90-TR-021, 1990.

[Kautz, 1987] H. A. Kautz.A Formal Theory of Plan Recog-
nition. PhD thesis, University of Rochester, 1987.

[Lesh and Etzioni, 1995] N. Lesh and O. Etzioni. A Sound
and Fast Goal Recognizer. InProceedings of Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
95), pages 1704–1710, 1995.

[Mittal and Falkenhainer, 1990] S. Mittal and B. Falken-
hainer. Dynamic Constraint Satisfaction Problems. In
In Proc. of 8th National Conf. on Artificial Intelligence
(AAAI), pages 25–32, 1990.

[Ng and Mooney, 1991] H.T. Ng and R.J. Mooney. An Ef-
ficient First-Order Horn-Clause Abduction System based
on the ATMS. InAAAI–91 / 494–499, 1991.

[Pople, 1973] H. Pople. On the Mechanisation of Abductive
Logic. In University of Pennsylvania, Theorem Proving
and Logic II, Session 6, 1973.

[Pulm, 2002] U. Pulm. Configuration Tools and Methods
for Mass Customization of Mechatronical Products. In
Proc. of 15th European Conference on Artificial Intelli-
gence (Configuration Workshop), Lyon, France, July 21-
26 2002.

[Ranzeet al., 2002] K.C. Ranze, T. Scholz, T. Wagner,
A. Günter, O. Herzog, O. Hollmann, C. Schlieder, and
V. Arlt. A Structure-based Configuration Tool: Drive So-
lution Designer DSD.14. Conf. Innovative Applications
of AI, 2002.

[Stumptneret al., 1998] M. Stumptner, G. Friedrich, and
A. Haselb̈ock. Generative Constraint-based Configura-
tion. Artificial Intelligence for Engineering Design, Anal-
ysis and Manufacturing, 12(4):307–320, 1998.

[Stumptner, 1997] M. Stumptner. An Overview of
Knowledge-based Configuration.AI Communications,
10(2):111–126, 1997.


