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Abstract:
Being able to predict events and occurrences which may arise from a current situation is a desirable capability
of an intelligent agent. In this paper, we show that a high-level scene interpretation system, implemented as
part of a comprehensive robotic system in the RACE project, can also be used for prediction. This way, the
robot can foresee possible developments of the environment and the effect they may have on its activities. As
a guiding example, we consider a robot acting as a waiter in a restaurant and the task of predicting possible
occurrences and courses of action, e.g. when serving a coffee to a guest. Our approach requires that the robot
possesses conceptual knowledge about occurrences in the restaurant and its own activities, represented in the
standardized ontology language OWL and augmented by constraints using SWRL. Conceptual knowledge
may be acquired by conceptualizing experiences collected in the robot’s memory. Predictions are generated
by a model-construction process which seeks to explain evidence as parts of such conceptual knowledge, this
way generating possible future developments. The experimental results show, among others, the prediction of

possible obstacle situations and their effect on the robot actions and estimated execution times.

1 INTRODUCTION

The ability to look ahead and anticipate pos-
sible developments and events can be a valuable
asset for robotic systems. By prediction, a service
robot may provide timely assistance to elderly per-
sons, anticipating their needs. A driver assistance
system may brake when perceiving a rolling ball
even before a child following the ball is visible.
Robots seeking an obstacle-free path may antici-
pate the movements of persons crossing their way.
There are several methodological approaches for
realizing predictive power in robots, which will be
discussed in the related-work section of this pa-
per. Our approach is new in at least three respects.
Firstly, it is based on an ontology with occurrence
concepts which may be obtained by conceptual-
izing experiences. Secondly, predictions are per-
formed by the same scene interpretation system
which also recognizes occurrences actually hap-
pening in a scene. Thirdly, the knowledge repre-
sentation framework connects high-level symbolic
concepts with quantitative properties and elemen-
tary robot actions.

Our work is part of the project RACE (for Ro-

bustness by Autonomous Competence Enhance-
ment) featuring a robot which learns from experi-
ences. The RACE architecture, shown in Figure 1,
integrates all essential robot functionalities around
a common ontology and robot memory. Hence
episodes experienced by the robot and instructions
about how to perform a task can be used by the
robot to establish new concepts and integrate these
into the ontology. The concepts of the ontology are
the basis for scene interpretation as well as predic-
tion. Prediction is independent of the way con-
cepts have been obtained, hence learning will not
be addressed in this paper. The example domain of
project RACE is a restaurant where the robot acts
as a waiter. This is a highly dynamic domain with
guests entering and moving about, persons or side
tables occasionally blocking a path, and waiter ac-
tivities ranging from serving guests to clearing ta-
bles. Hence predicting possible courses of events
may be quite helpful.

The paper is structured as follows. Section
2 describes ontology-based scene interpretation
as implemented in the framework SCENIOR (for
SCEne Interpretation with Ontology-based Rules).
Section 3 describes a running example of predic-
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Figure 1: Relevant part of RACE architecture.

tion performed by a robot in the restaurant domain.
Section 4 describes the application of SCENIOR
to the running example. Section 5 evaluates the re-
sults. Section 6 discusses related work. Section 7
draws some conclusions.

2 ONTOLOGY-BASED SCENE
INTERPRETATION

In this section we give an overview of the
scene interpretation system SCENIOR which is in-
tegrated in the RACE system and used for scene
interpretation as well as prediction. SCENIOR
has been designed as a domain-independent frame-
work for high-level scene interpretation. It can be
adapted to different application domains by sim-
ply exchanging the conceptual knowledge base,
represented in the standardized ontology represen-
tation language OWL! and augmented by con-
straints expressed in the semantic web rule lan-
guage SWRL?. Figure 2 shows the main compo-
nents of SCENIOR. The ontology can be used to
automatically generate the knowledge structures
and rules for an operational interpretation system,
consisting of a JESS® rule engine, a constraint
solver for quantitative temporal constraints, and
an inference engine for probabilistic information
in terms of Bayesian Compositional Hierarchies
(BCHs) (Bohlken et al., 2013).

As described in (Neumann and Mdller, 2006),
conceptual structures for scene interpretation usu-
ally form compositional hierarchies consisting of

"http://www.w3.org/TR/owl2-overview/

2http://protege.cim3.net/cgi—bin/wiki.pl?
SWRLLanguageFAQ

3nttp://wuw. jessrules.com/

aggregates at a higher abstraction level with aggre-
gates at a lower abstraction level as parts, ‘prop-
erties’ in OWL syntax. In SCENIOR, composi-
tional hierarchies of the ontology are converted
into hypotheses structures which play the role of
templates for the recognition process and for pre-
diction. The tokens of a hypothesis structure rep-
resent the events which can be predicted.

The temporal structure of aggregates, speci-
fied by SWRL rules in the ontology, is converted
into quantitative constraints on durations of com-
ponents and in gaps between components on tem-
poral relations between components in a temporal
constraint net (TCN). Spatial information is repre-
sented in terms of events in predefined areas. The
interpretation process is incremental and can oper-
ate in real-time for everyday dynamic scenes. Its
input data are primitive states and occurrences as
perceived by the robot’s perception system, and el-
ementary robot actions logged by execution moni-
toring. As an example, a typical input could be (At
guest] doorArea 0:20:33 0:20:56), asserting that a
guest is within a predefined door area in the given
time interval.

The interpretation system, realized by the JESS
rule engine, tries to assign evidence, obtained from
low-level image analysis in terms of primitive
states and occurrences, to leaves of the hypotheses
structures, instantiating corresponding concepts. If
there are several possibilities, the system estab-
lishes a separate interpretation thread for each al-
ternative. The quantitative temporal information
of incoming evidence is used to update the TCN. If
the temporal constraints cannot be satisfied, the in-
stantiation of that thread fails. When all parts of an
aggregate are instantiated, the aggregate is instan-
tiated as a whole and treated as input for higher-
level aggregates. This way, a multi-thread inter-
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Figure 2: Components of SCENIOR scene interpreta-
tion system.



pretation process is realized, with fully instantiated
hypotheses structures as final output.

Alternative interpretations can be ranked, also
in intermediate interpretation stages, based on
probabilistic aggregate models. This way, weak
interpretation threads can be discarded, realizing
a Beam Search. Probabilistic ranking is currently
not used for prediction.

SCENIOR is designed to be robust against
missing input, due for example to limitations of the
robot’s perception. To achieve that, SCENIOR has
the ability to infer (to hallucinate in SCENIOR-
jargon*) missing evidence if it helps to complete
higher-level aggregates. This ability is also used
to predict future developments of a scene, as will
be described in Section 4.

3 EXAMPLE DEMONSTRATOR

Our guiding prediction examples deal with
concepts which the robot has learnt in the scenar-
ios described below. This is the short version of a
longer demonstrator and it is meant to show how
the robot predicts events. Note that in the follow-
ing, the usual ontological naming conventions are
used: all names of instance data (individuals) start
with a lower case letter, comprise the name of their
class (or an acronym thereof) and a integer at the
end (except for the robot’s name, which has no
numerical index); names of concepts (classes) are
compound and each component starts with a cap-
ital letter. All other references to individuals and
classes are informal.

Figure 3 illustrates an experimental restaurant
setting, which comprises: a counter (counterl), ta-
bles (e.g., tablel, table2), people (e.g., guestl, sit-
ting on chair), a coffee mug (e.g., mugl), a robot
(trixi) and predefined reference areas for naviga-
tion (e.g. pre-manipulation and manipulation ar-
eas pmaSouthl maSouthl) and manipulation (e.g.
placing area paEastl).

The initial position of the robot is at the
counter, i.e. in the area nearAreaCounterl
(which includes counterl’s manipulation and pre-
manipulation areas), where it has just picked up
mug!l from counterl and is ready to perform the
task of serving it to guestl at tablel, approaching
the guest from the right.

4The term “hallucinate” reflects the idea that “per-
ception is controlled hallucination” which in the Artifi-
cial Intelligence community is attributed to Max Clowes
(1971), although various Internet sources date it as
far back as the German physician and physicist von
Helmbholtz (1821-1894).
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Figure 3: Floor plan of experimental restaurant setting.

Scenario A: The robot starts its navigation
but finds tablel’s manipulation area north
(maNorth1) blocked by a person (personl).
The robot is instructed to wait until personl
has freed the path. After a short while, per-
sonl frees the path and the robot completes its
task.

Scenario B: The robot starts its navigation but
an extension table exTablel blocks maNorth1.
Based on the experience in Scenario A, the
robot decides to wait. After a while, it is
instructed that this kind of obstacle must be
circumnavigated, hence the robot chooses an-
other path, thereby navigates to maSouth1 and
completes its task.

Scenario C: Before starting the task anew and af-
ter having grasped mugl from counterl, the
robot is asked to predict, based on its previous
experience, what may happen next. The robot
will predict three possible alternative courses
of events:

Course 1: maNorth1 will not be blocked, task
will be completed.

Course 2: maNorthl will be blocked by per-
son, task will be completed as Scenario A.
Course 3: maNorth1 will be blocked by table,

task will be completed as Scenario B.

4 ONTOLOGY-DRIVEN
PREDICTION

We now describe ontology-driven prediction
using the scene interpretation system SCENIOR.
Prediction is realized as model construction,
i.e. as a reasoning process which tries to ex-
plain evidence in terms of high-level structures
and this way generates possible future evi-
dence. We restrict prediction to partial model



construction by considering only those con-
ceptual structures which are compositionally
connected to the given evidence. Prediction
follows hypotheses structures in a similar way
as a scene interpretation process, by construct-
ing aggregate instantiations from components.
Consider the general format of an aggregate:
Class: <concept name>
EquivalentTo / SubClassOf:
<superconcept name>
AND <property-1>
<cardinality restriction-1>
< property filler concept-1>

AND <property-N>
<cardinality restriction-N>
< property filler concept-N>

The aggregate may be a property filler for a higher-
level aggregate; simultaneously, properties of the
aggregate may be connected to lower-level aggre-
gates, see Figure 4 for an example of a multi-level
compositional structure.

Given evidence for a property filler, model
construction amounts to asserting the instance of
the aggregate concept as a whole, and in conse-
quence instances of all its other property filler con-
cepts. Asserted instances are recursively treated as
evidence, triggering further aggregate assertions.
Since an asserted instance may be an aggregate
with parts, the process may propagate top-down as
well as bottom-up.

Instantiating a concept in the prediction pro-
cess calls for a value assignment, and different val-
ues may lead to different alternative predictions,
giving rise to a branching future. The following
strategy is pursued:

1. Concepts with symbol values are assigned all
possible instances of compatible class known
so far and, under certain conditions, also a new
instance.

2. Concepts with a numerical value range submit
the current value range to the constraint sys-
tem, leading to a reduced range or to inconsis-
tency. This pertains, in particular, to all time
intervals.

For the RACE domain, the basic idea is to let
SCENIOR go ahead with the current scene inter-
pretation irrespective of real-time, and hallucinate
expected evidence, this way generating a predic-
tion. To illustrate the process, consider again the
compositional structure depicted in Figure 4. As
described in the preceding section, the robot hat
learnt to serve a coffee even if an obstacle is in
the way. The figure shows the detailed composi-
tional structure of the activities when the manipu-
lation area is blocked by a person. The other two
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Figure 4: A multi-level compositional structure. Solid
edges represent conjunctive properties, dotted edges dis-
junctive properties.

versions for a ServeACoffeeShortScene have the
same structure except for differences in the middle
level and in temporal constraints (not shown). The
concept AreaAttachedSAPA specifies that a plac-
ing area (PA) is assigned to a sitting area (SA).
Similarly, a manipulation area (MA) may be as-
signed to a PA, and a premanipulation area (PMA),
where a robot prepares for a manipulation, may be
assigned to a MA.

Note that by exchanging the ontology the pre-
diction procedure is automatically adapted to a dif-
ferent domain.

We now consider the prediction task presented
in the preceding Section in Scenario C. The robot
has the goal to place the mug in front of the guest,
it knows the area attachments as part of its perma-
nent knowledge about the environment. The facts
characterizing the situation are given in terms of
instances of the corresponding concepts, also the
goal which is part of the given prediction situation.
All instantiated concepts are marked by boxes in
Figure 4.

In real robot operations, evidence is pro-
vided by the robot’s execution monitoring
of its own activities, by the robot’s observa-
tions of the environment, and by initializa-
tion with permanent knowledge. Evidence
is presented as fluents using the YAML syn-
tax, shown below for the instance guestAtSAI.
!Fluent
Class_Instance: [GuestAtSA, guestAtSAl]
StartTime: [00:00:00, 00:00:00]

FinishTime: [inf, inf]
Properties:

- [hasPhysicalEntity, PhysicalEntity, questl]
-[hasArea, SA, saEastl]

The fluent specifies that the occurrence gues-
tAtSALl, instance of class GuestAtSA, has begun



at time 00:00:00 relative to the starting time of the
episode, the finish time being unrestricted. The
two bracketed time values can be used to denote
an uncertainty range. The occurrence has two
components, a guest guestl and the predefined
sitting area saEast1 of tablel.

We now sketch the technical steps for
ontology-based prediction with SCENIOR in this
situation. As mentioned before, upon initializa-
tion SCENIOR creates hypotheses structures for
all aggregate concepts of its ontology, including
the ServeACoffee concepts depicted in Figure 4.
Attached to the hypotheses structures are automat-
ically generated interpretation rules, realized by
the JESS rule system. The rules fire if evidence
for any concept arrives. If the evidence fits several
concepts, it is assigned to each alternative, and in-
dependent interpretation threads are created for the
alternatives.

In our case, the evidence describing the pre-
diction situation immediately causes the creation
of six alternative threads representing possible
courses of events, two for each of the three kinds
of ServeACoffeeScene. For each kind, one of the
two threads specifies area instantiations for a ser-
vice from the north, the other for a service from
the south. Since both components of PlaceOb-
jectMug are introduced as evidence, the aggregate
PlaceObjectMug is instantiated immediately, as a
necessary robot activity to achieve goal mugOnPA
postulated as evidence.

SCENIOR now performs prediction by “think-
ing ahead”, realized by advancing a simulated
time. At the beginning of the prediction phase,
the temporal constraint nets in all threads of SCE-
NIOR indicate that the robot should start mov-
ing (MoveBase) to the designated premanipula-
tion area as a possible way to complete evi-
dence for higher-level aggregates (and thus pos-
sibly achieve the goal). Hence MoveBase is hal-
lucinated for each thread, i.e. instantiated in pre-
diction mode without evidence. After a while (of
simulated time), the robot reaches the designated
premanipulation area, and the occurrence Robo-
tAtPMA is hallucinated. In the threads where
blocking is expected, this leads to a completed
Serve ACoffeeShortNotBlockedActivity since the
PutMugToPA has been instantiated earlier.

For the other kinds of ServeACoffeeShort-
Scene the hypotheses graphs imply that the ma-
nipulation area will be blocked and this can be ob-
served by the robot. The occurrences MABlocked-
ByPerson or MABlockedByTable are therefore
hallucinated while the robot is approaching the
premanipulation area. In the case of a person
blocking the area, the robot has learnt to wait until

the area will be freed, and then to continue serving
the placement area from the anticipated manipula-
tion area. In the case of a static obstacle, like a
table blocking the manipulation area, the robot has
learnt to turn around and move to the other side of
the table, serving the guest from the left as an ex-
ception. These activities are hallucinated in their
respective order as the simulated time advances,
and finally the goal is achieved. The alternative
threads allow to predict completion times based on
the temporal model. As it turns out, they differ
considerably for our slow robot waiter depending
on the blocking situation.

Note that SCENIOR typically entertains a
large number of threads during a prediction pro-
cess, often more than one hundred. The threads
represent alternative partial predictions due to am-
biguous assignments (several PMAs and MAs are
possible) and also due to the strategy, adopted for
real-life scene interpretation, to doubt all evidence.
In our prediction experiments, the threads are rated
by a measure of completeness, hence incomplete
predictions are discarded at the end.

S EXPERIMENTS AND
EVALUATION

In this section, we describe experiments car-
ried out with concrete predictions, and a first eval-
uation of the approach. The first prediction ex-
periment is based on the ontological structures
illustrated in Figure 4. SCENIOR has received
background knowledge about area attachments
(areaAttachedSAPA1, etc.), evidence about the
current situation (guestAtSAl, robotAtCounterl,
holdingMug1) and postulated evidence about the
goal mugOnPAL.

Screenshots of alternative predictions deter-
mined by SCENIOR for this evidence are shown
in Figures 5 and 6 for Course 2 and Course 3 of
Scenario C, respectively, as described in Sections
3 and 4. The screenshot for Course 1 cannot be
shown for lack of space. Downward arrows in-
dicated the compositional structure of aggregates,
upward arrows indicate instantiations. Evidence
is depicted by white boxes (at the bottom), con-
cepts instantiated through evidence by dark gray
boxes (in the middle), and hallucinated instantia-
tions by light gray boxes (in the top area). Each
box also shows the ranges for the starting and
finish time. For hallucinated instantiations, most
ranges remain uncertain to some extent, according
to the possible time intervals specified by the TCN.

For a real-life application, the expected mini-
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Figure 5: Prediction of occurrences (light gray) for ServeACoffeeShortBlockedDynamic after initial knowledge and

goal (white and dark gray).

Table 1: Expected minimal durations for serving a cof-
fee

Course of Activities Start Finish Duration
(ServeACoffeShortScene) (MugOnPA)

NotBlockedAct. 14:48:28 14:49:13 00:00:44
BlockedDynamicAct. 14:48:28 14:49:43 00:01:15
BlockedStaticAct. 14:48:28 14:54:44 00:06:12

mal durations for serving a coffee shown in Table 1
would probably be the most interesting prediction
data. As to be expected, the obstacle-free service
takes the shortest time. Waiting for a person to
move out of the way causes a slight delay. Turn-
ing around and travelling to the other side of the
table when facing a static obstacle causes a ma-
jor delay. In our experiment, the quantitative val-
ues result from durations defined in the ontology
for each of the activity concepts, including the ex-
pected time for a person to unblock the way.

In total, SCENIOR has generated six complete
alternative predictions for how the robot might
achieve the goal, three as described above for at-
tempting to serve from the north, and three very
similar predictions for attempting to serve from the
south. The computation time on a laptop has been
18s and 477 interpretation threads, all of which
incomplete except for the six correct predictions.
Whenever evidence enters the system, the num-
ber of existing interpretation threads doubles to re-

flect the possibility that the evidence may be faulty.
Currently, this is applied to all evidence including
background knowledge. In consequence, the num-
ber of threads often climbs above an upper limit,
in the experiments set to 100, and is then reduced
by discarding low-ranking threads. This strategy
has been conceived for scene interpretation with
noisy data, but it is also in some respect impor-
tant in our prediction scenarios: The background
knowledge provides two pieces of evidence for the
concept AreaAttachedMAPMA, one referring to
the areas north of the guest, the other to the areas
south of the guest, only one of which will finally
allow a complete interpretation. Hence at the time
the evidence is provided, each must give rise to
two alternative threads. We have shown in the pre-

RestaurantScene
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TransientGuest GuestArrival
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GuestComplaint
Guest at Guest at Guest at Guest at

NearAreaDoor FloorArea NearAreaDoor NearAreaTable

Figure 7: Model of guest visit.
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ceding section that prediction is solely based on
occurrence concepts represented in the ontology.
By changing the ontology, predictions are imme-
diately possible for a new domain. To illustrate
this, we have employed prediction also for a sec-
ond restaurant scene modelled as shown in Figure
7. Here a guest has entered at the door, and two de-
velopments of the scene are possible according to
the model: (i) the guest may be a TransientGuest
and leave without going to a table, or (ii) the guest
may go to a table, have a coffee and complain (the
reason is a late service).

Our experiments show that model-based scene
interpretation can be used for prediction, with only
minor changes to the interpretation system. Fur-
thermore, the approach can be easily applied to
other application domains, since the scene inter-
pretation and prediction facilities are automati-
cally generated from the ontological structures.

6 RELATED WORK

In Robotics, prediction often refers to visual
monitoring for obstacle avoidance. Given the role
of the ontology in SCENIOR, our approach can
better be compared to reasoning about action. A
lot of the literature on ontology-driven prediction
focusses on adapting for Description Logic (DL)

the Action Calculi (ACs) developed between the
1960s and 90s. References to specific ACs can be
found in (Thielscher, 2011). All ACs face core rea-
soning problems: the Projection Problem (how to
compute the direct effects of an action); the Ram-
ification Problem (how to compute the indirect ef-
fects of an action); the Frame Problem (how to
compute what is not affected by the execution of
an action). ACs are semi-decidable and as a con-
sequence they can not be used by DL reasoners.
Fragments have been identified to achieve automa-
tion (Baader et al., 2010) but these results do not
easily scale up.

Other approaches to prediction are, like SCE-
NIOR'’s (Bohlken et al., 2011), based on ontology-
based scene interpretation. (Neumann and Moller,
2006) describe how evidence can be used to trig-
ger model-based hypotheses about a scene which
are used to predict parts not yet supported by evi-
dence. The classical example is the observation of
a ball running over a street, which can be taken as a
partial instantiation of a model for a child chasing
the ball.

A first formalization of scene interpretation
based on model construction is owed to (Reiter and
Mackworth, 1989). Here scene interpretation is a
search for instantiations of the conceptual back-
ground knowledge such that the instantiations con-
tain the evidence about the scene. A model con-
structed this way may naturally comprise predic-



tions about the development of the scene. (Neu-
mann and Moller, 2006) extends the model con-
struction paradigm to ontologies using DL to rep-
resent knowledge. (Riboni and Bettini, 2012)
check evidence for consistency with asserted in-
terpretation, realizing model construction for fixed
activities. (Cohn et al., 2003) and (Shanahan,
2005) formulate interpretation in terms of abduc-
tion, as the search for high-level concepts whose
instantiation would entail the evidence. (Chen and
Nugent, 2009) formulate interpretations as a two-
tiered process of deriving an abstracted ontology
from the data and of matching it with a standard
ontology.

7 CONCLUSIONS

It has been shown that model-based scene in-
terpretation can be used for prediction tasks. From
a conceptual point of view, this is not surprising
because both, prediction and scene interpretation,
are model-construction tasks in the logical sense.
For this reason, it is easy to see that the reasoning
framework can also be used, besides for predict-
ing, for reconstructing past occurrences, or gen-
erally, for imagining any kind of missing infor-
mation, past and future, which serves to integrate
given evidence into higher-level models.

As a draw-back, we must mention the tedious
task of preparing hand-crafted models in OWL
and constraints in SWRL. While this combination
of symbolic reasoning and constraint solving is
a promising architecture for bridging the gap be-
tween high-level concepts and low-level robot rou-
tines, standardized system support for incremental
scene interpretation and prediction is not yet avail-
able, and a complex system like SCENIOR is re-
quired to operationalize real-life applications.

As work in RACE progresses, we expect that
the robot will be able to learn models from ex-
periences. This will hopefully allow to limit the
production of hand-crafted models to basic be-
haviours and occurrences, from which higher-level
aggregates can then be formed by learning.

Future work will also adapt an existing prob-
abilistic rating system using Bayesian Composi-
tional Hierarchies (BCHs) (Bohlken et al., 2013)
for prediction tasks.
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