Local Stereoscopic depth
estimation*
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A method is discussed as to how a fixating binocular observer
can recover local depth information with a single step
computation avoiding the correspondence problem motivated
from recent findings about the architecture of biological
visual systems. Visual information is represented in the
primate visual cortex (area 17, layer 4B) in a peculiar
structure of alternating bands of left and right eye dominance.
Recently, a number of computational algorithms based on
this ocular stripe map architecture have been proposed. We
investigated the cepstral filtering method of Yeshurun and
Schwartz! for fast disparity computation because of its
simplicity and robustness. Based On a systematic investigation
and evaluation of the properties of the cepstral filter, some
deficiencies are discussed, and improvements to the algor-
ithm are presented. The introduction and brief review of the
biological background may be skipped, if the reader is
interested only in the technical aspects of the method. In
summary, we consider Gaussian window functions for the
extraction of local image patches superior to rectangular
windows because specific configurations are avoided where
additional maxima in the cepstral output may disturb the
detection of the correct peak. We show experimentally
that exact disparity estimates can still be obtained by
the filter, even when one of the subsignals undergoes
moderate rotation (3°) or scaling (4%). The discussed
framework is a fairly robust, single-step method for local
depth estimation. We present results for synthetic as well as
real image pairs.

Keywords: depth estimation, stercopsis, cepstrum, primary
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Multiframe analysis of images, such as stereopsis and
time-varying image sequences, has been a primary
focus of activities within the last decade of computa-
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tional vision research. In both areas, the key problem
has been identified as finding the correct correspond-
ences of pairwise related (i.e. homologous) image
points which represent a single point in the physical
scene. The so-called correspondence problem has not
been solved to-date to apply for general purpose vision
tasks. The majority of approaches can be roughly
classified into area- and feature-based methods,

® Area-based techniques can be identified as methods
which apply statistical measures, e.g. various
correlation-based similarity measures. These
measurements are evaluated to determine corres-
ponding local regions in the two image frames by
maximizing the similarity within appropriately
selected regions of interest.

® Feature-based technigues, on the other hand, have
been developed for scenes which contain discon-
tinuities in the multi-parameter function that
captures the physical and photometrical aspects of
the scene structure sensed. The image features
commonly used are contrast edges and their local
attributes or higher order measures such as, for
example, grey level corners.

For a review of relevant techniques for finding stereo
correspondences, see elsewhere2—

In case of stereopsis, the central and — with respect to
the general case — not successfully solved problem is
that of reliably finding correspondences between two
static image frames. To reduce the candidate set
of possible correspondences between the two image
frames, many authors have proposed use of the
epipolar constraint. In the case of two parallel
(coplanar) images, the epipolar geometry results in two
horizontal lines with corresponding vertical positions:
in other words, corresponding points always have the
same horizontal positions in the left and right image
frame” (this fact is used, for example, by Grimson3-6
and Marr’.

"This is true for the ideal mathematical case. For discrete noisy data,
it is necessary to introduce a small horizontal band of tolerance to
take into account the distortions in the localizations of corresponding
features®.
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Finding stereo correspondence can be identified as a
mathematically ill-posed problem in the sense of
Hadamard, which has to be regularized utilizing
constraints imposed on the possible solution®. The
majority of computational approaches are therefore
formulated as finding a solution in a high dimensional
search or optimization space by minimizing a functional
which usually takes into account a data similarity term
as well as a model term (e.g. for achieving smoothness)
so as to regularize the solution®?. The results of these
computational methods — which almost always have
been formulated as iterative processes — yield a sparse
or dense disparity map.

To avoid the complexity of most of the existing
computational techniques we have investigated
biological findings about architecture and mechanisms
for seeing stercoscopic depth.

The rest of the paper is organized as follows: the next
section provides an introduction to the relevant
biological material. After that, the mathematical
motivation of the method is presented. It is followed by
the central part of the paper, which contains the
analysis and extensions of the implemented disparity
estimation method.

In that section we discuss computational as well as
geometrical aspects of the data arrangement in the
ocularity stripes. Specifically, we investigate the follow-

ing:

® noise sensitivity and robustness of disparity
estimation;

@ the sensitivity of the method for different
luminance levels of the two half signals and the
inversion of one of the subsignals;

e violation of the mathematical assumption of a pure
translational shift between the two subsignals, i.e.
the robustness of the cepstral filter when rotating or
scaling one of the subsignals; and

® the problems imposed by the assumption of abrupt
changes in the ocular dominance profile.

As it is evident from the physical structure of real
scenes, the information relevant for local disparity is
contributed from the finer details of the surface
structure, i.e. signal components in the middle and
higher spectral bands of the signal. From this it follows
that the method will benefit from an appropriate LoG
(Laplacian of Gaussian) bandpass filtering step,
eliminating low band background variations and very
high band noise components. It has been shown'” that
the effect of the cepstral operator is a squared
autocorrelation function with an adaptive prefiltering
step. We have investigated the filter further, and our
experiments suggest that this prefilter has a bandpass-
like effect. To demonstrate the usefulness of our
approach, we present results derived for synthetic as
well as real camera images.

BIOLOGICAL BACKGROUND

In this section we give a brief overview of the biological
material on which we base our computational approach
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for depth estimation. Since we have tried to decouple
technical and biological aspects as far as possible, this
section may be skipped by those readers who are
interested solely in the technical discussion. This
section is not intended to be fully comprehensible
without some further background knowledge. It should
provide a reasonable trade-off between an introduc-
tion to the biological material (for readers unfamiliar
with this material) and a refresher (for the others), but
it would be beyond the scope of this paper to review all
the details. More details can be found in the specialized
literature on this subject''"3,

Computational maps

An alternative to the most commonly realized top-
down strategy in computational vision research — which
starts from a task analysis (definition of a computa-
tional theory), derives an algorithm and ends up with
an implementation’ — is to infer information processing
capabilities from the identification of structural prin-
ciples in the mammalian visual cortex'*'>. Von Seelen
et al. " introduced the term neural instruction set for the
identification of a set of structural principles in the
organization of cortical areas which are likely to
support different processing and behavioural tasks in
the living animal or human.

There is evidence for separate mappings of features
for different sensory modalities. In the case of vision,
several principles of spatial coding, such as patchy
retinotopy, columns, stripes and blobs, have been
identified (see, for example, Hubel'', and for a
mechanistic interpretation, Mallot er al.'®). However,
from the set of maps and principles given above, only
the principles of retinotopy and ocular dominance
stripe maps are fully established'®.

In addition, a variety of processing streams between
dedicated visual areas have bee discovered''?. The
specificity of individual channels has been subject of a
great amount of psychophysical as well as neuro-
physiological investigation'?-13:17- 18,

These principles seem to provide a general mapping
strategy for different sensory features in terms of
coordinate transforms to code features like orientation,
colour, ocular dominance, depth or motion in 3D space
to positions in a subspace of %”. These ‘computational
maps’'*'® have been postulated to optimally support
computational mechanisms of different specificity.

Independent processing streams, ocular stripe
maps, and fixation of an environmental point

With respect to the early processing steps from the
retina to the primary visual cortex (areas 17 (V1) and 18
(V2), three more or less independent processing
streams roughly characterized as the high-resolution
form (parvo-interblob), low-resolution colour (parvo-
blob) and colour-blind stereo/motion depth (magno)
channel have been postulated’>'3. The above-
mentioned structure of an ocular stripe map in the
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Figure 1 Overview of the general processing streams in the primate visual system (a) Top view of a slice cut through the brain with major visual
processing areas (retina, LGN, primary visual cortex areas V1. V2) and segregated processing streams indicated. Letters A and B refer to
different ganglion cell types in the retina contributing to the different streams, whereas 4A, 4B and 4C refer to the different regions in layer 4 in
VI (see Livingstone and Hubel' for further details); (b) side view of the brain with projections from retina to visual cortex: (¢) magnified view of
distribution of cells with left/right eye dominance in visual cortical arca 17 (V1) in layers 4 (bottom) and 2/3 (top), respectively. As can be clearly
seen, the initial sharp tuning of cells in layer 4 (segregated input from left and right eye) is lost in layer 2/3, where we can observe a smooth
transition between left and right eye dominance, which indicates binocularity of cells. Image fragments from Livingstone and Hubel'* and Hubel"'

primary visual cortex obeys the two-dimensional
geometric organization of alternating bands of left and
right eye dominance.

Given that these alternating ocular dominance
columns are part of the projection path of the magno
channel (see Livingstone and Hubel'?, p. 742 and
Figure 1), and that this magno channel seems to be
colour-blind and responsible for the motion and stereo
computation in the primate visual system'?, then a key
question naturally arises in the context of investigating
the neural instruction set of brains. The question about
the links between structure and function of a given
algorithm or system can be stated in this case as
follows: What can a specialized data organization with =
discrete alternating stripes of left/right ocular Figure 2 Ocular dominance stripe maps in the macaque monkey.

dominance of the visual input be useful for? (a) Visualization of alternating bands of left and right ocular
dominance columns (view of a flat mounted preparation of a piece of

cortex. from Hubel and Freeman”; (b) sketch of iso-eccentricity
lines mapped to cortical area 17 (corresponding to (a)) and example
mapping of retina to visual cortex via a complex logarithmic map
(see, for example, Schwartz*)

Figure 2a shows a map based on a preparation of the
cortical surface in area 17 of the macaque monkey. To
get an impression of the general mapping function and
the relevant anatomical locations they have been
sketched in Figure 2b. The width of these stripes has
been measured to be about W=0.35-0.4mm. In
early preparations of the monkey striate cortex, an
additional substructure, the so-called pale bands, has
been made visible. They are of approximately (.05 mm

width (approx. W/8) and separate the ocular
dominance stripes'’. In a later section of this paper we
refer to this to give a functional explanation for the
existence of these pale bands which, in turn, provide a
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Figure 3 Mathematical description of imaging geometry and iso-
disparity lines. (a) Fixating sterco arrangement (L, R, F denote
points of left and right eye location and the fixation point,
respectively: the 2D reference coordinate system is centred with its
origin at L, the left eye location); (b) Lines of constant disparity s,
when using flat retinae (this set of parabolic curves has been
determined to serve as a reference set when planar images, such as in
cameras, are used instead of ideal spherical images)

compensation for degenerate cases where stereo
disparity measurement is erroneous due to occasionally
unwanted signal structures.

The usefulness of the peculiar spatial data represen-
tation of visual information from the left and right eyes
can be explained as follows., Again, with reference to
biological vision systems, assume a geometry in which
the optical axes of the two image frames fixate a
previously identified point in 3D space*.

Then under these conditions of imaging geometry
(see Figure 3 and 6al) one can directly construct a circle
which is uniquely defined by the two optical centres of
projection and the point of fixation. This Vieth—-Miiller
circle (sometimes called horopter') defines all points in
space that project onto the two retinae with zero
disparity (Thales theorem).

*As a part of an active vision system™-2! g fixating stereo geometry
necessarily requires two mechanisms: one attentional control module
for the selection of appropriate fixation points; and one for carrying
out the vergence movement to fixate (and track) those points.
Proposals have been published on how fixation points could be
selected - for example, with a computational model>?, using intrinsic
or extrinsic features and a channel concept — and how such a point
may be tracked in time™. Concerning binocular vergence control and
real-time stabilization, see also the recent work by Theimer and
Mallot™. and Pahlavan er al.>52¢,

"The term ‘horopter” is usually reserved for the zero-disparity curve
mcaslll;ed for human beings, which slightly deviates from a perfect
circle’,
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Not only projections of space locations with exactly
zero disparity can be fused. All 3D points with
moderate negative (far field) or positive (near field)
disparity within a psychophysically defined region
called Panum’s area (Figure 6a2) also contribute to a
fused image of varying depth due to the retinal shift of
projection to retinal coordinates. Assuming that
Panum’s area (a fixed fusion range) results from the
fixed width of the ocular stripes, as shown in Figure
6a2), this area delimits® the range of possible local
depth estimates which may be computed for a given
point of fixation®. 3D spatial locations outside Panum’s
area produce the well known phenomenon of double
images.

Other approaches for local disparity computation
have been proposed, e.g. phase-based methods like
those presented by Jenkin et al.?*2” and Sanger™ in the
literature. It is an open issue to compare the different
approaches in a mathematically rigorous way as well as
in their performance on the same image data. Olson
and Coombs'” (pp. 29-30) give some hints how phase
correlation is related to the cepstrum filter,

The main points reviewed in this section can be
summarized as follows. Besides other channels, a
separate channel involved in stereo/motion computa-
tion has been identified in the primate visual system.
This channel seems to be colour-blind, i.e. conveys
only luminance-specific information. The visual infor-
mation from the left and right eyes is arranged in a
salient stripe pattern at a later processing segment of
this path.

DISPARITY ESTIMATION
Mathematical preliminaries

The cepstrum of a signal g(x) is the power spectrum of
the logarithm of its power spectrum **:

FLe(x)} )} (1)

where #{-} denotes the Fourier transform. Two
corresponding local image patches extracted from the

Cepstrum {g(x)} = || F {log (

“This absolute limit of fusion will be further diminished by the
disparity gradient of two ncighbouring but disparate points®7,
although the underlying mechanisms are currently not clear.

*In the case of idealized circular retinae the iso-disparity lines are
circles of different radii, with the Vieth—Miiller circle as one clement
of the set. In the case of flat projection planes, the iso-lines for a fixed
disparity s, are conic sections in the parameters x and z following
Lo+ (U, =B = 1) x+ (I, + s,(l. — 0) - 28+ (s.(tl, — 12 —
I2)—tl) 2 +5./,-xz—0 where the loci of zero disparity again form
a circle, and the iso-lines for small disparities are elipses. (Here 1, {,
and /. are constants depending upon the particular stereo configura-
tion, see Figure 3).

“*The cepstrum - an anagram of the word spectrum - is a well-
known non-linear filter first used by Bogert er al.* for the detection
of echo arrival times in 1D seismic signals. Due to its simplicity and
noise robustness, it has been widely used since then in various
application areas from 1D speech processing™ to solving 2D image
registration problems™. A comprehensive  overview s given
elsewhere™.
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Figure 4 The principle of disparity computation with the cepstral filter. The joint input signal for the Cepstrum is composed of the subsignal s (x,
v) and a copy of ¥ which has been transformed by a slight translational shift (x,,, v,). Since these two subsignals are arranged in a joint pattern
(ocular stripe pattern). we can identify a basic shift vector (D . D) which denotes the principal offset between left and right dominance column
(left). The Cepstrum of the joint signal has been shown to consist of the superposition of the Cepstrum of subsignal s and a sum of scaled Dirac
pulses which encode the disparity shift. Therefore. one can use the pair of free parameters (Dy, D)) to locate zero shift location outside the
region dominated by ‘€epstrum {s(x, v} }. The vector drawn between this zero shift reference point and the next pulse within a local neighbourhood
directly encodes the disparity between the signals from the left and right image (right)

left and right images, respectively, can be arranged in a
local neighbourhood to form a single joint signal. This
idea has been originally utilized in an algorithm
proposed by Yeshurun and Schwartz'-*' using rectan-
gular patches butted against each other. If such a
combined signal is filtered with the cepstrum, the
filtered image contains a strong and sharp peak at a
position which codes the disparity shift between the two
original subsignals. This can be derived mathematically
for the ideal case of a pure translational shift. Let f(x,
y)=s(x, v)+s(x—xy, v—yo); then for the amplitude
spectrum of the joint signal it follows that:

[Pt I =S, ) (1 ey

=8, v)||?-2-(1 +cosxy u+yyv))

holds. Taking the logarithm™® yields the following sum:

log (|| F(u, v[*) = log (| S (u, v[*) +
log (2 (1+cos(xgu+yyv))) (2)

This signal is the sum of an image-dependent term
(about which no specific judgement can be made in the
general case) and an image-independent term (which
in principle contains only one dominant frequency
component at w, = x,u + yov. Accordingly, we expect
in the power spectrum of log(||F(u, v)|*) — that is
the cepstrum of f(x, y) — a strong point component
which results from this second term.
Fourier transformation yields:

{log (IIS (u, )"} +
{log (2)} +F {log (1 +
cos (xou+yov))} (3)

&

F {log (| F(u. v)[?)} =

&)

**For example. replacing the log step in the cepstral algorithm with a
fourth root or arc tangent produces results that do not differ greatly
from the standard cepstrum’ (Olson and Coombs'", p. 28).

Reminding that the Fourier transform at cos () results
in two delta pulses, and since for ||x|| <1 we have the
series expansion:

x "

log(1+x)= Y (- Lz
n

n=I
we can transform equation (3) — with x =cos (xou +
vov) — nearly everywhere to:

Cepstrum{ f(x, y)} = Cepstrum {s(x, y)}} +

i d(x—n-xo, y—1n-y) @

n=-—= R

Thus we have the following result. The cepstrum of
the double signal is the sum of the cepstrum of one of
the subsignals and an impulse train with rapidly
decreasing amplitude of its peaks. So it should be
possible to detect the dominant first peak with a
position that codes the shift between the two

subsignals™®.

Disparity estimation

Excluding some special cases — which will be discussed
later — the portion of the signal corresponding to the
first term of equation (4) does not hide the pertion of
the second term, as depicted in Figure 4. Thus the
disparity between the two subsignals can be obtained
by simple maximum detection in the cepstral plane, as
illustrated in Figure 5.

When the shift between two subsignals becomes
larger, the echo maximum will be more attenuated,
since the area of common signal will be increasingly
reduced. Lines of constant common signal area define
rhombi around the point of zero disparity in the
cepstral plane. Reducing the maximum search area to
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Figure 5 Tllustration of the result of cepstral filtering of a joint signal. (a) Joint signal and computed cepstrum. A test pattern taken as the left
subsignal has been transformed by a left-downward translation, superimposed by white noise with 100% signal amplitude to generate the right
subsignal (left). Cepstrum filter computation for the joint signal s(x, y) displayed as log(1 +Cepstrum{s(x, y)}) with the central proof being
removed (right); (b) three-dimensional plot of ‘Cepstrum {s(x, y)}. Strong isolated peaks in the left and right half planes — despite the additive

noisc in the signal — encode the disparity as sketched in Figure 4

these rhombi helps to avoid the detection of additional
(false) maxima, and reduces the search effort in general
by a factor of two or more. As Olson and Coombs'"
pointed out, the number of column transforms
required in the last step of the discrete transform can be
reduced to a quarter or less.

Furthermore, if the fast Hartley transformation
(FHT)* is used instead of the usual fast Fourier
transform (FFT), the filter output can be computed
twice as fast,

Using the cepstral filter method for computing
disparities has several nice properties. First, it is fast,
because the disparities are computed in a single step
without any iterations*. Second, due to the local and

“It has been shown'" that this filtering step could be done in 51 ms
when using special image processing hardware. With such short
computation times it becomes feasible to use the presented cepstrum-
based stereo segmentation approach in active vision systems for
simple obstacle avoidance or object recognition tasks.

therefore independent computation of the disparities,
parallelization is easy. Third, it is well-known from
previous work that the cepstrum is extremely
insensitive to noise®" 37 and we will show that the
cepstral filter is insensitive to moderate image
degradations like rotation or scaling, too.

ANALYSIS, EVALUATION AND EXTENSIONS
Basic model

The basic model for local depth estimation is based on
the subdivision of the cortical plane into stripes with
alternating eye dominance (see Figure 2). Starting with
the idea that a hypothetical disparity sensitive cell uses
a local section of two neighbouring stripes as input (see
Figure 6b) to compute local disparity, we can divide the
original left and right images into appropriate
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Figure 6 Imaging geometry and
modelling of functional components
for local disparity estimation.

(al) Fixating stereo arrangement.
Spatial locations on the so-called

Vieth-Miiller circle project to retinal
locations with zero disparity. Due to
the fixed width of the dominance
stripes, disparity can also be
computed for 3D points within a small

spatial band around the Vieth-Miiller
circle (see explanation); (a2) fusional
area and a hypothetical object

surface: (b) a local region of a pair of

ocular dominance stripes and the

section of cortex

left image right image

peak-

cepstrum- ;
detection

filtering

rectangles (see Figure 7). Given the disparity at all
single locations, we obtain a disparity map from
which a (relative) depth map can be easily inferred, as
depicted in Figure 6a2.

To determine the values of the parameters of the
technical model, we have evaluated the relevant and
sometimes diverging biological material from various
sources'" ¥4 {0 get a reasonable and consistent
parameter setting. It is beyond the scope of this paper
to review all the material, data and methods used in
detail.

It should be noted here that we collected this data
only to get a hint for reasonable values for our purposes

22

(0.0) | x : : S
model for disparity estimation. Local
disparity is estimated in a square

o window composed of subsignals each
| of DX 2D size (local (x,
imtheaiies y)-coordinate system centred in the
model window)
local
depth map
depth

Figure 7 Computational steps for

disparity field discrete local depth estimation.

Referring to the abstract model

sketched in Figure 6, left and right
images are interlaced horizontally to

define one image in which the

frequency of left/right eye dominance

varies with the stripe thickness D. To

define localized windows for disparity

estimation (based on the cepstrum

technique) each pair of bands is

divided into regions of 2D height

(application in a human-like vision system setting), and
that the values might be different in other application
areas (e.g. for making depth measurements in cases
where the image pair has been produced by an electron
microscope or the like).

As a result of our investigation, the following
parameter setting is used during our computational
experiments. The angular extent of the single images is
about 200 minutes of arc (twice the extent of the
fovea''). The images are partitioned into 16 stripes
with 32 pixels each. Thus the total resolution of the
images is 512X 3512 pixels. This results in a stereo
acuity of 12.5 minutes of arc, which fits well the value
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Figure 8 Stereo arrangement whe fixating a plane

of 10 minutes of arc as measured by Tyler“, and a
disparity resolution of 0.5 minutes of arc which is in
between the classical values of 0.1 and ] minutes of arc
for hyperacuity or standard acuity, respectively.

Imaging geometry for fixation and distortions in
the disparity field

It is reasonable to assume that physical surfaces in the
natural environment are smooth, and hence can be
approximated locally by their Taylor series expansion.
First and second order Taylor series approximations
result in planes and second order surfaces, respectively.
The following presents the analytical and com-
putational results for fixation of first and second
order surface approximation.

Fixation of planes

Consider a stereo arrangement like the one illustrated
in Figure 8, where the y axes of the left and right
coordinate system are aligned. For 4 given point in 3D
space, let the left image coordinates be J— (X7, yp).
Then the right image coordinates r = (xz. yr) can be
computed to be:

a X, tary

Xp= and
bix; +byy, +bs

Yy,
bix, +byy, + b,

Yr= (5)

where a;, b, and ¢ with:

a=filn.(t=1.)=-n.l,), 5, =n(IZ+1)—t(n, 1, +n.l,)
by=n,(I3+12—-1.1)

by=fu (I3+12+12=21.1)

a=—fin.l,

c=fn.tH

arc  constants  with respect to the given stereo
arrangement and local surface orientation (the other
constants are explained below). The disparity may be
defined then as s=r—1.

This result may be derived by the following two

Local stereoscopic depth estimation: K-O Ludwig et al.

major steps: (1) The general formula for the left and
right image coordinates of an arbitrary 3D point is
derived. (2) The intersection point of the plane E and
the line g is substituted in that first formula. Since the
derivation of equation (5) is straightforward (but
troublesome due to the many constants involved), we
present here the relevant substeps, so that the
interested reader is able to reconstruct the complete
derivation*.

Let us start step (1) with the derivation in the
xz-plane (y=0) of the arrangement, with the
origin of the left coordinate system at L and the other
constants be named as given in Figure 3a. The point
P; =(x, z) in the left coordinate system has the left
image coordinate:

xo=f" ;—C (6)

where f denotes the focal length.

The right image coordinate can be computed by the
same formula after translation of the coordinate system
to R=(/,, [.) and rotation by —v (see Figure 3).
Translation yields:

Pr=lw=l;2-1,) ()
Rotation by —y results in:

Pr=(cosy(x—1,)—sin yle=ls),
siny(x—/,)+cosy(z— 1)) (8)

We have for x, in the right coordinate system (analo-
gous to equation (6):

cosy-(x—1L)—siny-(z—1,)

)

Tr= .
siny-(x—I)+cosy-(z—1,)

If the third dimension is added now, we get analo-
gously:

_ Yy
siny‘(x—lx)Jrcosy-(z—lz)

Substituting the relations cosy=(r—1,)/H and
siny = —[,/H from Figure 3a, right' and simplifying™*
yields:

ye=f

Lt+(l,—t) x—1,z
(B~ Lxt(—1) 2
Hy
BHE-LO—lx+(~1) 2

Xp=f
(10)

Yr=f

“We have been using a symbolic maths package for troublesome
parts of some mathematiocal calculations presented in this paper. We
use the symbol " (for MATHEMATICA) to indicate that a step
might involve a longer manipulation of the equation and cannot be
followed directly by every reader. (MATHEMATICA is a registered
trademark of Wolfram Research Inc.. Champaign, Illinois 61826-
6059, USA.).

"Considering in the sequel only geometrical arrangements, where
this substitution is valid, of course,
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Figure 9 Deformation of a reference pattern after backward
transformation from left to right image frame (illustration of formula
(5). (a) Distortion of a rectangular grid after transformation from the
left to the right retina utilizing a backward projection onto an object
surface (the object surface has been approximated by a plane); (b)
illustration of the disparity values with isolines. Lines of same
absolute disparity value (partially closed curves) and lines of same
disparity direction (left and right picture with 100° view angle)

We now turn to the second step of computing the 3D
point P lying on the fixated plane E given its image
coordinates s, = (x,, y;). P is just the intersection
point of the 3D line g through the origin (0, 0, 0) and
(x,,y..f)and plane E. Assume that the fixated surface
plane E and the projection ray g of P lying in the plane

E:n-x—n-z=10

g 0+AX-5s,

where n denotes the normal vector of the plane, z is a
point in the plane as indicated in Figure 8, and A, x are
free variables. Substituting a point from g into £ and
solving for A yields a specific A,:

ns n.t
nDAS, —nz=0=>A,=—=—""7"H™/—"
ns; nx+n,y+n.f

Substituting this intersection point P, =A,-s; in (10)
and simplifying™ the expressions, we arrive at equation
(5).

Figure 9a illustrates the effect of this formula,
showing how a square grid on the left ‘retina” will be
distorted when back-projected onto the (planar) sur-
face and then sensed from the position of the right
‘retina’. Figure 9b, in turn, shows lines of equal
absolute value and direction of disparity. As can be
seen, the resulting disparity computed by applying the
cepstral filter will yield a mean value of all the different
disparities lying within the chosen window size. This
means that the disparity computation is only applicable
near the point of fixation (fovea), where the disparities
do not have such a dynamic range so that the mean
value in turn becomes erroneous due to the averaging
(see Figure 10).

Fixation of second order surfaces
The general formula for this case is much more

\

//
.
.

r / |
I~

//\\Q\ :

AR
il

N

Figure 10 Lines of same absolute disparity value. Left: For different view angles: (a) 160% (b) 125% (c) 20°: (d) 80% (e) 20% (f) 1°; and
right: For different normal vectors of the plane (indicated by small figures) and 1° view angle
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Figure 11 Fixation of second order surface (saddle). (a) Picture of saddle surface. The
disparity value. View angle is 20°, The imaging situation corresponds to that depicted in
angles of about 1°, the distribution of iso-disparity lines for the fixated second order object surface is

relative to the view direction. For view
indistinguishable from those of the planar surface patch (see text)

complicated, since partial occlusion depending upon
the particular surface is possible. Figure 11 shows the
iso-disparity lines for fixation of a saddle surface whose
partial derivatives have been chosen to be the same as
those of the plane in Figure I0e for comparison. We
found that for foveal angles of about 3° the iso-
disparity lines resemble those for the fixation of planes.
For 1° they are optically indistinguishable.

The disparities, in general, do not depend upon the
particular structure of the surface but primarily on the
slant and tilt (i.e. the values of the first order
components) of the surface at the fixation point (see
Figure 10, right). The other important points of the
analysis can be summarized as follows:

® The horizontal component of the disparity vector is
not dependent upon the height (y-coordinate) of
the underlying 3D point. The vertical component
depends upon all three coordinates of the surface
point, although in the neighbourhood of the
fixation point the horizontal component of the
disparity vector clearly dominates.

The local planar approximation of the fixated
surface results in a simple function for the disparity
shift (equation (5). The iso-disparity maps show
that in the case of a foveal analysis, the only point
with zero disparity is the point of fixation, whereas
this is not true for non-foveal imaging situations.
The variation of the disparity magnitude can only
be neglected within a very small view angle, in
order to be reliably estimated with ocularity stripes
of constant width. Therefore, the size of the
patches which contain signal components from the
left and right eye, must not be chosen too big. since
otherwise (mean) disparity values become useless
due to a significantly diverging local field of
disparity values within the patch.

Image and Vision Computing Volume 12 Number 1 January/February 1994

point of fixation is (0, 0); (b) lines of same absolute
Figure 10e in also using the same surface orientation

Identification of limits and specific problem cases
of the cepstral filter

In this section we give an overview and short discussion
of the problems the disparity estimation technique has
to deal with. We tested the method with respect to
several topics. The results have served as the starting
point for a major investigation towards improvement
and extension, as described in the next section.

Noise robustness

The cepstral filter has shown to be extremely robust
against noise’' -, although the value of the signal-to-
noise ratio (SNR) alone is an insufficient measure of
performance™. Further mathematical analysis has
shown that the relative bandwidth of the signal and the
noise can be also important®. Despite this fact, a
general rule of thumb can be given for real image data.
The correct peak of the filter output can be detected
with additional white noise up to 100% of the signal
amplitude.

Robustness against signal deformations
For the general case of perspective projection the
assumption of a pure translational shift in the transform
between the two subsignals extracted from left and
right images is violated. It has to be investigated how
the method behaves if one of the subsignals is distorted.
To compare the results with values given for the human
visual system, and to have an casy parameterization for
distortions, we decided to investigate rotations and size
changes, and combinations of both effects.

Our evaluation. described in this subsection, has
shown that the disparity estimation with the cepstrum
remains correct under rotation or scaling of one of the
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a

b

Figure 12 Filtering of a disparate signal with additional rotation of right subsignal. (a) A double signal composed of a left part (randomly
generated) and a right part rotated by 4° and shifted by a fixed amount; (b) discrete cepstrum of (a). The cepstral peak is weaker and smeared

around the true value

subsignals as long as the values do not exceed 3° or
4%, respectively. These two figures have been derived
using computer generated random dot stereograms
(RDS), since this type of signal possesses a single sharp
peak for disparity detection which is located in exactly
one pixel of the cepstral plane. Using other than RDS
signals might have biased the evaluation, since the
particular form of the cepstral peak would have
influenced the disparity estimation in one way or the
other.

We have chosen every random square to be a 2 X2
pixel. This is small enough not to make the random
squares a significant structure themselves, and big
enough to have a fair representation of the rotated and
scaled version. The size of the left subsignal is 32 X 64
pixels, thus containing 512 random squares. Based
upon the values given by Yeshurun and Schwartz
and the results of our own test runs, we decided
to investigate the performance for rotations ¢ € [0°,
8°] and scaling factors se[1.0, 1.15] as well as
combinations of both using a discretization of Ag =
0.5 and As = 0.01, respectively™.

At each point (¢, s) 50 experiments have been
performed for the evaluation to get a reliable statistical
basis. In every experiment the left part of the double
signal has been generated randomly, whereas the right
part has been a rotated and scaled version of it. The
right subsignal has additionally been shifted by an
arbitrary but known fixed amount (e.g. (s, 5,) = (5,
7)). The individual pixels of the rotated or scaled
subsignal (see Figure 12 as an example) have been
computed from the left subsignal by 4 X 4 oversampling
and averaging of the 16 values.

*A scaling factor of s = 1.04 here means that the left signal has been
enlarged by 4%.

The evaluation at a point (¢. s) comprises the
following values™

@ Since the shift of the right subsignal is known. we
could count the number of exact disparity estimates
to determine the area in the (¢, s)-plane where the
cepstrum technique operates without error.

@ The number of disparity estimates located in a
tolerance region of +35 pixels around the true value
has been counted. For these estimates, mean and
variance were computed to get information about
the specific nature of wrong estimates (see Figure
14 in comparison to Figures 13 and 15).

e For comparison, a smoothed version® of the
cepstrum was analysed in every single experiment
in the same way.

The evaluation procedure described so far has been
performed for different implementations of a disparity
estimation procedure based on equation (1). One way
to compute the disparity (due to Lee et al.*) is to
compute the second term (the impulse train) in
equation (4). This method needs three discrete Fourier
transforms and some special cases (e.g. division by

‘Due to the constant discrete sampling of the value ranges for
rotation angles and scaling factors, we can define a 2D discrete lattice
for the product of the two sets. For convenience, this data repre-
sentation is called (¢, s)-plane in the sequel.

*Two averaging steps of the form:

1 -
‘r.\‘r= E(Sl.\\‘+ 2 lij)

x—i|=1
viy=jl=1

were used. The indices xy and ij denote discrete locations in the
cepstral plane.
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Figure 13  Evaluation of rotation and
scaling effects in the disparity
estimation using the cepstrum

(a) Percentage of exact disparity
estimates. Three dimensional plot
(the grid used for visualization is twice
the resolution of the data) (left); the
same data set as a contour plot (lines
of constant percentage in steps of
10%) (right). As can be seen from the
contour representation (right), the
disparity estimation with the cepstrum
yields exact values in a well defined
region. Outside this circumscribed
area the estimates rapidly become
unreliable; (b) percentage of exact
disparity estimates using a smoothed
version of the cepstrum (see text).
Three dimensional plot (left); contour
plot (right)

Figure 14  Evaluation of rotation and
scaling effects in the disparity
estimation using the cepstrum.

(a) Percentage of disparity estimates
within a tolerance region of +5 Pixel
(see text). Three dimensional plot
(left); contour plot (right);

(b) representations of mean u and
variance o> of the disparity s, within
the tolerance region of +5 pixels
located off the true value (see text)
for a smoothed version of the
cepstrum. Left: three dimensional
plot of p(u € [0, 5.5]); right: three
dimensional plot of o> (% €

[0, 13.5]). As can be expected from
the variance data, the wrong
estimates have not been completely
wrong but only shifted one or two
pixels in the neighbourhood. This was
confirmed by spot-checks. The data
for s, do not significantly differ from
that of s,

Local stereoscopic depth estimation: K-O Ludwig et al.
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a s
15%

Figure 15 Evaluation of rotation
and scaling effects in the disparity
estimation using the impulse train
method (see text). (a) Percentage of
exact disparity estimates. Three
dimensional plot (left); same data as a
contour plot (right); (b) percentage of
exact disparity estimates when using a
smoothed cepstrum (sec text). Three

dimensional plot (left); contour plot
(right.) Compare with Figure 13

‘near’ zero values) have to be treated separately’
Yeshurun and Schwartz stated that the peak in the
cepstrum is remarkably dominant with no other com-
peting areas of high intensity. This makes it possible to
implement the cepstrum filter directly as described by
formula (1). Then, only two discrete Fourier trans-
forms are needed.

Figure I3a shows that the disparity estimation is
exact for rotations less than approximately 3° and
scaling factors less than 4%. If both effects
are combined, lines of constant percentage of exact
disparity estimates follow the circle V¢’ +5° =
constant. It can be further observed that the error free
(¢, s)-area of the method is sharply bounded. As can
be seen from Figure 13b the area of correct disparity
estimates can be enlarged when using a smoothed
cepstrum at the cost of a more smooth transition
between the areas of correct and incorrect disparity
estimates. For comparison, Figures 15a, b show the
same data when using the impulse train method. As can
be seen also by comparing the illustrations, the results
do not differ significantly.

We found empirically for the case of real camera
images that these limits might be extended to 6° and
6%, respectively. Yeshurun and Schwartz’' (p. 763)
reported that the algorithm routinely accepts rotation
of 10° and size changes of up to 15%, as a result of
their analysis, but these values seem to be about a
factor 2 too high for the typical case of noisy images.

The cepstral filter as proposed in the literature with

*We will refer to his method later in the text, and in captions to
illustrations as the impulse rrain method.

rectangular windowing functions'*-** has some specific
problems, discussed in the following subsections.

Straight edge segments

Besides the well-known aperture problem which every
local disparity estimator has to deal with, the original
algorithm has some problems with linear edge
segments, since additional maxima may appear. To
understand this phenomenon of additional maxima
occurrence we may model the double signal (denoted
by g(x, y)) for the idealized case as the sum of two
rotated rectangular boxes, both degenerated to pulses
in the direction orthogonal to the elongation direction
(see Figure 16).

The Fourier transform of g(x, y), by utilizing the
scaling and shift theorem, can be computed to be
(see Figure 16 for an explanation of the constants

a, b, X0s yo)l
e g™ —i(xgu+y,v)
G(LI, V): - + . v g Xt yy (11)
2miu 27miu

and the power spectrum after some simplification

becomes:

G (u, v)IIF =

—— + [2—cos (au) — cos (bu) — cos ((a — xp)
2a U

—Yov)—cos ((b+xo)u—yov)+

cos((b+xg—a) u—yyv)+
cOS (X[)u —Yo V)] (]2)
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Figure 16 Filtering straight edge segments. (a) llustration of the local coordinate systems and the paramcters used (left). The reference
coordinate system has been rotated to get edges a and b (of different length) collinear with the abscissa (x'-axis). The corresponding maxima in
the cepstral plane are predicted by formula (12) (right). The numbers 1. . . 6 denote the corresponding cos-component in the formula (numbers
with apostrophe simply denote corresponding mirror images); (b) Left: Discrete test signal generated in analogy to (a). Right: Computed
cepstrum; (b) in the case of two edge segments of equal length (b =a) there are only two additional maxima in the cepstral plane (see
formula (13))

We do not need to transform formula (12) further, We can now distinguish two cases here, depending
since a component of the form cos (au+ Bv) in the upon the values of a and b: it turns out for the general
power spectrum corresponds to a peak in the cepstrum case (b#a) that up to four additional local maxima
at (a, B). may appear within the search area (with dimensions as
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proposed by Yeshurun and Schwartz’) when the
subsignals contain a single straight edge segment (see
equation (12) and Figures 16a, b for an illustration of
the situation).

In the special case (b = a), which covers the majority
of practical cases, onl{y two maxima appear since the
formula then reduces™ to:

G (. v)IFF=

_;-_2 - (1 —=cos (au))(1+cos (xgu—=yov)) (13)

mTu

See Figure 16¢ for illustration.

Whether these maxima are strong enough to disturb
the disparity estimation depends upon the search area
used and in how far the idealized model fits the
concrete line structure in the raw image.

Varying illumination and signal inversion

Another question is how varying lighting conditions are
tolerated. Yeshurun and Schwartz' (p. 763) state that:

“The algorithm [...] was not disturbed by this
intensity difference, nor by simple additive intensity
increments of 50 percent to one image of a stereo
pair. In fact, positive and negative stereo pairs can be
processed with no difficulty, as is evident from the
mathematical structure of the cepstral filter.”

This line of argumentation is mathematically correct,
but does not take into account the practical implemen-
tation of the algorithm. We found that different
illumination levels (or signal inversion) in either
subsignal may disturb the detection of small disparities,
when using raw grey level images, since an additional
maximum may show up at a position where zero
disparities are coded. To explain this additional
maximum, consider for a moment only the additive
brightness alone without the modulation due to the
signals, that is a box shaped signal — for a rectangular
pulse in 1D. The spectrum of a rectangular pulse (of
width a) is a sinc-function and the cepstrum therefore
will have a peak at the positions a and —a.

Improvements and extensions

This section contains a description of the major
contributions for improving and extending the disparity
estimation technique. The topics have been motivated
by the results of our analysis in the previous sections.

Varying illumination
Employing the technical counterpart of an observation
by Braitenberg® made for biological systems™, the

*«_ it seems that the cuts in one picture are halfway between the
cuts in the other picture, so that each strip has overlapping
information with the stripes on either side, belonging to the other eye
.. ." Braitenberg™ (p. 386).
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Figure 17 Functional interpretation of pale bands as a separating
band attenuating the signal from left and right image at the border of
the stripes to improve the cepstral filter and to avoid problems in
cases with ‘artificial structures’. The width of the pale bands has been
chosen to be around 1/7-1/8 of the width of the stripes according to
the biological data. Left: Conventional support functions (rectang-
ular windows). The dotted diagonal line has been introduced to show
that left and right ocular subsignals could have bee composed in
arbitrary ways, e.g. as a two-triangles composition. Right: Smoothed
windows which separate the two subsignals. At the bottom, one-
dimensional profiles taken along the x-axis are shown to demonstrate
the difference in the spatial weighting for both window functions

reference for zero disparity may be moved away from
(D, 0) (see Figure 6) to another place in the cepstral
plane to avoid the discussed additional maximum due
to different illumination or inversion at (D, 0).

Functional interpretation of the pale bands

Under special unfortunate conditions (see, for
example, Figure 17) it is possible that ‘artificial
structures’ appear when rectangular support functions
for signal extraction are used.

This may disturb the disparity computation occasio-
nally. If the density reduction of horizontal fibres — as
observed in the preparation of LeVay er al.' — is
interpreted as a reduction in signal strength from either
eye in the neighbouring stripes, the corresponding
rectangular support functions in the technical model
may be modified accordingly. It turns out that in many
cases the problems with straight edge segments and
artificial structures can be reduced by modifying the
windows, as depicted in Figure 17°. This idea can be
extended to further improve the cepstral filter.

Other support functions for windowing

The success of the introduction of a separating band in
the joint signal can be understood by the following
argument: If rectangular support functions are butted
against each other, information about the shape of the
original subsignals is lost in the joint signal.

Using the separating pale bands can help to preserve
this information. With this in mind, we can extend
the cepstrum technique further by using other than
rectangular support functions to improve the signal
properties. In addition, it is useful to weight the
disparities, since — ideally — we want to determine the

“We used appropriate values according to the measurements given in
Le Vay eral.'”.
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Figure 18 Gaussian window
functions improve the cepstral output.
(a) Rectangular window functions;
(b) Gaussian window functions. As
can be clearly seen, artifacts due to
the bad signal properties of the
rectangular windows are eliminated
when using more smooth windows
like Gaussians. The second maximum
term of the impulse train outside the
search area (see equation (4)) also
becomes visible. The Gaussian
window functions have been
generated using o, = 10% and
o,=21% b

disparity at one — the central point — of the window,
using the neighbourhood only for structural/textural
support.

We demonstrate in this paper that the use of
Gaussian windows — which fulfill both conditions stated
above - for the extraction of the local left and right
image information produces a more easily identifiable
maximum (see Figure 18b).

Furthermore, the use of different support functions
for the extraction of the left and right subsignals,
respectively — as an approximation for a circular
receptive field of a disparity sensitive cell is also
feasible (see Figure 19a). The results are also better
than those with standard rectangular support, and the
additional effects due to straight edge segments or
varying illumination are greatly reduced.

LoG filtering considered beneficial

The cepstrum technique is compatible with any prepro-
cessing operation'. LoG filtering is often considered as
a technical approximation to the centre-surround archi-
tecture of retinal ganglion cells’. Since LoG filtering
corresponds to computing a derivative of the smoothed
signal, one can hope to sharpen the cepstral peak when
using an appropriately small o, where o is the

Local stereoscopic depth estimation: K-O Ludwig et al.

standard deviation of the Gaussian. We found in
particular that a o of about 0.35 to 0.71 improves the
results further within the standard setting.

The cepstrum and autocorrelation
Based on the following formula due to Olson and
Coombs'? (p. 28):

log (|| F(u, v)[?) =

1P, o] =l

F(u, v)

(14)
and further:
SFHIPYE =N F{H* - H}P = || n* «nP = | hon|
(15)
The cepstrum of f(x, y) can be written as:
Cepstrum{f} = hoh|]? (16)
with A (x, y) = kp(x, ¥)*f(x, y), where * and o denote

the convolution and the correlation operator, respec-
tively, and h* is the complex conjugate of 4.
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Figure 19 The use of different Gaussian support functions in the left and right image is also feasible, and yields better results than standard
rectangular windows. (a) Sketch of area 17 with a circular receptive field of a hypothetical cell for disparity computation; (b) cepstrum with
different but complementing Gaussian window functions. The Gaussian half windows have been generated using o =21

As can be seen from this equation, the cepstral filter
can be regarded as an autocorrelation operation
preceded by a non-linear and image-dependent filtering
step'®. It is interesting to know how the prefiltered
image h and the kernel k- look. For many examples the
prefiltered image looks approximately like a bandpass
filtered version of f(x, y) with a narrow kernel. We
compared the cepstrum results with autocorrelation
applied to appropriately LoG filtered images. We
found the performance of the cepstral filter substan-
tially better than the autocorrelation results.

Experiments with synthetic images and real world
image data

We generated image pairs with a software package for

32

computer graphics visualization, which utilizes a ray
projection technique (ray tracing) to investigate the
precision of the cepstral disparity estimates under
precisely known conditions. It turns out that the
mathematical values given by equation (5) can be
computed exactly in most cases. Slight deviations™ —
depending upon the texture of the plane —in about 10%
or less of the disparity estimates for a given image pair
are due to two effects. First, due to the discrete
sampling of the textured surface by the raytracer and

“These deviations have been at most one pixel difference from the
correct values when using 512 % 512 images for the evaluation. The
accuracy in depth is dependent on the particular stereo arrangement
at hand and can be computed from this value and the distance of the
fixated target.
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second, due to the averaging effect caused by the
window size of the two parts of the joint signal.

The local depth maps computed by the improved
algorithm (with Gaussian support functions) for two
real camera images are shown in Figures 20 and 21. The
image pairs have been taken at a distance of 2m with
stereo base length 7.00cm using a precision adjusting
device to produce a fixating arrangement. The (foveal)
angle of extent is 200 minutes of arc (or approximately
3°) in both cases. As can be seen, the qualitative
shape of the fixaied objects is recovered nicely, despite
some local failures of the disparity computation (e.g.
due to areas with no texture).

CONCLUSIONS AND PROSPECTS

We have presented a method for how a fixating
binocular observer can recover local depth information
with a single step computation avoiding the corres-
pondence problem. This method is motivated by recent
findings about the architecture of biological visual
systems. In contrast to standard formulations of the
stereopsis problem, this technique needs neither
regularization nor iterative computations to obtain the
solution,

local patches lack
sufficient structure

Local stereoscopic depth estimation: K-O Ludwig et al.

Figure 20  Disparity ficld (icft) and
local depth map (right) for the camera
image ‘book page’. Computation with
equal Gaussian window functions for
left and right subsignals of each pair
of dominance stripes (o, = 10%,

o, =21'; the rectangles only outline
the subdivision of the image). The
depth map is shown for the raw data
(surface plot, bottom) and as a
smoothed version utilizing a 4-point
adjacency in a 3 % 3 neighbourhood
(surface plot, top)

=

Figure 21 Disparity ficld (left) and

local depth map (right) for the
actual surface camera image ‘maize tin’ computed
is outside of by the improved algorithm using

fusional equal Gaussian window functions

depth band  for jeft ang right subsignals of a
pair of dominance columns (o, =
o, = 10%; with a previous LoG
filtering step with o= 0.71),
Locations on the surface plot of
the depth map have been marked by
arrows with the respective condition
indicated when the algorithm fails.
Both image pairs have been taken
at a distance of 2m with stereo base
length 7.00 cm using a precision
adjusting device to produce the
fixating arrangement. The (foveal)
angle of extent is 200 minutes of arc

Despite its capabilities, the algorithm naturally has
its limits, some of which can also be found in other
approaches. The presented method has a maximum
limit for disparities. The disparities are computed as
discrete values derived from the simple peak detection
(non-maximum suppression) in the cepstral plane. The
algorithm obviously fails if the subsignals do not
contain enough structure to contribute to the peak in
the cepstrum of the double signal. We also discussed
some of the problems of the original cepstrum-based
disparity estimator with straight edge segments,
different illumination and ‘artificial structures’. These
limitations, however, have been overcome by our
methodological improvements. The algorithm will yield
two peaks at depth boundaries, and it depends upon
the post-processing steps whether this is acceptable for
a given application.

For the technical aspects of the method, a mathe-
matical analysis of support functions with good signal
properties is necessary, since we currently investigated
only box and Gaussian shapes. In relation to this
analysis, the bias introduced from the window shape as
an error component in the estimation has to be
evaluated. It would also be interesting to investigate in
greater detail the prefilter properties of the cepstrum
filter,

Image and Vision Computing Volume 12 Number 1 January/February 1994 33



Local stereoscopic depth estimation: K-O Ludwig et al.

For the incorporation of this local depth estimation
technique in an active vision system, the problem of
combining multiple depth maps has to be analysed.
With respect to this application, we are investigating
the computational efficiency of discrete frequency
transforms. We developed a 2D Hartley transform,
which is two times faster than ordinary FFT algor-
ithms, on the basis of the 1D Hartley transform as
presented by Bracewell”™ to speed up the cepstrum
filter, and we are investigating for further improve-
ments.
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Counting people getting Iin
and out of a bus by real-time
image-sequence processing

F Bartolini*, V Cappellini* and A Mecocci’

The number of people getting in and out of a bus is an
important parameter to allocate the proper number of buses
for each connection-line of a public transport service. On the
other hand, the correct distribution of the available buses
over the different paths, is fundamental to obtain an
optimization of the whole transport network, and to reduce
costs. In this paper, an automatic system using dynamic image
sequence processing to count people getting in and out of a
bus is presented. Some fast algorithms are used to detect
motion, estimate its direction, and validate the presence of
moving people. The system can deal with vibrations, lighting
fluctuations and environmental variations. The main advan-
tages are the execution speed and the reliability of the
counting process, is performed correctly even if people flow
in a chaotic and very clustered way.

Keywords: dynamic sequence analysis, motion detection,
target detection and counting, optimization of transport
services

Efficient and cost-effective public transport services are
very important. Some connection paths are usually
provided by the public transport company; these paths
link the most important areas of a city. A prearranged
number of buses is allocated to each connection path;
this number is different from path-to-path, and should
vary during the day and from day-to-day in order to
achieve optimum performance. The correct allocation
of available buses to the different paths is a key point in
obtaining efficient management of the bus fleet. This
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allocation cannot be done correctly without some
efficient mechanism of gathering online information
about the actual needs of each path. The number of
passengers that are getting in and out of the buses can
be used to estimate these needs. The increase of
people-flow on a particular path in fact indicates that
more buses should be available on that path. Of course,
off-line statistical tests can be performed to get an idea
of the average number of buses needed on the various
paths. Nevertheless, the results that can be achieved
with such tests are static in nature and can only be used
for the general design of the whole transport network.
The allocation can be optimized only with a ‘real-time’
reconfiguration strategy, due to the unavoidable tem-
poral variation of the demand, and to its unpredictable
random fluctuations.

SYSTEM OVERVIEW

In many applications, the problem of people counting
has been attached by means of photoelectric sensors
that give an On/Off response when a light beam is
broken by an opaque target. These systems are not very
reliable, especially when the flow is not regular and
people pass close together. Photoelectric sensors can-
not measure the actual cross-section of the moving
target, and so spurious interruptions of the light beam,
due to sudden events (e.g. a briefcase which can
oscillate and periodically occlude the light beam)
induce errors in the final count. Moreover, photoelec-
tric sensors cannot easily determine the motion direc-
tion of the target, but this parameter is important to
monitor the input versus the output flow.

Image sequence analysis allows us to discriminate
among different false alarm conditions, and this gives
more precise results. The proposed system alternates
between two possible states: (a) target detection, and
(b) target validation and direction-estimation. In the
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