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Abstract
This report describes application-oriented work on diagnosis of three research groups
involved in the joint research project INDIA (Intelligent Diagnosis in Industrial Application).
Several different tasks related to the diagnosis of real-life systems of diverse domains are
addressed: FMEA, workshop diagnosis, generating diagnosis manuals, generating fault trees
and operator assistance in post mortem diagnosis. It is shown that in order to obtain re-usable
components it is useful to categorize the knowledge and software for a diagnosis system along
two dimensions, generality and genericity. The MAD system for model-based fault-tree
generation is presented which exploits several re-usable components for an automatic
compilation of fault trees. Finally it is demonstrated, that the techniques for re-using existent
information in modeling and diagnosis are not only applicable to models of technical
components but also to models of technical processes.
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1. Introduction
Efficient development of diagnosis equipment, use of available resources, and re-usability of
software components are the main advantages which industry expects from innovative
diagnosis technology. This has been the experience of the authors in several diagnosis
projects with industrial partners, in particular in the joint research project INDIA (Intelligent
Diagnosis in Industrial Applications). In this project, three teams, each consisting of a
research institute, a software supplier, and an industrial production company, have joined to
apply model-based diagnosis technology to real-life diagnosis problems and pave the way for
successful applications elsewhere. The particular diagnosis problems provided by the
industrial partners represented an interesting subset of industrial diagnosis applications. One
application area is on-line diagnosis of automotive equipment, another one is off-line
maintenance support for transport vehicles, the third one deals with operator assistance in post
mortem diagnosis of machinery.

It is well-known that model-based methods promise applications with attractive problem-
solving capabilities and significant economical advantages. Reviewing the attractive features
of model-based diagnosis, the main benefits are connected with the compositionality and
transparency of the model, from which diagnosis knowledge can be generated.
Compositionality bears the potential for re-using components, building component libraries
and inheritance hierarchies alleviating version control and easing modifications. The
transparency of component-based behavior descriptions may add further benefits, including
complexity management, exploitation of information from the design phase, and a large
degree of compatibility with other life-cycle product data including documentation. Hence, by
exploiting modeling techniques important benefits can be gained from model-based diagnosis
technology.

All this can be stated without reference to a particular diagnosis procedure. In fact, one of the
insights which this report wants to convey is about possible uses of model-based techniques
beyond the diagnosis procedures which are traditionally associated with model-based
diagnosis.

We believe that real-life engineering applications of model-based techniques may become
possible at a large scale provided the characteristics of today’s diagnosis practise are taken
into consideration:

• First of all, many producers of technical systems provide only limited diagnosis support of
their products to begin with. There are only few large market segments where producers
develop sophisticated diagnosis support (e.g. the automotive and aircraft industry). This is
changing, however, as the cost of maintenance personnel becomes more important and
improved service is required to remain competitive. But in many cases, the initial demand
for diagnosis support will be quite modest.

• A second point to observe is the industrial tradition of employing decision trees or fault
trees. These techniques have been developed from a maintenance rather than from a design
perspective. Traditionally, diagnosis matters are a concern only to the service division of a
company, not to the design division. However, as technical systems become larger and
more complicated, the design of decision trees becomes more demanding and problems
arise. Furthermore, frequent product changes cause excessive costs for the maintenance of
such diagnosis equipment. Hence there is growing awareness of the need for re-usability of
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diagnostic information. Diagnosis equipment should be developed in close connection with
design, and construction data and FMEA data should be exploited.

• A third problem to cope with is the natural desire of industry to perform changes in small
steps. The introduction of model-based reasoning for complete automation of diagnosis is
often perceived as too different from the traditional ways of doing diagnosis. Existing
know-how would become worthless and new know-how would have to be acquired. As
noted above, the organizational structure would be affected, with diagnosis tasks shifting
from the service to the design division.

This led us to focus our diagnosis research on ways to exploit the advantages of model-based
diagnosis techniques compatible (to some degree) with existing industrial traditions and
requirements.

In Section 2 we take a close look at model-based service and diagnosis support for the
automotive industry. We identify several different kinds of re-use and propose a classification
scheme which can be generally applied to re-use phenomena in complex industrial
environments.

 Section 3 presents a new method for automatically generating fault-tree diagnosis systems
from design data. The key idea is to use modeling techniques of model-based diagnosis for an
exhaustive computation of faulty behavior. Based on these data, fault trees can be generated
automatically and edited preserving correctness and completeness properties.

Section 4 presents an approach to construct temporally structured models of behavior and use
them in consistency-based diagnosis. For instance, designers and operators of sequentially
controlled production systems seem to prefer this kind of structuring to a purely component-
based approach.

2 Re-use of Models and Software in Diagnosis and Fault Analysis
of Automotive Subsystems

2.1 Three applications
In collaboration with Robert Bosch GmbH as a major supplier of mechatronic car subsystems,
the Model-based Systems and Qualitative Modeling Group (MQM) at the Technical
University of Munich works on three prototypes that support different tasks related to fault
analysis during the life cycle of a product:

• Failure-Mode-and-Effects Analysis (FMEA)
This task is performed during the design phase of a device. Its goal is to analyze the effects of
component failures in a system implemented according to the respective design. The focus is
on assessment of the criticality of such effects, i.e. how severe or dangerous the resulting
disturbance of the functionality is in objective or subjective terms (e.g. inconvenience for the
driver, environmental impact, risk of hazards). In addition, the probability of the fault and its
detectability is considered. Based on this analysis, revisions of the design may be suggested.
FMEA is becoming a legal demand and a customer request in a growing number of areas.
Because of the safety and environmental aspects, it has to be as “complete” as possible, not
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only w.r.t. the faults considered, but also in the sense that all possible effects under all
relevant circumstances (driving conditions of a vehicle, states of interacting subsystems, etc.)
have to be detected.

• Workshop diagnosis
The diagnostic task in the repair workshop starts from a set of initial symptoms which are
either customer complaints or trouble codes generated and stored on-board by one of the
Electronic Control Units (ECU) responsible for various subsystems of the vehicle. Except for
the obvious cases, some investigations, tests, and measurements have to be carried out in
order to localize and remove the fault, usually by replacement of components

• Generation of diagnosis manuals
The mechanic in the repair workshop is educated or guided by diagnosis manuals produced
and distributed by the corporate service department (on paper, CD-ROM, or via a network).
Here, engineers compile various kinds of information (tables, figures, text) which is required
or useful for carrying out the diagnosis. Such documents have to be produced for each variant
of the various subsystems and specific to a particular make, type, and special equipment of a
vehicle, a broad set of issues for a supplier. The core of each document is a set of test plans
that guide fault localization starting from classified customer complaints or trouble codes of
the ECU.

In practice, these tasks are usually not extremely difficult to perform by an expert. However,
they can be time-consuming since they have to be carried out for each specific instance of a
general device type which includes collection of all the information specific to this instance.
This situation of routine work applied to a large set of variants justifies computer support to
be developed. And because knowledge about physical devices is the key to solving the tasks,
model-based systems offer a perspective.

2.2 A categorization for re-use of knowledge and software
Beyond this, the tasks, and, hence, computer systems for their support, share more specific
elements. Identifying and analyzing them is a starting point for designing the computational
tools in a way that allows for re-use of these elements in an optimal way. In a knowledge-
based approach, such elements are both collections of represented knowledge fragments and
software components. We revisit the three tasks discussed above and highlight the knowledge
and procedures involved in order to identify re-usable elements.

• FMEA-Tool
The basic knowledge that has to be represented is about the functionality of the components,
i.e. component behavior models, involved in the designed device and their potential
malfunctions. The second obvious element is the device structure (the blueprint) which
determines the interaction of the components. Based on this input, the core of the tasks is then
to determine potential effects of component failures which we call behavior prediction. The
following assessment of these effects is based on the probability of such faults and their
criticality. The latter requires knowledge about the severity of the violation of functionality
of the respective subsystem in the vehicle (e.g. whether the result is just noise, increased
emissions, or even danger of fire).

• Workshop diagnosis
The nature of the task is obviously to determine components whose failure could possibly
cause some observed effects (“symptoms”). Again, knowledge about the involved parts,
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component behavior models, and the particular structure of the system is required, as well
as behavior prediction in order to compare the predicted and the observed effects. This is
usually not a one-step procedure, hence proposal of tests is another subtask. Because its
nature is to determine actions that are likely to lead to observable distinctions between the
behaviors of the diagnostic candidates, it must be based on some form of behavior
prediction, as well, and on information about such actions and observations and, in
particular, about their cost.

• Generation of diagnosis manuals
In contrast to an interactive workshop diagnosis system that responds dynamically to a
changing situation (and obtained information), a manual has to cover all possible diagnostic
situations starting from some initial symptoms. Hence, the core is proposal of test plans, in
the form of more or less sophisticated decision trees. Again, behavior prediction based on
component models and device structure information is necessary, as is information of
possible actions and observations and their cost.

Already this list of elements of knowledge and software gives some hints on their potential re-
use. Applying a classification scheme which is part of a general methodology for developing
models and model-based systems (see [Struss 99]), we take a closer look at this list.

The first distinction is made according to the generality of the respective entities of
knowledge, information, or methods:

• physical principles (sometimes called domain theory), which are fundamental and valid
for all systems (devices) in a particular domain and regardless of the special task, e.g.
Ohm's Law,

• device-specific (or device-type-specific) entities, i.e. knowledge and information
characterizing a particular system, for instance the value of the parameter resistance of a
part of the device,

• task-specific entities: knowledge, information, and algorithms for solving a certain type of
problem, for example an algorithm for computing a decision tree based on a set of behavior
models and possible measurement points.

Obviously, reflecting this distinction in the design and implementation of systems helps to re-
use the physical principles for several devices and in different tasks. Of course, exploiting
device information in different tasks and applying a problem solver to various devices is also
a desire. This requires a systematic separation of “How” and “What” (the problem solver and
its subject, that is), a principle which is central to knowledge-based systems and to model-
based systems, in particular.

Our experience shows that a structuring of knowledge and information and design of software
components cannot be optimal w.r.t. re-use unless at least one more, orthogonal, distinction is
made. We need to separate

• generic knowledge and methods from

• a representation and treatment of pragmatic elements.
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In our context, the former are related to representation of and reasoning about the abstract
behavior of a system according to the “laws” of physics, while the latter reflect the particular
physical implementation of a system and the preconditions imposed on a special task by the
real environment. To illustrate this in the context of our work, the circuits in a car subsystem
in two vehicles may have the same structure in the sense of the blueprint and include
components of the same type, nevertheless differ fundamentally in how they are laid out and
installed in the vehicles. This means, their behavior models are the same and will, for
instance, lead to the same diagnostic candidates. However, the respective test sequences to be
generated have to be different, because the accessibility of probing points varies significantly.
While this is determined by the device, the actual costs of a test sequence may, furthermore,
depend on the pragmatic context the task has to be performed in, for instance the equipment
available in a certain type of workshop. 

generic pragmatics

physical principles behavior model fragments
(component library)

devices
structure
parameters
behavior (intended and faulty)
state

function
• criticality
• tolerance
assembly / replaceable units
measurement points
actions
• measurements

tasks

model-based inference mechanisms
• model composition
• behavior prediction

• disassembly
equipment
costs

• model-based diagnosis
• model-based test generation

inference mechanism
reflecting pragmatics
• cost-oriented test proposal /

test plan generation
Table 2.1: Classifying knowledge and software elements

With respect to the scope of our work in model-based systems, we obtain the classification
displayed in Table 2.1. It is the simplest one, in fact it is somewhat oversimplified, as already
indicated by the overlap between device- and task-specific pragmatic elements: the actual
actions that have to be performed to carry out a test may be determined by both the physical
device and the contextual constraints on a task. More caveats are discussed below.
Nevertheless, an analysis along these lines already provides useful criteria for the design of
knowledge representation schemes, data base structures, and modularization of software
under the aspect of re-use. For the software prototypes discussed above, Figures 2.1, 2.2, 2.3
show the respective architectures and indicate the common components of software and
knowledge.
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Figure 2.1: Components of the kernel of an off-board diagnosis system
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Figure 2.2: Components of an FMEA Tool
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Figure 2.3: Components of the Diagnosis Manual Generator

2.3 Results and discussion
Although the distinctions made in the above analysis are fairly obvious, they are not
necessarily present in current practice of product documentation, actual work processes, and
traditional software systems. In fact, the scheme provides a tool for analyzing the inherent
limitations of different approaches to software tools for the kind of tasks considered here.
Many tools for engineering tasks do not provide a clear distinction along the vertical axis at
all turning them into unique solutions, and even if they are model-based, they do not provide a
method for composing the device model by re-using physical principles. Fault-tree-based
diagnosis offers a general inference mechanism for processing the trees, but the trees
inseparably merge component knowledge, device structure, and task knowledge including the
pragmatic aspects. This is why this technology is obsolete, unless a way is provided to
generate the trees from first principles as described in Section 3. But limitations become
evident also for several AI techniques. Case-based systems, for instance, do not represent the
principled layer and do not separate device-specific from task-specific knowledge, which also
holds for neural-network-based solutions.
We would like to emphasize that the discussion clearly shows that the problem of re-use
cannot be solved by means of general software engineering techniques, but requires an
analysis of the problem domain at the knowledge level and then, of course, appropriate
software architectures and knowledge representation facilities. This is why knowledge-based
systems, Artificial Intelligence, and, in our application domain, model-based reasoning
techniques promise significant progress and superiority to traditional approaches.
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As a side remark, it should be stated that much of what we discussed does not only apply to
re-use of knowledge through computer systems, but also to re-use of knowledge by humans.
If knowledge is not structured and indexed appropriately, for example by mixing device and
task knowledge, it is likely to be useless to a human expert who is working in a different
context. This is why the solutions advocated here are also a contribution to the area of
knowledge management which receives more and more attention.

Despite the fact that we will not easily find the necessary distinctions made explicit in current
practice, the analysis is not an academic one. Rather, it has a significant, if not decisive,
impact on the competence and flexibility of software systems and on the cost of producing
and maintaining them. Taking the classification into consideration when designing knowledge
bases and software solutions will already have a tremendous effect. In our case studies, not
only sharing of the component library and the device model across the three tasks could be
demonstrated, also software components, such as model composition and behavior prediction,
are re-used for the prototypes.

However, we have to mention that the schema presented above needs extensions, refinements,
and even further research. In particular, although we may be able to identify the general
principles and generate a device model from them, the result may not be appropriate in a
particular context:

• The task may influence the granularity of the behavior model. While a qualitative model
may do for the early phase of design and also for diagnosis, the final design may need a
numerical model.

• Pragmatic aspects, for instance the replaceable units, can have an impact on the
appropriate granularity of the structural and behavioral model. Another example is the
interaction between the function (purpose) of a device and its behavior model: for the
exhaust system, component models, say of pipes and valves, have to include transportation
of oxygen, carbon oxide, etc. in the intake and exhaust, whereas for pipes and valves in
other parts, only pressure matters.

As an answer to such issues, the transformation of generic, compositional models under task-
dependent and pragmatic criteria is part of our work (see e.g. [Heller and Struss 96]).

3 Generating Fault Trees

3.1 Application scenario and challenges
More than 100.000 forklifts made by the german company STILL GmbH Hamburg are in
daily use all over Europe. In order to reduce forklift downtimes, approximately 1100 STILL
service workshop trucks utilize fault-tree-based computer diagnosis systems for off-line
diagnosis. Due to the complexity of the electrical circuits employed in forklifts, fault trees
may consist of more than 5000 nodes. When forklift model ranges are modified or new model
ranges are released, fault trees are manually generated or adapted by service engineers who
apply detailed expert knowledge concerning faults and their effects. Obviously, this practice
is costly and quality management is difficult. Hence, there is a need for computer methods to
systematically support modifications and re-use of components of diagnosis systems. The
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introduction of new diagnosis techniques, however, raises challenges as noted in the
introduction.

Model-based fault-tree generation is a promising answer. In particular, grounding diagnosis
systems on a model provides a systematic way for modification and re-use of diagnosis
equipment. In the STILL application scenario, model-based approaches have to deal with
electrical circuits of the transport vehicle domain. These circuits usually consist of
components that show a variety of different behavior types, such as analog, digital, static,
dynamic, linear, nonlinear and software-controlled behavior. Faults may modify component
behavior or may even change circuit structures. Hence, heterogeneous symptoms, such as
slight deviations of parameter values or total loss of functionality may occur. In principle,
model-based techniques provide a systematic way for predicting the behavior of electrical
circuits, including faulty behavior. However, adequate modeling of heterogeneous circuits is
still a challenge. The following sections report about the progress which has been achieved.

3.2 Model-based fault-tree generation
In the STILL application scenario, nodes of fault trees represent fault sets. Edges are labeled
by the tests (involving measurements, observations, display values and error codes) which
must be carried out to verify the corresponding child node. Our approach towards model-
based generation of such fault trees is briefly outlined in the following. Due to the application
scenario, we focus on the electrical domain, although, in principle, dealing with devices of
different technical domains such as hydraulics or mechanics is feasible.

The first step to model-based fault-tree generation is to model a device. This step is supported
by a component library and a device model archive (see Figure 3.1). Design data and
knowledge from the design process (knowledge concerning intended device behavior,
expected faults, available measurements) are integrated into the device modeling process. In a
second step, correct and faulty device behavior is predicted automatically by computing the
device model. The third step is to build fault trees from behavior predictions. This step is
supported by a fault-tree archive and a cost model for the tests which can be performed. Fault-
tree generation can be performed automatically or guided by service know-how, i.e.
knowledge concerning cost of measurements, preferable fault-tree topologies, fault
probabilities. In order to realize these concepts, we implemented the MAD system that is
described in the following.
Figure 3.1: Basic concepts of model-based fault-tree generation

3.3 Device modeling and behavior prediction

3.3.1 COMEDI (COmponent Modeling EDItor)
To improve acceptance in industry, the MAD system provides a user interface called
COMEDI which is similar to a CAD tool. For device modeling, COMEDI provides two
different libraries, a device model archive and a component library. The device model archive
allows systematic re-use and modification of device models that were created during former
modeling sessions. The component library contains different qualitative models of electrical
components. Correct and faulty component behavior is represented. Qualitative modeling is
adequate because, usually, faults and symptoms are described qualitatively in this domain.
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3.3.2 Standard components
Internally, COMEDI models are mapped to formalized standard components which show well
defined and idealized behavior. MAD provides four different standard components: idealized
voltage sources, consumers, conductors and barriers. The behavior of idealized voltage
sources is well-known from electrical engineering. Consumers are passive and their
current/voltage characteristic is monotonic. Idealized conductors do not allow any voltage
drop while idealized barriers do not allow any current. Standard components can be connected
in combinations of series, parallel, star and delta (triangular) groupings. This simple internal
representation of electrical circuits is sufficient for the following reasons.

• In STILL service workshops, only steady-state diagnosis of electrical circuits is performed.
Therefore, only steady-state behavior of physical components has to be represented in
component models. In particular, an explicit representation of temporal dependencies is not
necessary.

• A small number of qualitative standard components suffices, because, often, different
physical components show similar electrical behavior, i.e. their current/voltage
characteristics differ only slightly. Qualitative versions of these current/voltage
c h a r a c t e r i s t i c s  a r e  f r e q u e n t l y  i d e n t i c a l .

• MAD’s standard components are deliberately selected so that important behavior classes of
t h e  a p p l i c a t i o n  d o m a i n  c a n  b e  a d e q u a t e l y  r e p r e s e n t e d .

Due to analogies between electrics, mechanics and hydraulics, the internal MAD
representation is, in principle, also adequate for other technical domains.

3.3.3 Qualitative values and calculus
Currents and voltages are described by qualitative values consisting of two parts: actual
values and deviations from reference values. Similar to the SDSP method [Milde et al. 97],
for currents and voltages, there are three qualitative deviation values, i.e. low (l), normal (n)
and high (h) with the obvious meanings. There are five qualitative actual values of currents,
i.e. negative-infinite (ninf), negative (neg), zero, positive (pos) and positive-infinite (pinf).
Qualitative values of voltages are similar.

The Tables 3.1 and 3.2 show the qualitative addition of two current values as examples. For
the sake of clarity, we omit negative values in the tables. This simple example demonstrates
that qualitative deviations cannot be computed independently of qualitative actual values.
Hence, qualitative actual values and deviations are associated inseparably and parameters are
described by different sets of qualitative values, each valid for one qualitative reference value.
In the shaded table cells below, in the left table the result of qualitative addition is n_pinf, no
matter whether current I2 is characterized by l_pos or n_pos. In the right table, obviously, the
results of qualitative addition are different depending on the qualitative value of I2 (see
shaded table cells). Hence, distinct addition tables are defined for each reference value.

I1 | I2 l_zero l_pos n_pos h_pos h_pinf I1 | I2 l_zero l_pos n_pos h_pos h_pinf
l_zero l_zero l_pos l_pos l_pos n_pinf l_zero l_zero l_pos l_pos l_pos /

n_pos /
h_pos

h_pinf

l_pos l_pos l_pos l_pos l_pos n_pinf l_pos l_pos l_pos l_pos l_pos /
n_pos /
h_pos

h_pinf

n_pos l_pos l_pos n_pos h_pos h_pinf
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h_pos l_pos /
n_pos /
h_pos

l_pos /
n_pos /
h_pos

h_pos h_pos h_pinf

n_pinf n_pinf n_pinf n_pinf n_pinf n_pinf h_pinf h_pinf h_pinf h_pinf h_pinf h_pinf
Table 3.1 and 3.2: Qualitative addition of current values

In order to compute qualitative current and voltage values, local propagation methods are
desirable. Local propagation fails, however, except in single cases if carried out in the original
network topology. We follow the approach introduced by Mauss [Mauss 98] where networks
are transformed into trees which represent the network structure. In particular, series, parallel,
star and delta groupings are explicitly represented. Exploiting this tree structure, qualitative
behavior can in fact be computed by local propagation.

In order to improve the accuracy of qualitative prediction, MAD offers certain features that
prevent spurious solutions. Rather than relying on qualitative versions of basic arithmetics,
MAD computes qualitative values for the elements of the structure tree (series and parallel
groupings etc.) by a set of qualitative operators which are qualitative versions of complex
quantitative equations. In effect, these equations describe the behavior of series, parallel, star
and delta groupings. Utilization of complex operators avoids multiple use of simple operators
and, thus, avoids spurious predictions. For instance, a voltage divider operator is invoked to
compute qualitative voltage values instead of determining current values first and computing
voltage values from current values in a second step. In principle, for network analysis, a
limited number of operators suffices because of the limited number of standard components
and elementary network structures.

Qualitative operators are defined by applying the corresponding quantitative equation to the
interval boundaries and to incremental deviations which represent actual values and
deviations of qualitative input values. The resulting boundaries and incremental deviations
represent the corresponding qualitative output values. The operators are represented by a set
of tables comprising more than 30000 entries which had to be generated by computer in order
to guarantee reliability. Due to the properties of this qualitative calculus, spurious solutions do
not occur at all if the network can be structured into series and parallel groupings of standard
components.

3.3.4 Automated behavior prediction
Behavior predictions are performed for all operating modes, faults and fault combinations for
which diagnosis support is required. For each operating mode and fault assumption, all
symptoms (measurements, observations, error codes, display values) are computed which are
in principle available for diagnosis. The output of the prediction step is model-based diagnosis
knowledge in form of an extensive table of fault-symptom associations. This table is the basis
for fault-tree generation.

3. 4 Fault-tree generation
MAD offers three different possibilities to generate fault trees. First, based on fault-symptom
tables, fault trees can be created automatically. Second, fault trees from archives can be re-
used. Third, in order to permit manual adaption and modification of fault trees, MAD offers
basic editing operations, such as moving a certain fault from one fault set to another and
recomputing the corresponding tests. In the following, automated fault-tree generation is
presented in more detail. One can choose from the following criteria to guide fault-tree
generation.
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• Minimization of average diagnosis cost. Automated fault-tree generation uses the well-
known A*-algorithm to select the tests which minimize the average diagnosis cost
a c c o r d i n g  t o  a  c o s t  m o d e l  ( s e e  F i g u r e  3 . 1 ) .

• Grouping by observations, error codes, display values. Fault trees are generated such
that subsets of faults correspond to a prespecified symptom. For instance, all faults are
grouped together which cause the front lights not to shine correctly.

• Grouping by aggregate structure. If the aggregate structure of the device is known, fault
trees can be generated such that subsets of faults correspond to the same physical
component. For instance, faults occurring on a certain board may be grouped together.

Model-based prediction and automated fault-tree generation guarantee, that fault trees are
correct and complete with respect to the underlying device model and the faults and fault
combinations considered in the fault-symptom table. All faults considered in the device model
occur in the generated fault tree, and tests are selected correctly to discriminate fault sets. This
holds even when fault trees are modified manually. Furthermore, average diagnosis cost is
minimal within the constraints imposed by a prespecified fault-tree structure.

3.5 Evaluation
We have evaluated the MAD-System in the STILL application scenario and found that using
the modeling techniques of MAD with some extensions regarding electronic control units,
more than 90% of the faults of the current handcrafted diagnosis system can be handled
successfully. The prototypical implementation allows model-based behavior prediction and
automatic generation as well as manual modification of fault trees. Furthermore, we
successfully integrated these fault trees into existing STILL diagnosis systems.

4. Searching for Failing Steps of a Technical Process
The approaches to model-based diagnosis discussed in this paper, so far, are adopting the
view of “searching for faults of components”. However, for many technical systems an
alternative approach seems preferable, which searches for failures in steps or phases of a
technical process rather than components, at least in the initial phases of diagnosis. The
common feature of these systems is that domain experts describe their behavior as
interconnected steps and use such mental models in focussing diagnosis (“Which step
failed?”). The duration of a step in a certain system behavior is not necessarily fixed but may
depend on certain events, like variables reaching certain values, time-outs or operator
commands. Such systems are particularly common in the process and manufacturing
industries. An important special case are hybrid systems, whose behavior throughout certain
steps may be described as continuous while transitions between steps represent discontinuous
changes.

To follow the mental models of domain experts by searching for failed process steps in
diagnosis of such systems presents several advantages, particularly with respect to re-use.
Firstly, temporally structured descriptions of the overall system behavior, such as diagrams of
flow of energy, material or information, are much more likely to be found than component-
based behavior descriptions. These descriptions can be re-used to guide modeling for
diagnosis. With the more widespread use of formal specification and verification languages in
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engineering there is even the perspective of automating much of this task. Secondly, the
proximity between temporally structured diagnosis models and their own mental models helps
experts to specify additional information that may be used in diagnosis. Thirdly, there is the
chance to re-use diagnosis models for design checking, FMEA or generation of diagnosis
manuals, as demonstrated in Section 2. Finally, such diagnosis models mirror the way such
technical systems are operated and diagnosed. They should therefore fit more easily into
existing traditions and environments. This section presents an approach to diagnosis based on
such models, which Fraunhofer IITB developed in the context of INDIA.

4.1 Modeling
Our approach proposes the following guidelines to construct temporally structured models for
diagnosis:

1. Identify the steps of the technical process. Try to rely on steps that have already been
identified for the considered system (e. g. in existing behavior specifications) and on
types of steps that are commonly used in the domain (e. g. the basic physical and
chemical procedures of process industry). Steps need not be ordered sequentially, but
may be processed in parallel.

2. For every step search in the model library for an unstructured model (also known as
Block-Box model) of successful behavior which may be re-used for diagnosis or used as
a starting point for modifications or refinements. If no adequate model can be found,
construct a new one, which may be added to the library afterwards. In any case, such a
model has to contain propositions to infer that the system is processing a particular step,
for instance:

• starting conditions: conditions which necessarily and sufficiently mark the beginning
of the step (e. g. a certain event in a particular situation);

• ending conditions: conditions which necessarily and sufficiently mark the end of the
step (e. g. a certain value of a sensor signal);

• minimal duration constraints: a constant or function of system variables that specifies
some lower bound on the duration of a successful step.

With respect to diagnosis, the model should also contain propositions of some of the
following types, which might be called inconsistency detecting constraints:

• Prerequisites: necessary conditions defined on system variables (e. g. inputs to the
system) that have to be met at the beginning of the step if the step should succeed.

• Required invariants: system properties that have to remain unchanged to complete
the step successfully.

• Guaranteed invariants: system properties that remain unchanged throughout a
successful step.

• Duration constraints: constants or functions of system variables that specify some
lower and/or upper bound on the duration of a successful step.
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• Success indicators: propositions that necessarily hold at the end of the step if the step
completed successfully.

The following criteria should be considered in choosing such propositions:

• The set of propositions has to be consistent.

• Truth of a proposition should distinguish success of the step from (at least one
typical way of) failure.

• It must be possible to check a proposition: the negation of the proposition should be
inferable from the model and other propositions probably available during diagnosis,
like observations or propositions inferred from models of other steps. “Probably
available” indicates room for pragmatic interpretation. In order to support re-
usability we should make only weak assumptions about the context, in which the
model will be used.

• To be useful in diagnosis, prerequisites require starting conditions, duration
constraints require either starting or ending conditions, success indicators require
ending conditions and invariants require at least propositions of two of the types
starting conditions, ending conditions and minimal duration constraints. Otherwise it
would not be clear at what time the propositions have to hold.

The model might contain other constraints on system variables that describe the
system's behavior during the step, but the information types listed above seem to be
particularly useful for diagnosis.

3. For every typical failure of a step look in the model library for a corresponding failure
model, which may be re-used for diagnosis or used as a starting point. In analogy to the
elements of the success model it should contain propositions that allow to infer that the
system processes the step and inconsistency detecting constraints. Obviously, success
indicators have to be replaced by failure indicators.

4. Construct a temporally structured model of the overall process which specifies the
identified steps and their coupling, e. g. by shared system variables.

5. While identifying the step which failed or the kind of failure may already be sufficient
for some preliminary treatment, repair of the system will frequently require to further
localize the failure inside a step. In that case we need a structured model of the step. If
the step is composed of smaller steps and we want to localize the failure in one of them,
we can construct a temporally structured model of the step in the same way as for the
overall process. But eventually, we may want to identify a faulty component that caused
the failure.

To this end search the model library for a model of how components interact to
implement the step. If no adequate model is available, construct a new component-based
model. In any case, such a model should be much simpler than a model that describes
how components implement the overall system behavior.
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To simplify the presentation, we assumed that structured models specify either steps or
components only. However, the approach can be generalized in a straightforward way to
models that describe behavior by interacting steps and components.

4.2 Consistency-based diagnosis with temporally structured models
While it is unclear if these types of models may be used for the generation of decision trees,
the standard procedure of consistency-based diagnosis may be employed to compare them to
observations. To this end we justify every inference from a structured model with correctness
of the structure, every inference from a model of a successful step with success of the step and
every inference from a model of a failed step with the proposition that the step failed in the
corresponding way. A diagnosis then states that one or more steps have failed. Such diagnoses
may be refined by analyzing structured models for the suspected steps.

Standard correctness and completeness results of consistency-based diagnosis are still valid
for temporally structured models, and the quality of diagnosis still depends on the precision of
the models.

4.3 An example
Our guiding example in INDIA is the chemical distributor (CHD) from THEN GmbH, a
system to distribute liquids in a dye house, (see Figure 4.1). Domain experts describe a typical
task processed by the CHD as measuring out certain amounts of certain chemicals,
transporting the mixture to the requesting dying machine and finally rinsing the pipes
involved with water. Control signals to pumps and valves as well as the sensor signals from a
flow meter can be observed by the controller and reported to a logging facility for use in
diagnosis. Additionally, an operator can observe the status of valves.

Figure 4.1: Chemical distributor

These steps can be used to construct a temporally structured model of the overall behavior of
the CHD. In particular, analysis of the control flow diagram of the control program shows that
measuring out of chemicals, transport of the mixture and rinsing may be viewed as instances
of a general step type. A temporally structured model for this kind of steps includes as smaller
steps: opening the affected valves, starting the pump, waiting until the requested amount has
been transported, stopping the pump and closing the valves.

The black-box models of successful steps employ propositions about the values of the valve
control signals as starting and stopping conditions. Among the inconsistency detecting
constraints duration constraints are particularly useful. For instance, an upper bound on the
duration of the measuring and rinsing steps can be derived as a function of the requested
amount. Upper bounds on the time needed to open or close a valve are also available. In the
past, we have observed a similar benefit from duration constraints in another domain,
diagnosis of an assembly station. In general, duration constraints are able to detect failures
that cannot be characterized by some unique set of synchronous observations. Typical
examples are effects that happen too fast (e.g. because of miscalibrated sensors), happen too
slow (e.g. in case of wear or pollution) or do not happen at all (e.g. stuck valves).

Now, assume that some valve of the chemical distributor should open for measuring out some
chemical, but is stuck. Since we can observe the control signals, we can detect when steps
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start and end. Because of the duration constraints, we find that some measuring step does not
end in time and hence fails. Now we switch to a component oriented model which describes,
how pumps, valves, the flow meter and other components implement the measuring step.
From the observed control signals and the models of pumps and valves we infer that flow
should be enabled, however we cannot observe any flow. Diagnosis suspects the pump, the
flow meter and the valves. Observations of the states of particular valves requested from the
operator finally establish the correct diagnosis. Note that analysis of the step models allowed
us to temporally focus diagnosis on a particular step. The subsequent analysis on the
component level neglected those components that did not take part in the suspected step as
well as interactions of the participating components during other steps.

4.4 Discussion
This section presented an approach to consistency-based diagnosis that initially relies on
models which structure a technical process into several steps. The example demonstrated the
benefits from the approach with respect to knowledge acquisition and complexity of the
diagnostic task.

The approach extends the potential for re-use of models from libraries, since step models can
be re-used just as component models. This has also been demonstrated in the example.

The approach seems to be applicable whenever experts describe the behavior of a technical
system by steps processed sequentially or in parallel. For instance, the behavior of
sequentially controlled systems is usually described by event models, such as statecharts. The
rapidly growing number of applications of such systems - e. g. industrial plants, air
conditioning in buildings, cars and aircrafts, washing machines and video recorders - indicates
the relevance of our approach.

An interesting question is how the approach deals with failures of steps that are caused by
failures of previous steps. For instance, a manufacturing step that should drill a hole into some
product part depends on previous steps to provide the right drill and part. In such a case
structured models of the subsequent step would be employed to recognize the component that
“transported” the failure, e. g. the part. Then we can choose a model of the overall process
that focuses on the history of this component and describes the previously hidden interaction.
This seems to be quite similar to the approach hidden interactions are handled in component-
based diagnosis. More importantly, it seems to be the way human experts proceed in
diagnosis.

5. Conclusions
We have addressed several tasks related to diagnosis in an industrial environment. From our
experience, re-usability is one of the prominent features model-based techniques have to offer
in this domain.We have shown that in order to improve re-usability it is useful to categorize
the
knowledge and software for a diagnosis system along two dimensions, generality and
genericity. This has been illustrated by identifying re-usable components in three diagnosis-
related systems of the automotive domain.

The work on model-based fault-tree generation can be viewed as another example for this
general idea. By separating device-specific from task-related knowledge and generic from
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pragmatic aspects, and by model-based generation of fault trees, fault-tree diagnosis systems
with a
high degree of re-usability can be obtained. It is interesting that this approach combines
advantages of model-based diagnosis systems with the familiarity of traditional fault-tree
systems.

Finally, we have demonstrated that the re-usable building blocks for modeling the behavior of
devices need not represent components. Consistency-based diagnosis techniques remain
applicable if a technical process is described as a series of steps constrained by certain
propositions for correct or faulty behavior. Furthermore, an abstraction level is provided
where design information or human expert knowledge can be expressed, facilitating re-use
between different tasks.
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