
Abstract
Computer diagnosis systems grounded on hand-crafted
fault trees are wide-spread in industrial practice. Since the
complexity of technical systems increases and innovation
cycles get shorter, the need for systematic fault tree gener-
ation and maintenance arises. In this paper, the MAD sys-
tem is introduced which generates fault trees based on
models of technical devices. Since a fault tree can be gen-
erated automatically based on a device model, the cost for
providing, modifying, and maintaining diagnosis equip-
ment can be drastically reduced and quality management of
diagnosis equipment can be facilitated. Furthermore, the
cost of fault-tree-based fault identification can be reduced
because model-generated fault trees can be optimized.
MAD is specifically designed to facilitate its integration
into existing service workflow. We have successfully eval-
uated the MAD system in cooperation with the German
forklift manufacturer STILL GmbH Hamburg.

1 Introduction
More than 100.000 forklifts made by the German compa-
ny STILL GmbH Hamburg are in daily use all over Eu-
rope. In order to reduce forklift downtimes, approximately
1100 STILL service workshop trucks utilize fault tree-
based computer diagnosis systems for workshop diagno-
sis. In case of a malfunction, service technicians attach a
computer diagnosis system to a forklift. Then the diagno-
sis system performs automated testing and it also instructs
service technicians to carry out manual tests. Test se-
quences are specified by fault trees which are diagnostic
decision trees allowing fault identification.

Due to the complexity of the electrical circuits em-
ployed in forklifts, fault trees may consist of more than
5000 nodes. When forklift model ranges are modified or
new model ranges are released, the central service divi-
sion manually generates or adapts fault trees. Dealing with
this task, service engineers apply detailed expert knowl-
edge concerning faults and their effects. Adapting fault
trees to new model ranges can take a service engineer sev-
eral months.

Obviously, this practice is costly and quality manage-
ment is difficult. Furthermore, fault trees are not opti-
mized and fault identification cost is unnecessarily high.
Hence, there is a need for computer methods to systemat-
ically support the design, modification, and optimization
of fault trees. The introduction of new diagnosis tech-
niques, however, raises challenges. The STILL GmbH de-
fined the following requirements for the introduction of a
new computer diagnosis system.

• First, cost of new diagnosis system integration into
existing STILL service and diagnosis workflow has to
be low. A new diagnosis system must be easily
accepted by service technicians and service engineers.
Thus, identifying faults with a new diagnosis tool has
to be intuitive for service technicians which are famil-
iar with the current STILL diagnosis system. Long
terms of training for service technicians and service
engineers are not acceptable.

• Second, cost of diagnosis equipment generation, modi-
fication, and maintenance has to be reduced. Generat-
ing diagnosis equipment for new forklift model ranges
as well as adapting diagnosis equipment to forklift
updates has to be carried out cost-efficient.

• Third, the current diagnostic performance should be
exceeded. As a minimal requirement, a new diagnosis
system has to be able to identify all faults handled by
the current STILL system. Incorrect fault identifica-
tions cannot be accepted.

• Fourth, average fault identification cost has to be
reduced.

As a participant of the German joint research project IN-
DIA (Intelligent Diagnosis in Industrial Applications) the
Laboratory for Artificial Intelligence of the University of
Hamburg develops concepts of innovative computer diag-
nosis techniques for the STILL application scenario. Fac-
ing the above-described requirements for the introduction
of new diagnosis techniques, we consider innovative mod-
el-based techniques to be advantageous because they pro-
vide a systematic way for design, modification, and
optimization of diagnosis equipment. In particular, auto-
matically generating fault trees from device models is a
promising strategy because completely replacing fault
trees is not an immediate option for economical reasons.
In our application, two major requirements for successful
model-based fault tree generation arise.
• First, to secure acceptance among service technicians,

model-based fault trees have to represent established
STILL fault identification strategies. That is, fault
identification guided by automatically generated fault
trees should be similar to current STILL fault identifi-
cation. Thus, modeling circuit faults and representing
current fault identifying actions is essential as well as
accurate symptom prediction.

• Second, to secure acceptable cost of fault tree genera-
tion and maintenance the complexity of the device
modeling process has to be minimized. Thus, massive
utilization of model libraries and extensive reuse of

Facing Diagnosis Reality - Model-Based Fault Tree
Generation in Industrial Application

Heiko Milde and Lothar Hotz

Laboratory for Artificial Intelligence, University of Hamburg
Vogt-Koelln-Str. 30, 22527 Hamburg, Germany

milde@kogs.informatik.uni-hamburg.de
phone: ++49 (0)40 42883-2606, fax: ++49 (0)40 42883-2572

existing diagnosis system components and integration
of available resources such as design data, service
expertise, and expert knowledge from the design pro-
cess is essential.

In our application, nodes of fault trees represent fault sets.
Edges are labeled by the tests (involving measurements,
observations, display values and error codes) which must
be carried out to verify the corresponding child node. Al-
though the basic concepts of model-based fault tree gener-
ation are already described in (Cascio et al. 99) and (Faure
et al. 99), for the reader’s convenience, we briefly outline
the main ideas of the approach in the following.

The first step to model-based fault tree generation is to
model a device. This step is supported by component li-
braries and a device model archive (see Figure 1). Design
data and knowledge from the design process (knowledge
concerning intended device behavior, expected faults,
available measurements) are integrated into the device
modeling process. In a second step, behavior predictions
are automatically computed from the device model and
stored in the so-called fault relation. The third step is to
build fault trees from the fault relation. This step is sup-
ported by a fault tree archive and a cost model for the tests
which can be performed. Fault tree generation can be per-
formed automatically or guided by service know-how, i.e.
knowledge concerning preferable fault tree topologies. In
order to realize these concepts, we implemented the MAD
system which is described in this paper.

Figure 1. Basic concepts of model-based fault tree generation

This paper is structured as follows: In Section 2, we intro-
duce the accelerator pedal circuit which is a simple exam-
ple showing typical characteristics of diagnosis in our
application. In the remainder of the paper, model-based
fault tree generation is described for this circuit. Section 3
presents circuit modeling. Automated fault tree generation
is described in Section 4. Finally, Section 5 summarizes
our findings including evaluation and conclusions. In this
paper, we outline how STILL diagnosis scenarios and
fault identification strategies can be handled more than
presenting theoretical background.

2 The Accelerator Pedal Circuit
In this section, we describe the forklift accelerator pedal
circuit and enumerate faults which can be handled by the
current STILL computer diagnosis system. Furthermore,
we demonstrate how fault identification is currently per-
formed. Although considering a certain forklift circuit,
faults, symptoms, and diagnosis strategies seem to be rep-
resentative for a wide range of applications.

Figure 2 shows the wiring diagram of the accelerator
pedal circuit which enables the electronic control unit
(ECU) to measure the accelerator pedal position. The ped-

al determines a potentiometer position which controls the
value of voltage UFG. In addition, the pedal is connected
to a switch controlling voltage UFGS. The ECU provides
a supply voltage VCC and it measures UFG and UFGS.
Thus, the pedal position is supplied redundantly to secure
reliability of the measurements.

Fault trees of the current diagnosis system allow to
identify the following faults: Wires located between the
ECU and connector X16 may break due to mechanical
stress. The mechanical connection between the accelera-
tor pedal and the switch 1S16 may also break. In this case,
the switch is independent from the actual pedal position
and it connects either wire 1 and wire 2 or wire 2 and
wire 5. The voltage VCC may be supplied incorrectly, i.e.
the voltage is not between 9.8V and 10.1V. Additionally,
the mechanical connection between accelerator pedal and
potentiometer 1B1, may not be adjusted correctly or may
even be broken.

Figure 2. Wiring diagram of a forklift accelerator pedal circuit

For fault identification, the current diagnosis system uti-
lizes measurements and direct component fault identifica-
tions. Additionally, certain operating modes are
effectuated to simplify fault identification.
• Measurements. Current and voltage are automatically

or manually measured in steady states of electrical cir-
cuits only. Automatically measured parameter values
are frequently interpreted by the ECU such that quali-
tative information is exploited for diagnosis whereas
the quantitative values may not be utilized at all. In the
accelerator pedal example, the ECU automatically
measures UFG and UFGS. Beside the quantitative
value of UFG, the ECU provides two error flags
UFG_HIGH and UFG_LOW with values OK and
not_OK which are utilized for fault identification.
These flags indicate that UFG exceeds or falls below
certain threshold values. The quantitative value of
UFGS is also automatically mapped to values OPEN
and CLOSED. Considering these value names, one
could think that these values describe the switch 1S16
but, in fact, they represent certain quantitative value
ranges of UFGS. In addition to automated measure-
ments, service technicians manually measure the volt-
age drop from wire 8 at connector X16 to ground.

• Fault identification. Some components can be
removed from the assembly in order to connect them to
test devices which non-ambiguously identify correct
and faulty component behavior. For example, the
breaking of some wires of the accelerator pedal circuit

device model

fault trees

cost model

behavior
device model

component libraries

fault tree archive

archive
predictions

(fault relation)

design know-how

design data

service know-how

accelerator
pedal

A
D

ECU

VCC

UFG

UFGS

VCC

1S16

1B1

wire1

wire2

wire3

wire4

wire5

wire88/X16

3/X16

4/X16

1/X16

2/X16

5/X16

potentiometer

switch

X16

connector
R1

R2 R4

R5

A
D

is directly verified by attaching these wires to a test
device which measures the conductance of these
cables.

• Operating modes. Technical systems usually show
different modes of operation. Intendedly installing cer-
tain operating modes can be helpful for fault identifica-
tion. In the accelerator pedal example the pedal can be
kicked down and released again which defines two dif-
ferent operating modes. The current diagnosis system
explicitly exploits these two operating modes for diag-
nosis. To facilitate fault identification certain operating
modes may be installed which never occur in regular
operation of a device. These operating modes are
exclusively effectuated for diagnostic purposes. For
example, connectors can be opened and short circuits
(bridges) can be inserted into electrical systems. Com-
ponents can be replaced assuming that their substitutes
behave correctly. For diagnosis of the accelerator pedal
circuit, the current STILL diagnosis system may
instruct the service technician to open connector X16.
After opening this connector, in some cases, there is a
bridge inserted between wire 1 and wire 2. This bridge
is a substitute for switch 1S16 in the state shown in
Figure 2.

The accelerator pedal example demonstrates that, in our
application, electrical circuits usually consist of compo-
nents that show a variety of different behavior types, such
as analog, digital, static, dynamic, linear, nonlinear and
software-controlled behavior. Faults may slightly modify
component behavior or may even change circuit struc-
tures. Hence, a wide range of different symptoms such as
slight deviations of parameter values and total loss of
functionality may occur. In principle, model-based tech-
niques provide a systematic way for predicting the behav-
ior of electrical circuits, including faulty behavior.
However, in our application, adequate modeling of heter-
ogeneous circuits is essential to secure high quality of
generated fault trees. Thus, accurate device modeling was
a major focus in our work. In Section 3 of this paper, we
demonstrate how circuit faults, fault identifying actions,
and diagnosis strategies of our application can be repre-
sented using MAD.

3 Electrical Circuit Analysis
For model-based fault tree generation, behavior predic-
tions are computed taking fault models into account which
represent faulty component behavior. Each fault model of
the device model is explicitly represented in generated
fault trees. Thus, computation of behavior predictions is
uncomplex and fault trees are clear and manageable if the
device model shows a small number of fault models.
Qualitative models rather represent fundamental system
behavior than sharp quantitative parameter values and a
single qualitative fault model can cover a wide range of
faulty component behavior. Thus, a limited number of
qualitative fault models can suffice for extensive faulty
behavior representation. Therefore, in principle, qualita-
tive circuit modeling is useful for model-based fault tree
generation. In our application, qualitative electrical device
models are adequate because, in current STILL fault trees,
component faults and symptoms are described qualitative-
ly. Additionally, qualitative models are advantageous be-

cause, in principle, dealing with product variants is possi-
ble. In Section 3.1, MAD’s qualitative network analysis is
briefly presented. Details of MAD’s internal models of
electrical circuits and the computation of qualitative pa-
rameter values can be found in (Milde et al. 99).

3.1 MAD’s Internal Electrical Circuit Models
As known from electrical engineering, MAD represents
electrical circuits by equivalent networks. These networks
consist of standard component models which show no in-
ternal structure but they show well-defined and idealized
behavior. Controlled versions of standard component
models exist. MAD only provides two different types of
standard component models, i.e. passive and active mod-
els showing passive and active behavior modes, respec-
tively. Passive behavior modes are “consumer”,
“insulator”, and “conductor”. Active models qualitatively
represent idealized voltage sources providing different
voltage levels. Physical parameters are described by qual-
itative parameter values standing for intervals or land-
marks. To facilitate the analysis of faulty device behavior,
actual values, reference values, and deviations of parame-
ters are explicitly represented.

3.2 COMEDI (COmponent Modeling EDItor)
To improve acceptance among engineers, MAD provides
a user interface called COMEDI which is similar to a
CAD tool. For device modeling, COMEDI offers three
different model libraries shown in Figure 3, i.e. the gener-
ic component library, the application component library,
and the device model archive.

Figure 3. COMEDI libraries and the device modeling process

• The generic component library contains all elementary
component class models that are provided by MAD’s
internal representation of electrical circuits. Thus, the
generic component library cannot be extended. It con-
sists of 728 different component class models.

• The application component library contains models of
component classes that are explicitly designed for cer-
tain applications. These component class models are
interactively generated, based on generic component
class models. Thus, the application component library
can be extended.

• The device model archive allows systematic reuse and
modification of device models that were created during
former modeling sessions. These models are assem-
blies of application component models.

Providing library models is fundamental because utiliza-
tion of libraries massively reduces the complexity of the
modeling process which is essential for the acceptance of

modeling

modeling

generic component library application

device model archive

component

device

application component
library

MAD in our application. As shown in Figure 3, COMEDI
device models are assemblies of application component
class models which are based on generic component class
models. Hence, to prepare the description of circuit mod-
eling, in the following, we outline COMEDI’s generic
component class models and the hierarchical structure of
the generic component library which is shown in Figure 4.

Each of COMEDI's generic component class models
shows a set of basic behavior modes which are briefly pre-
sented in Section 3.1. These behavior modes are possible
actual behaviors, i.e. each of these behavior modes can be
chosen to model actual component behavior (correct and
faulty). Additionally, each generic component class model
shows one behavior mode describing component refer-
ence behavior. Thus, a generic component class model
comprises a selection of actual behavior modes and exact-
ly one reference behavior mode. Modeling a certain actual
behavior means selecting one behavior mode from the set
of possible actual behaviors. When the reference and the
actual behavior mode are identical, usually, correct com-
ponent behavior is modeled.

Figure 4. Selected parts of the hierarchical structure
of COMEDI’s generic component library

The internal representation of the generic component li-
brary is hierarchical such that the most general model is
the root of a tree and the most specific models can be
found in the leaves (see Figure 4). The generic component
model (the root) consists of two sets of behavior modes,
i.e. possible and reference behavior modes. Both sets con-
tain all basic behavior modes described in Section 3.1,
both active and passive behavior modes. In the next lower
level in Figure 4, passive and active component models
also show sets of possible and reference behavior modes
but these sets contain only active and passive behavior
modes, respectively. For each model in the next lower lev-
el in Figure 4, the set of reference behavior modes is re-
stricted to exactly one reference (ref) behavior mode.
Models found in the leaves additionally restrict the num-
ber of possible (pos) behavior modes. Since generic com-
ponent class models show exactly one reference behavior
mode, for application component class modeling, only ge-
neric component models from the two lowest levels in
Figure 4 can be utilized. Using COMEDI, modeling elec-
trical circuits consists of application component modeling
and device modeling (see Figure 3). Both tasks are de-
scribed in the following two subsections.

3.3 Application Component Modeling
In this subsection, the interactive generation of models of
application component classes is described. These models

are based on generic component class models. We consid-
er wire 4 of the accelerator pedal circuit as an illustrating
example.
1. Operating mode modeling. In the first step, the elec-

trical behavior of an application component class is
modeled. Components may show different modes of
operation. Switches, for example, can be open or
closed. For each operating mode of a component class,
a generic component class model has to be selected,
i.e. reference and possible actual component behavior
have to be modeled. Thus application component class
models show one or more generic component class
models.
Reference behavior modeling. According to Figure 4,
first of all, it is decided whether the model is active or
passive. Then an adequate reference behavior mode is
selected. Usually, this step is performed to determine
correct component behavior. Obviously, wire 4 is a pas-
sive component. Its internal resistance is very small and
negligible in the context of accelerator pedal circuit
analysis. Hence, we determine the correct behavior of
wire 4 by selecting the reference behavior mode "ref:
conductor" which is shaded pale in Figure 4.
Possible actual behavior modeling. In this step, all
possible actual component behavior is modeled which
is relevant for automated fault tree generation. That is,
correct and faulty behavior has to be represented by
choosing an available set of possible behavior modes.
Available sets of possible behavior modes are repre-
sented by the node selected in the previous modeling
step and its successors (see Figure 4). Correct behavior
of wire 4 is already discussed above. If the wire is bro-
ken there is no current and the wire behaves like an in-
sulator. Hence, for possible actual behavior modeling,
we choose the "pos: conductor, pos: insulator" model
from the generic component library (see Figure 4).
Note that, for some reference behavior modes, there are
corresponding deviative behavior modes offered for ac-
tual behavior modeling. For instance, if the reference
behavior is “ref: consumer” then automatically “pos:
increased consumer” and “pos: decreased consumer”
are offered which is exemplarily shown in the dark
shaded box in Figure 4. Internally, these behavior
modes can be realized due to qualitative deviation val-
ues.

2. Measurement modeling. After the electrical behavior
of a certain application component class is modeled,
measurements can be defined. Both, the voltage drop
across the generic component class model and the cur-
rent through the component model can be subject of a
measurement. As a consequence of modeling a certain
measurement, there is a column for the parameter in
the fault relation showing corresponding qualitative
parameter values.

3. Observation modeling. Similar to functional labeling
(Price and Pugh 96), user-defined strings such as “light
bulb shining” can be attached to certain qualitative cur-
rent and voltage values to model typical observations
used for diagnosis. For each observation in a device
model, there is a column in the fault relation. Note that,
observations can be utilized to model the error flags in
our application.

4. Replaceability modeling. As noted above, during

ref: conductor

pos: consumer
pos: increased consumer
pos: decreased consumer

generic component

active component

pos: conductor
pos: consumer

pos: conductor
pos: insulator

pos: conductor

passive component

ref: insulatorref: consumer

diagnosis sessions, components may be replaced by
correct-working substitutes to simplify fault identifica-
tion. If replaceability of an application component
class is modeled, then, first, each generic behavior
model describing a certain operating mode is dupli-
cated. In a second step, for each duplicate, all possible
behavior modes different from the reference behavior
mode are removed. Third, the resulting generic behav-
ior models are added to the application component
class model. By this means, for each operating mode,
there is a corresponding operating mode automatically
modeled showing no faulty behavior.

5. Fault identification modeling. For each application
component class model, fault identification can be
interactively declared to be possible. For each fault
identification in the device model, there is a column in
the fault relation directly indicating whether a fault has
occurred.

If complex components such as amplifying circuits and
logical circuits have to be modeled, frequently, abstract
behavior models may be required neglecting unnecessary
structural and behavioral details. COMEDI explicitly sup-
ports the interactive generation of abstract application
component class models. These models are based on con-
trolled versions of generic standard component models,
the definitions of external non-electric controlling param-
eters, user-defined qualitative values for controlled and
controlling parameters, and causal dependencies between
these parameters represented in behavior tables. Abstract
application component models can also be stored in the
application component library. Engineers can easily build
these models exploiting their qualitative understanding of
how certain components or subsystems work. Due to lack
of space, we cannot elaborate on abstract component mod-
els.

Considering the accelerator pedal example, the applica-
tion component class model of the potentiometer 1B1 is
an abstract model showing a controlled voltage source to
model the voltage at the middle of the potentiometer. This
voltage causally depends on the voltage drop across the
potentiometer and the position of the accelerator pedal.
The pedal position is modeled as an external non-electric
controlling parameter.

3.4 Device Modeling and Fault Relation Genera-
tion
For device modeling, MAD users assemble icons on the
screen which represent models from the application com-
ponent library. Device operating modes are interactively
defined by certain combinations of component operating
modes. Considerable fault combinations can also be de-
fined. Automated behavior predictions are performed for
all possible component behavior (correct and faulty) and
all device operating modes considered in the device mod-
el. That is, for all device operating modes, the impact of
faults on measurements, observations, and fault identifica-
tion is computed. The results are stored in the fault rela-
tion. Note that, in MAD’s fault relations, measurements,
observations, and fault identifications are simply called
“tests” because they are identically utilized for fault tree
generation.

In Figure 5, the COMEDI device model of the acceler-
ator pedal circuit is presented. As described in Section 3.3,

all wires are modeled as idealized conductors that may
break. Correct and faulty behavior of wire 4 is shown in
the small window in the centre of Figure 5. Fault identifi-
cations exists for these wires which can be verified in the
lowest section of the corresponding fault relation shown in
Figure 6. Note that, results of fault identifications are in-
dependent from device operating modes.

Figure 5. COMEDI model of accelerator pedal circuit

Figure 6. Selected parts of fault relation of
accelerator pedal circuit

Both resistors R4 and R5 show “insulator” behavior, no
fault modes, and observations to model the measurements
UFG_LOW, UFG_HIGH, and UFGS, respectively. Addi-
tionally, R4 shows a voltage measurement to model UFG
(see fault relation in Figure 6). The manual voltage mea-
surement UG described in Section 2 is modeled by a spe-
cial multimeter component model (see Figure 5).There are
two device operating modes defined for the accelerator
circuit model, i.e. “STANDARD” and “KICKDOWN”.
“STANDARD” indicates that the accelerator pedal is not
kicked down. Hence, switch 1S16 is in the operating mode
shown in Figure 2 and the potentiometer is in a middle po-
sition. If the pedal is kicked down, operating mode
“KICKDOWN” is reached. In this case, the switch has
changed its operating mode and the potentiometer has
reached an upper position.

4 Fault Tree Generation
MAD offers three different possibilities to generate fault
trees. First, based on fault relations, fault trees can be cre-
ated automatically. Second, fault trees from archives can
be reused. Third, in order to permit manual adoption and
modification of fault trees, MAD offers basic editing op-
erations, such as moving a certain fault from one fault set
to another and recomputing the corresponding tests. In the
following, automated fault tree generation is presented in
more detail. One can choose from the following criteria to
guide fault tree generation.
• Minimization of average diagnosis cost. Automated

fault tree generation uses the well-known A*-algo-
rithm to select the tests which minimize the average
fault identification cost according to a cost model.

• Grouping by observations, error codes, display val-
ues. Fault trees are generated such that subsets of faults
correspond to a prespecified symptom. For instance, all
faults are grouped together which lead to an unex-
pected value of the accelerator pedal voltage UFG.

• Grouping by aggregate structure. If the aggregate
structure of the device is known, fault trees can be gen-
erated such that subsets of faults correspond to the
same physical component. For instance, faults occur-
ring in the ECU may be grouped together.

Since reduction of average fault identification cost is one
of the basic requirements for the introduction of innova-
tive computer diagnosis techniques in our application, in
the following, we describe cost-optimized fault tree gen-
eration.

4.1 Modeling Costs of Tests
A widely used approach for fault tree generation is to ap-
ply the entropy criteria (Quinlan 86), (Struss 94), (Mauss
and Neumann 96), (Price et al. 96). For cost-optimized
fault tree generation, considering entropy only is not suf-
ficient. Additionally, cost of tests and dependencies be-
tween them have to be taken into account. MAD enables
users to define test models including cost models. As a ba-
sis of these models, an ordered sequence of basic working
tasks can be introduced for each test. For example, these
tasks have to be performed to obtain a value of voltage UG
of the accelerator pedal example. Examples for basic
working tasks are “open the front bonnet”, “separate the

battery”, “pull plug P1”. MAD users can specify costs of
basic working task. Sequences of basic working tasks im-
plicitly define dependencies between tests. Due to space
limitations, we omit the description of processing these
dependencies.

The cost C(T) of a test T is defined as the sum of costs
of the basic working tasks to be performed for T. Costs of
tests of the accelerator pedal circuit are given in Table 1.
For simplicity, costs of operating mode changes and basic
working tasks are not explicitly modeled in this example.
Note that, measurements can be performed in different op-
erating modes (KICKDOWN and STANDARD). Results
of fault identifications (e.g. w1) are independent from op-
erating modes. Fault identifications are the most expen-
sive available tests.

4.2 Cost-Optimized Fault Tree Generation
In an optimal fault tree, the average fault identification
cost is minimal. This optimal solution can be computed by
the algorithm GFTA* (Generating Fault Trees with A*)
which is described in this section. GFTA* is an application
of the well-known search algorithm A*. GFTA* does not
take fault probabilities into account because, in our appli-
cation, fault probabilities are not available. A promising
approach for fault tree generation considering fault prob-
abilities is presented in (Faure et al. 99).

The basis for the generation of a fault tree is the fault re-
lation (see Figure 6). The fault tree generation starts with
combining all faults found in the fault relation to one fault
set called root set. This fault set is split into subsets with
respect to a certain test. This splitting is recursively re-
peated for every fault set as long as there are faults in the
fault set that can be discriminated by some difference be-
tween their test values.

A test Ti which partitions a fault set into subsets is a
simple equation of the form Ti = v. v is a value of the do-
main of Ti. In our case, for example, v is a qualitative value
of a finite set qualitatively describing the result of a mea-
surement. In general, test are not exclusive, i.e. if a test
partitions a fault set into subsets, certain faults can occur
in more than one subset. In the best case, all leaves of the
fault tree only contain a single fault, i.e., all faults can be
discriminated by tests given in the fault relation.
Optimal search. The GFTA*-algorithm computes a fault
tree with minimal average fault identification cost. To ap-
ply A*, a search model must be given by specifying the
definition of a state, a start state, a goal state, a successor

test / operating mode cost test cost

UFG_LOW / KICKDOWN 6 w1 10

UG / KICKDOWN 8 w2 10

UFG / KICKDOWN 7 w3 10

UFG_HIGH / KICKDOWN 1 w4 10

UFGS / KICKDOWN 1 w5 10

UFG_LOW / STANDARD 5 w8 10

UG / STANDARD 6

UFG / STANDARD 9

UFG_HIGH / STANDARD 1

UFGS / STANDARD 1

Table 1: Costs of tests of the accelerator pedal circuit

function, a cost function g to evaluate a state, and a heu-
ristic function h estimating the costs between a state and
the goal state. For details of the A*-algorithm see (Russel
and Norvig 95).

The GFTA*-algorithm performs a search in a state
space. A state contains a set of fault sets which are the cur-
rent leaves of a growing fault tree. The start state consists
of one fault set containing all faults of the fault relation.
The goal state consists of fault sets containing faults
which cannot be discriminated. Two states are equal if
they consist of the same fault sets. A successor of a state
is generated by partitioning one leaf fault set into at least
two subsets by selecting a partitioning test. All successors
of a state are generated by applying each partitioning test
to each leaf. Each path in the state space represents a pos-
sible fault tree.

Each state is evaluated by the functions g and h. g is de-
fined as the sum of the diagnostic effort for each fault f.
The diagnostic effort of a fault f is the sum of all test cost
C(T) on the path between the current leaf fault set contain-
ing f and the root fault set. To guide the search, the heuris-
tic function h estimates cost of fault identification
assuming that, in the fault identification process, a certain
state is already reached. In Figure 7, the definitions of g()
and h() are given.

To demonstrate that h never overestimates real cost of
fault identification in a cost-optimized tree, a certain leaf
b is considered. There is a set of available tests Ti not yet
used on the path between b and the root. These test allow
the generation of a cost-optimized subtree below b. Avail-
able tests show costs ci and domains. kmax is the maxi-
mum size of these test domains. The following two
properties guarantee that the heuristic function h underes-
timates fault identification cost in a cost-optimized sub-
tree. First, h considers an impossible subtree in which
fault identification is cheaper than in a cost-optimized
subtree. Second, rather than precisely computing fault
identification cost in the impossible subtree h underesti-
mates diagnosis cost.

The impossible subtree and the cost-optimized subtree
show the same faults but tests are different. The following
characteristics secure that fault identification in the im-
possible subtree is cheaper than in the cost-optimized sub-
tree. First, in the impossible subtree, all available test are
exclusive. That is, if a test partitions a fault set, each fault
occurs in only one subset. Second, all available tests split
fault sets into kmax subsets. Due to these two properties,
in the impossible subtree, the discriminating power of
available tests is higher than in the cost optimized subtree.
Third, in the impossible subtree, the test first performed
for fault identification, is as expensive as the cheapest
available test of the cost-optimized subtree. All tests per-
formed in the second level of the impossible subtree are as
expensive as the second cheapest test of the cost-opti-
mized subtree, and so on. Fourth, in the impossible sub-
tree, if a fault set is partitioned into subsets, all of these
subsets contain the same number of faults, i.e. the impos-
sible subtree is balanced. Provided the first three proper-
ties hold, a balanced tree yields to lowest fault
identification cost.

For the estimation of fault identification cost in the im-
possible subtree, it is assumed that the depth of the subtree
is , (is the floor operation) which, in

general, is an underestimation. Based on this assumption,
for each fault in b, cost of fault identification in the impos-
sible subtree can be underestimated as:

, with Ti is i-th cheapest unused Test T

g monotonically increases for successive states because an
additional measurement is selected to determine a succes-
sor state. h ensures that the real costs necessary for reach-
ing the goal are never overestimated. Besides this
evaluation of states, GFTA*, because based on A*, stores
alternative and currently not best states. Thus, GFTA* can
reactivate the most cost-effective alternative state s if a se-
lected path yields to states being more expensive than s.
This yields to an optimal fault tree.

, with

, with

, with Ti is i-th cheapest
unused Test T

Figure 7. Cost function g and heuristic function h

Figure 8 shows a fault tree of the accelerator pedal circuit
generated by GFTA*. The fault tree is based on the fault
relation shown in Figure 6 and the test model shown in
Table 1. Note that, in Figure 8, the final row of a fault set
is the corresponding test. The root contains 13 faults
which are not explicitly shown. The average fault identifi-
cation cost of this tree is 17.

MAD’s model-based behavior prediction and automat-
ed fault tree generation guarantee that fault trees are cor-
rect and complete with respect to the underlying device
model and the faults and fault combinations considered in
the fault relation. All faults considered in the device model
occur in the generated fault tree, and tests are selected cor-
rectly to discriminate fault sets. This holds even when
fault trees are modified manually. Furthermore, average
diagnosis cost is minimal within the constraints imposed
by a prespecified fault tree structure. These properties are
essential for industrial utilization of MAD.

5 Evaluation and Conclusions

Investigating our application, we figured out that the fol-
lowing challenges arise when innovative diagnosis tech-
niques are applied to industrial applications. First,
innovative diagnosis concepts have to be incorporated
into existing diagnosis equipment. Replacing existing di-
agnosis systems is not acceptable. Second, the process of
diagnosis equipment generation, modification, and main-
tenance has to allow the integration of existing resources
such as expert knowledge as well as existing diagnosis
equipment. Third, the diagnostic performance of the ser-
vice division should be exceeded and fault identificationkmax b()log …

C Ti()
i 1=

kmax b()log

∑

g state() de f
i

()
i 1=

n

∑= de fi() C T()
T path fi()∈

∑=

h state() h b()
b leaves state()∈

∑=

h b() b C Ti()
i 1=

kmax b()log

∑⋅=

cost should be reduced. Furthermore, considering model-
based approaches, it is essential to predict symptoms ade-
quately and to model application specific fault identifying
actions accurately. Additionally, the complexity of the de-
vice modeling process has to be minimized.

Developing MAD, we paid massive tribute to these
challenges. In particular, MAD’s fault trees are integrated
into existing STILL diagnosis systems. Since MAD al-
lows accurate reproduction of current STILL fault identi-
fication strategies, automatically generated fault trees will
be accepted by service technicians. As another point,
MAD’s fault trees allow cost-optimized fault identifica-
tion. To reduce complexity of the device modeling pro-
cess, MAD provides several model libraries which allow
extensive reuse of models build in former modeling ses-
sions. For further reduction of the modeling complexity,
we are currently working on automatic model generation
from electronic product data such as CAD. MAD provides
multiple possibilities for design engineers and diagnosis
experts to guide automated fault tree generation. MAD’s
internal representation of electrical circuits is hidden from
users such that device models can be interactively assem-
bled from prespecified generic models. A deeper under-
standing of MAD’s internal electrical models is not
necessary for this task. To assure high diagnostic perfor-
mance, we developed a new method for qualitative elec-
trical network analysis which shows certain features
avoiding spurious symptom predictions. The prototypical
implementation of MAD allows model-based behavior
prediction and automatic generation as well as manual
modification of fault trees.

In cooperation with the STILL GmbH Hamburg, we
have evaluated the MAD system in the application
scenario and found that using the modeling techniques of
MAD with some extensions regarding the implementation
of certain network analysis concepts, more than 90% of
the faults of the current handcrafted diagnosis system can
be handled successfully. In some cases, since component-
dependent parameter threshold values are not explicitly
represented in MAD models, in fault trees, correct and
faulty behavior cannot be completely distinguished. Using
MAD, an accelerator pedal fault tree was automatically
generated from the circuit model and imported into the
STILL diagnosis system. STILL service experts found
that this fault tree can be used for fault identification.

Acknowledgments

This research has been supported by the Bundesministeri-
um für Bildung, Wissenschaft, Forschung und Technolo-
gie (BMBF) under the grant 01 IN 509 D 0, INDIA -
Intelligente Diagnose in der Anwendung.

References
(Cascio et al. 99) Cascio, F., Console, L., Guagliumi, M.,

Osella, M., Panati, A., Sottano, S., Theseider Dupré, D.:
On-board diagnosis of automotive systems: from dy-
namic qualitative diagnosis to decision trees, IJCAI-99,
Workshop on Qualitative Reasoning for Complex Sys-
tems and their Control,1999.

(Faure et al. 99) Faure, P.-P., Trave-Massuyes, L., Pou-
lard, H.: An Interval Model-Based Approach for Opti-
mal Diagnosis Tree Generation, in: Proc. DX-99, 10th
International Workshop on Principles of Diagnosis,
1999.

(Mauss and Neumann 96) Mauss, J., and Neumann, B.:
How to Guide Qualitative Reasoning about Electrical
Circuits by Series-Parallel Trees, in Proc. QR’96, Tenth
International Workshop on Qualitative Reasoning,
1996.

(Milde et al. 99) Milde, H., Hotz, L., Kahl, J., Wessel, M.:
Qualitative Analysis of Electrical Circuits for Comput-
er-based Diagnostic Decision Tree Generation, in:
Proc. DX-99, 10th International Workshop on Princi-
ples of Diagnosis, 1999.

(Price and Pugh 96) Price, C., Pugh, D.: Interpreting Sim-
ulation with Functional Labels, in: Proc. QR’96, 10th
International Workshop on Qualitative Reasoning
about Physical Systems, 1996.

(Price et al. 96) Price, C., Wilson, M., Timmis, J., Cain,
C.: Generating Fault Trees from FMEA, in: Proc. DX-
96, The Seventh International Workshop on Principles
of Diagnosis, 1996.

(Quinlan 86) Quinlan, J. R.: Induction of Decision Trees,
in: Machine Learning, I:81-107, 1986.

(Russel and Norvig 95) Russel, S., Norvig, P., in : Artifi-
cial Intelligence A Modern Approach, Prentice Hall,
1995.

(Struss 94) Struss, P.: Testing for Discrimination of Diag-
noses, in Working Papers DX-94, Fifth International
Workshop on Principles of Diagnosis, 1994.

Figure 8. Fault tree of accelerator pedal circuit computed by GFTA*

