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Zusammenfassun

Flr ein universelles intelligentes System ist eine adaquate
Modellierung von Objektbewegungen ein wichtiger Bestandteil.
Die verschiedenen zu lésenden Aufgaben im Zusammenhang mit
Objektbewegungen werden in der Literatur meist getrennt
behandelt. In diesem Beitrag wird ein einheitliches hybrides
Reprasentationssystem vorgestellt, welches je nach
Anforderung unterschiedliche Reprasentationsformate
bereitstellt. Das Reprasentationssystem besteht einerseits aus
einer 'klassischen' propositionalen Langzeitreprasentation und
andererseits aus einer analogen quantitativen Kurzzeitrepra-
sentation, welche bei Bedarf instanziiert wird. Wir zeigen, wie
unterschiedliche Aufgaben im Zusammenhang mit
Objektbewegungen bearbeitet werden kdnnen: 1) das Lernen von
Objektbewegungen bishin zu propositionalen Modellen, 2) die
Erkennung von Objektbewegungen und anschlie-Bende
naturlichsprachliche Beschreibung, und 3) Aspekte des
raumzeitlichen SchlieBens.

Dieser Beitrag erscheint ebenfalls im 'Journal of Robotics and
Autonomous Systems', North Holland 1991



Abstract

Modeling of object motion is an important task for intelligent
systems. Different subtasks related to object motion are often
treated separately. In this paper, we present an integrated
hybrid representational system, in which different modes of
representation are exploited. The representational system
includes a propositional abstract long-term representation, and
an analog quantitative short-term representation, which s
instantiated on demand. We show how several tasks related to
object motion can be solved: 1) Learning of object motion, from
single obserations towards propositional models, 2) Recognition
of spatiotemporal events and subsequent natural language
description, and 3) several important aspects of spatiotemporal
reasoning.

This paper also appears in 'Journal of Robotics and Autonomous
Systems', North Holland 1990.
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1 Introduction

The understanding of object motion is crucial for many of the sophisticated tasks
commonly required of biological and robotic systems. Naturally, vision is one of the
principal tools that provides an observer with the necessary information; and not
surprisingly, a substantial portion of the brain is dedicated to visual perception.
In addition, it seems clear that our perceptual capabilities are complemented by
cognition and spatiotemporal reasoning. For example, we can expect the percep-
tual system to extract motion information and to generate an internal description
of path and structure of an object. It also seems likely that prototypical classes of
motion seen repeatedly within the environment are abstracted to facilitate path
planning and recognition of moving objects, and to predict ohject trajectories well
beyond the simple extrapolation that might be expected of the perceptual system.
As a result the perceptual system would be faster and more robust. It would have
a deeper understanding and therefore predictive power of spatiotemporal behavior.

Although the general goal of obtaining motion representation with predictive
power seems indisputable, there remain difficult questions concerning the kind of
representations suitable for the diverse tasks related to object motion and the na-
ture of the processes which go along with the representations. There are severe
constraints on possible representations due to temporal limitations for processing
and due to the complexity of many perceptual and cognitive tasks for biological
and artificial systems' (see e.g. Levesque 86, Tsotsos 88). In our view this neces-

the terms perceptual and cognitive refer in this paper to processes in biological and artificial



sitates the use of different specialized representations including different modes of
processing.

In this paper we present a fairly general framework for understanding object
motion. Our approach is influenced by work on knowledge representation in the
area of Artificial Intelligence and by work on possible cognitive representations in
humans, but we do not claim cognitive adequacy with respect to humans. Nev-
ertheless the human cognitive system is a useful model for developing artificial
cognitive systems, in particular, if no solid theories are available for the domain of
interest. Consequently, many aspects of our approach do not contradict theories
on cognitive representations in humans and might influence possible models.

We employ both, a propositional qualitative and an analogical® quantitative
representation to solve several important tasks related to object motion. The
propositional representation supports recognition using logic-based reasoning and
is suited for natural language communication. It is used as long-term represen-
tation. The analogical representation (called spatiotemporal buffer) is essential
for perceiving and visualizing object motion as well as for learning and important
aspects of spatiotemporal reasoning?®.

It is evident that the usefulness of the analogical representation and the local
processes working on it mainly derives from the fact that this representation is
specialized for concrete visual data, given through perceptual processes or instan-
tiated from models in long-term memory. For example, important spatiotemporal
relations are explicit in this representation and therefore easily accessible, and im-
portant physical constraints are intrinsically coded. Also, substantial use can be
made of (subsymbolic) local parallel processing as will be shown. Moreover, cog-
nitive processes merge smoothly with perceptual processes within the analogical
representation. Il provides a shared representation for bottom-up processes (e.g.
building models from concrete visual data), for top-down processes (e.g. top-down
guided low-level vision analysis), as well as for processes which rely on information
from both directions (e.g. adjusting generic models o perceptual data).

In addition, the hybrid framework supports learning of object motion, which
is a fundamental concern for any intelligent system. For example, there is a nat-
ural transition from concrete observations of object motion recorded in the spa-
tiotemporal buffer to accumulated experience resulting in generic event models
and propositional descriptions.

Although a solid representational theory is still lacking, the hybrid approach
presented here suggests that different representations including different modes of
reasoning arc advantageous for important tasks in the area of object motion, and

information processing systems.
In this paper a dimension of a representation is called analogical if the mapping from the
modeled world into the modeling world preserves the inherent structure of this dimension (see
Palmer 78, Rehkamper 88).
3Here, we only deal with those aspects of spatiotemporal reasoning which are concerned with
the concrete visual world and abstractions thereof.



that an analogical representation including local processes plays a special part.
There are similar results for other relevant spatiotemporal domains, including ob-
stacle avoidance and reasoning about non-solid objects (see e.g. Steels 88, Gardin
+ Meltzer 89), and for purely spatial problems, including scanning tasks, comput-
ing spatial relations, and reasoning about diagrams (see e.g. Kosslyn 80, Larkin
+ Simon 87, Lindsay 88).

We choose object motions in traffic scenes as our experimental application do-
main. Here typical objects are cars and pedestrians etc., and typical object motion
includes "turn-off” events, 'overtake’ events, "walk’ events and similar meaningful
spatiotemporal occurrences.

in Section 2 we ouiline: 1) the tasks relaied to object motion which will be
attacked 2) the hybrid representation of object motion, and 3) its associated pro-
cesses. In addition some motivation will be provided for subsequent sections.

2 A hybrid representation for object motion

Our understanding of motion has developed from research into distinct tasks which
must be supported by adequate object motion representations. Figure 1 provides
a framework for identifying these tasks.

e Low-Level vision

Beginning at the bottom, we have the task of low-level image analysis. This
i, of course, the main task of computer vision. It includes the initial de-
tection of motion up to the interpretation of motion phenomena in terms
of changing object positions. Many subproblems of low-level vision are not
solved but we assume for now that it provides a reconstruction of the time-
varying 3D scene geometry as its output. Hence structure and spatiotempo-
ral positions of objects are assumed 1o be known, but objects do not have to
be identified at this level.

e Long-term memory

As the next task we consider recording spatiotemporal information of object
motion for long-term memory. This is clearly a desideratum for building
representations with predictive power. For many reasons, including biologi-
cal plausibility (e.g. Marschark 88), we assume that a representation more
compact than a quantitative analogical scene description must be computed
for long-term memory of motion concepts. It should be qualitative in na-
ture abstracting from quantitative spatiotemporal information, and can be
thought of in terms of predicates or propositions describing the scene.

e Recognition and natural language communication
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Figure 1: Understanding Object Motion. The tasks relevant for object motion

(right column) and the main representations used (left column), including a brief
characterization.



Propositional representations are also useful for describing generic concepts,
for example, models for characteristic object motions. We have investigated
the use of such event models for recognition in earlier work (see Neumann
+ Novak 83, Neumann 89). An event model would describe the character-
istic properties of object trajectories in traffic scenes such as ’overtaking’,
turning-ofl”, ’crossing’, etc. Similar models are used by Andre + Bosch +
Herzog + Rist 86 for event recognition of ongoing object motion in soccer
games. In Tsotsos | Mylopoulos  Covvey | Zucker 80 motion concepts
are represented in frames connected through semantic networks. Proposi-
tional event models also proved useful for natural language communication
about scenes. From instantiated event models we could fill case frames for
natural language utterances and generate a coherent description. This work
is summarized in Section 3.

Learning object motion

Another relevant task within the model outlined in Figure | is learning.

Given an initially empty store of event models and a world full of motion
b ¥

phenomena, how can event models be generated to begin with?

In the ideal case, an intelligent system would come into existence equipped
with a collection of a priori models for spatiotemporal events. This collection
would be sufficiently rich to allow for efficient recognition and prediction
over a wide range of environmental conditions and objects of interest. Our
understanding of elementary physics would be one way to obtain such models.
Based on the theoretical understanding of the environment we can build
‘analytical’ models, for example, to predict the path of a thrown ball. The
analytical model might exploit knowledge of initial forces, the gravitation,
the initial angle of elevation, the weight of the ball and so on. Such models
are common in path planning and naive physics (e.g. Brooks 84, Forbus
83). Unfortunately, they do not, at present, generalize to the wide range of
complex situations occurring in our environment. Moreover, the necessary
initial conditions may never be available with sufficient accuracy, nor might
these models lead to efficient reasoning.

As an alternative, a system could acquire models by gradually building up
knowledge about the environment, observing objects and their interactions.
The ability to learn allows for generality, adaptability and extensibility (e.g.
Michalski + Carbonell | Mitchell 83). It is also closely related to long-term
memory because replicas of past experiences can be viewed as basic generic
models with predictive power.

For a flexible system, models must be adaptable to new surroundings. This
can be done, in principle, by abstracting experiences gained in one environ-
ment and carrying it over to another. For example, an abstracted represen-



tation of the motion of thrown baseballs can be used to predict the path of
baseballs or an unknown ohject in similar situations.

[n this paper we concentrate on the use of spatiotemporal event models that
are learned from concrete observations and therefore reflect some typical be-
havior of certain objects within a given environment. Prototypical behavior
can be represented by abstract trajectories based on the average over many
single instances, or based on a single observed instance which is deemed to
be sufficiently representative of other instances or to be of particular impor-
tance.

The accumulation of specific observations and the extraction of prototypical
behavior takes place based on visualizations within an analogical representa-
tion, the spatiotemporal buffer (see Figure 1). Prototypical trajectories,
along with other relevant information discovered during the learning process
(e.g. distribution of paths about the prototypical trajectory), are then en-
coded in a propositional and compact manner using event models. Details
of the learning task will be described in Section 4.

e Spatiotemporal reasoning

Another interesting task investigated within our framework is spatiotempo-
ral reasoning, using the spatiotemporal buffer. Several aspects will be
discussed in detail in Section 5.

Spatiotemporal reasoning, involving path planning, prediction, or the extrac-
tion of spatiotemporal relations, has been considered within propositional
frameworks, using logic-based forms of reasoning and inference (see e.g. For-
bus 83). However, there are significant drawbacks in this sort of approach
in terms of tractability (see Levesque 86 for examples). In particular, com-
plexity may grow exponentially with the number of propositions. It may
also be problematic to determine the facts relevant for specific spatiotempo-
ral changes (frame problem). A similar problem concerns consistency and
completeness of propositional descriptions. For example, a natural language
description of a given scene should be consistent and complete with respect
to some level of abstraction. Both is very difficult to maintain on a purely
propositional level.

The approach considered here attempts to deal with prediction and path
planning by visualizations and local processes using relevant scene informa-
tion and experience-based models of spatiotemporal events in a common ana-
logical representation. The analogical representation is essentially the same
used for learning and accumulating experience, the short-term spatiotempo-
ral buffer’ instantiated by demand and initialized from a priori knowledge
about the environment, the learned knowledge about typical trajectories, and

*which is similar to the purely spatial buffer proposed by Kosslyn 80



current information provided by the perceptual processes. Thus, information
is included from both cognitive and perceptual sources. It is interesting to
note that there is evidence for shared representational structures between

cognitive and perceptual processes in humans (see e.g. Finke 85).

Spatiotemporal reasoning using visualizations and local processes in an ana-
logical buffer can be viewed as subsymbolic processing (see Steels 88). Like
Steels we feel that certain reasoning tasks, especially those associated with
space and time, are well suited for a subsymbolic mode of processing which
may be controlled by a more abstract, symbolic level. On a subsymbolic
level the processes can be constrained to yield physically plausible solutions.
In particular, the relevant information (from experience or perceptual anal-
ysis) is explicitly loaded into the analogical buffer, after which the reasoning
process inherently determines spatiotemporal interaction between objects.
Although this approach is less general than one based on logic, it is hoped
that it will yield tractable solutions with sufficient richness in the spatiotem-
poral domain. There are other results which support this idea. For example,
Funt’s work (Funt 80) on prediction of the collision of falling objects based on
an array-like representation and recent interesting work by Gardin + Melizer
89 on modeling the behavior of non-solid objects based on an analogical rep-
resentation.

Another relevant reasoning problem arises when motion analysis and event
recognition are carried out in the context of top-down constraints.® For
example, if the only event of interest is whether or not a car approaches, how
can this knowledge be put to use for efficient motion analysis? Visualizations
are appropriate to express top-down information because they are closely
related to visual perceptions. Therefore they can easily be used to constrain
visual processes.

Choosing an adequate representational scheme and mode of computation is
a key problem for intelligent systems. There are few sound principles to favor
one representation over another, and there is no coherent representational theory,
although there are some interesting attempts (see e.g. Palmer 78). It is instructive
to view our approach from this perspective and to derive some general constraints
on representations discussing the merits of different representations used in our
work. A more detailed discussion of these issues can be found in Section 6.

3 Recognition and verbalization

In this section we present representations and processes developed for the recog-
nition and verbalization of events in street traffic scenes. An event is defined as a

STop-down information for visual processes is almost permanently available through inten-
tions, expectalions, a priori knowledge and the like.



subset of the scene which can be described by a certain verb of locomotion, e.g.
‘overtake’. A priori knowledge about event classes is provided by propositional
event models. Event recognition based on such models is implemented by hierar-
chical matching which takes propositional primitives describing the current scene
as input and generates instantiated events as output. The propositional primitives
are qualitative predicates computed from a certain set of quantitative perceptual
primitives which in turn are generated from the spatiotemporal scene description
rendered by vision.

Figure 2 shows the main processing stages for event recognition. A detailed
description of event recognition can be found in Neumann 89. This section reviews
the type of motion representation developed for this purpose.

RECOGNIZED EVENTS
EVENT
t"" MODELS

QUALITATIVE PRIMITIVES

PERCEPTUAL PRIMITIVES

GEOMETRIC SCENE DESCRIPTION

Figure 2: Main processing stages for event recognition
I

Event models have been tailored around verbs of locomotion to support ver-
balization of events. This naturally leads up to propositional models. Figure 3
shows the event model for ’overtake’.

It consists of a head which describes the event in terms of a proposition, and
a body which contains premisses for the event to be true. The parameters follow-
ing the predicate identifier are variables which must be instantiated during event
recognition. T1, T2,... denote time variables which mark the beginning and ending
of time intervals.

Another example is "turn-off” described in Figure 4. Here OBJ1 is a vehicle
and OBJ2 is a street.



(OVERTAKE OBJ1 OBJ2 T1 T2) ~<@—— (MOVE OBJ1 T1 T2)
(MOVE OBJ2 T1 T2)
(BEHIND OBJ1 OBJ2 T1 T3)
(BESIDE OBJ1 OBJ2 T3 T4)
(BEFORE OBJ1 OBJ2 T4 T2)
(APPROACH OBJ1 OBJ2 T1 T3)
(RECEDE OBJ1 OBJ2 T4 T2)

Figure 3: Event model for ’overtake’

(TURN-OFF OBJ1 OBJ2T1 T2) —a—— (TURN OBJ1T1T2)
(PARALLEL OBJ1 OBJ2 T1 T3)
(ON OBJ1 OBJ2 T1 T4)
(NOT-ON OBJ1 OBJ2 T4 T2)

Figure 4: Event model for turn-ofl”



Some of the predicates can be decomposed further, e.g. ’turn’ can be ’left-
turn’ or 'right-turn’. Event models constitute a specialization hierarchy with the
most general event (‘exist’) as a root and increasingly complex events built up by
composition and specialization. In our project some 50 event models have been
defined in this manner.

It is interesting to take a look at the primitives of this representational system.
They have the following properties:

o Primitive predicates are durative, i.e. they describe time intervals where
certain scene properties are continuously valid.

e Primitive predicates are qualitative by nature. They give rise to qualitative
propositions about quantitative perceptual primitives derived from the scene.

The perceptual primitives required for this task are essentially object positions
relative to reference positions and object orientations relative to reference orien-
tations, each quantity as a function of time and including temporal derivations.
There may be many interesting reference locations and orientations, hence the
set of perceptual primitives may be quite large. Nevertheless, they constitute a
well-defined perceptual basis for higher-level descriptions.

Basically, the purpose of primitive predicates is to derive interesting constancies
among the perceptual primitives. For event recognition the following predications
turned out to be necessary and sufficient:

e Constant value

(e.g. standing-still, moving straight, keeping constant velocity, ...)

e Monotonicity

(e.g. acceleration, turning, approach, ...)

e Limited value set

(e.g. parallel, close-to, beside, on, ...)

e Greater/smaller

(e.g. faster than usual, ...)

Applying these predicates to suitably chosen perceptual primitives results in
a limited set of primitive events which are the basis for the event hierarchy. We
employed 19 primitive events for traffic scene descriptions.

Details about the event recognition procedure can be found in Neumann 89.
The procedure is similar to hierarchical matching as employed elsewhere in Al,
e.g. for object recognition. It may be noteworthy that a constraint network has to
be maintained to deal with temporal constraints arising from the time variables.

10



Once events have been found, there remain several nontrivial processing steps
until a coherent natural language description can be generated. Typically, a large
number of events are candidates for verbalization, hence there is the problem of
choosing the most ’informative’ event. In our work, the most special events are
selected according to the specialization hierarchy. Second, there is the problem of
ordering event-based utterances into a coherent description. Here a chronological
order is followed for each single moving object. Third, temporal and locative
phrases have to be generated, enough to give a complete scene description but also
avoiding redundancy.

We have introduced the notion of "anticipated visualization’ as a guiding prin-
ciple for generating an informative scene description. The idea is to simulate the
hearer’s understanding process as a means of guiding the generation process. For
example, the decision to include a locative phrase in an utterance - say ’on the
right side of Schlueterstreet’ - should be made depending on whether or not the
hearer needs this information to be able to visualize the scene. In our project,
anticipated visualization has only been implemented implicitly in terms of a ’stan-
dard plan’ for generating visualizable descriptions. Figure 5 shows a description
(translated from German) generated for the synthetic scene shown in Figure 6.

"THE SCENE CONTAINS FOUR MOVING OBJECTS: THREE
CARS AND ONE PEDESTRIAN. A VW DRIVES FROM THE
OLD POST OFFICE TO THE DEPARTMENT OF COMPUTER
SCIENCE. IT STOPS. ANOTHER VW DRIVES TOWARDS
DAMMTORSTATION. IT TURNS OFF SCHLUTERSTREET. IT
DRIVES ON BIEBERSTREET TOWARD GRINDELHOF. A BMW
DRIVES TOWARD HALLERPLATZ. WHILE DOING SO IT
OVERTAKES THE VW WHICH HAS STOPPED AT
BIEBERSTREET. THE BMW STOPS AT THE TRAFFIC LIGHT.
THE PEDESTRIAN WALKS TOWARD DAMMTORSTATION.
WHILE DOING SO HE CROSSES SCHLUTERSTREET IN
FRONT OF THE DEPARTMENT OF COMPUTER SCIENCE."

Figure 5: Generated description
Thinking about anticipated visualization, we found out soon that propositional

event descriptions alone, as might be recovered by the hearer from the natural
language description, do not provide sufficient information to regenerate the scene

11



4 moving objects

Iigure 6: Synthetic scene with
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in sufficient detail. To begin with, a natural language description is qualitative by
nature, hence there are many possible quantitative scene descriptions fitting the
same description. In face of this inherent ambiguity humans tend to settle for a
‘typical’ visualization. But how can typical visualizations be anticipated if event
models do not carry such information? The same is true for recognition if modeled
closer to human performance. Humans appear to distinguish between typical and
atypical events and recognize’ the typical.

At this point we began our investigations of analogical quantitative motion
representations. Analogical representations will be a main theme of the following
sections.

In summary, propositional event models are useful for translating visual motion
into natural language. The transition from quantitative visual data to qualitative
natural language expressions is achieved by applying a basic set of primitive pred-
icates to a basic set of perceptual primitives.

4 Learning object motion

The general goal of learning object motion is to establish trajectory representations
with predictive power. Towards this goal it is useful to abstract, to distinguish
and to classify trajectories of interest.

Let’s assume that a system observes traffic motion in a street scene. The input
would be a large number of trajectories being part of many different events and
resulting from current and past observations. A desirable output could include
a compact description of different event classes like ’overtake’-events, "turn-off’-
events, 'park’-events, 'cross’-events and so on; this representation should allow to
predict to recognize, to reason over and to communicate about observed and future
events in this domain.

We assume that the paths of all objects are given in spatiotemporal coordinates
resulting from low-level perceptual processes. In addition we assume that the
stationary environment has been analyzed, i.e. all stationary objects are known.

Because we assume no specific a priori knowledge we store elementary infor-
mation about position and change of position using an exemplar-based approach.
It seems natural to consider a representation which is analogical with respect to
these dimensions of the modeled world to provide information for learning which
is sufficiently rich and also close to perceptual representations. After acquiring
sufficient world behavior, relevant information for further abstraction can be made
explicit. It will be shown that an analogical representation leads to a natural
transition from observed examples to accumulated experience through local op-
erations. We discuss several steps of abstraction from single examples given in
a certain concrete geometric environment towards qualitative and propositional
event descriptions independent of a particular geometry:

e Accumulation of examples (Section 4.1),

13



o Generalizations and computation of prototypes (Section 4.2),
o Generic models (Section 4.3),
e Steps towards propositional descriptions of generic models (Section 4.4).

Our approach differs from other exemplar-based models (see e.g. Kibler + Aha
87, Bradshaw 87 and Stanfill + Waltz 86), because they are exploiting proposi-
tional representations. Hence, processes working on the representation look differ-
ent. It is interesting to note that exemplar-based representations are important
for several aspects of human concept formation (see Smith + Medin 81).

4.1 The accumulation of trajectories

We use a spatiotemporal buffer as a representation to accumulate experience about
observed trajectories. As a spatiotemporal buffer can support several tasks (see
Figure 1) we consider the accumulation of trajectory information as one of several
modes of operation.®

In this mode the buffer is a four-dimensional accumulator array Clz, y, d, v)
covering a certain subfield of the zy-plane”. For each zy-pair there are counter cells
for all possible velocity vectors, each represented by direction d and speed v (see
Figure 7). The vector S = (z y d v) describes the motion state® of an object at a
given time.

Note that Sis composed of quantities which may be perceived by the observer
of a visual scene and which only require elementary knowledge about locations and
change of locations of identified objects; no further a priori knowledge is needed.

For each observed or remembered object trajectory, a trace of state vectors is
registered in the buffer by incrementing the associated counters. As more objects
are entered, more cells (possibly the same) are incremented without discriminating
between different objects. A trajectory is discretized according to the resolution
provided for the different dimensions of the buffer. After observing several exam-
ples the counter cell representation exhibits areas of different likelihood without
further computation. This is one main advantage the proposed representation.

The representation can be based on all observed examples or on a more re-
cent set of observed examples by “forgetting’ old observations. Forgetting can be
performed by slowly decreasing all counter values while new examples are stored.

8In Mohnhaupt 87 and Mohnhaupt + Neumann 89 we called the representation trajectory
accumulation frame (TAF), because the buffer was initially only used for the accumulation of
trajectories.

“In the domain of street traffic we can restrict ourselves to planar motion.

80ur approach differs from the accumulation of physical states used to control dynamical
systems (see e.g. Michie + Chambers 68 and Connell + Utgoff 87). One reason is that our
representation is organized such that possible prediction (see Section 5) can only be found in
the local neighborhood of a certain state. This allows for local prediction and local learning
operations.
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4.2 Generalizations and prototypes

The output of the trajectory accumulation can be considered a four-dimensional
density field with high values indicating experience supported by many observa-
tions. Two considerations lead to the next processing steps. First, we cannot as-
sume to obtain examples for every possible situation for which predictions might
be needed; hence generalizations from a given set of examples are necessary to
cope with situations which differ slightly from the observed examples. And sec-
ond, there are situations where only the most typical event instances are needed,
for example, to support several reasoning tasks (see Section 5); hence an explicit
representation of typical trajectories is advantageous. In addition it can be used
for efficient long-term memory.

4.2.1 Generalizations

We introduce the following generalization operation: experience represented by
a counter cell is propagated to similar trajectories corresponding to its neighbors.
Note that similarity between different examples is implicitly given by the euclidean
distance within the analogical representation. The propagation is accomplished by
replacing the value of each cell by the weighted average of all neighbors orthogonal
to the direction of motion. Cells along the direction of motion contribute according

to their positive difference.

Figure 8: Buffer filled with several trajectories (left). Information in the same
buffer afler ’gencralization’ (right).



In Figure 8 the effect of the generalization operation is demonstrated. The left
picture shows a buffer filled with eight ’turn-right’ examples®. Only those cells
are activated which are given by the examples. The right picture shows the buffer
after applying the generalization operation twice. Information is propagated to
similar trajectories in the local neighborhood. This applies also to neighboring
velocity values, which cannot be seen in the figure.

4.2.2 Prototypes

Traces along density maxima play a special part within the buffer. They form a
pattern of typical trajectories in the sense that they outline distinct paths which
are maximally supported by experience. We call this pattern a skeleton. Distinct
trajectories in a skeleton are called prototypes. The number and the shape of
prototypes depend on the set of observed examples. A skeleton might contain a
single prominent path or different paths with possibly different degrees of support
by the examples. Its shape can correspond to single examples or it can correspond
to generalized and averaged information from many different examples. We show
how to compute a skeleton and how to code this prototypical information efficiently
for the use in subsequent and more abstract stages of processing.

The distribution of the local maxima is a function of the scale at which the den-
sity field in the buffer is looked at. At a fine resolution there might be multiple local
maxima paths for a "turn-right” event but on a large scale they might merge into
one prominent path. For different tasks different resolutions are needed. Therefore
we introduce a convergence operation. This operation computes an abstraction
of the current buffer by emphasizing trajectories with high support and by sup-
pressing trajectories with lower support. Natural candidates for abstractions are
trajectories which are similar with respect to a subset of their properties. Because
similarity is reflected by distance within the representation, abstractions can be
computed by a local operation. Roughly speaking, to apply the convergence op-
eration, each cell S adds weight to all neighboring cells from where the cell S can
be reached. The weight is proportional to neighboring counter values. Therefore
cells with higher values get more additional support than cells with lower values.
We show the effects of the convergence operation with examples:

Figure 9 shows two skeletons of the buffer in Figure 8. The left skeleton con-
tains several relative maxima. In the right skeleton the buffer converged into one
prominent path.

The left illustrations in Figure 10 and in Figure 11 show the zy-projection of a
buffer containing ten trajectories representing different sets of simulated examples.

9This figure and the following experimental results show trajectories of moving objects on dif-
ferent intersections from the birds-eye perspective. Trajectories are simulated using a trajectory
editor. They are shown as chains of little black squares (see left illustration). Results of local
operations are shown as chains of circles (see right illustration). Velocity information which is

part of the buffer representation is not visible in the figures.
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Figure 9:

Figure 10: Buffer filled with ten trajectories (left). Skeleton of the same buffer
after 'generalization’ and ’convergence’ (right).



Figure 11: Buffer filled with another set of observations (left) at a different in-
tersection. Skeleton of the same buffer after ’generalization’ and ’convergence’

(right).

Note that cells with equal zy-location but different velocities are distinct in the
buffer but cannot be distinguished in the figure. The right illustrations show
the skeleton of the buffer after applying the generalization and the convergence
operation. The most important paths are made explicit. Note that both skeletons
show two conceptual clusters ("turning right” and turning left’).

The skeletons contain condensed information of the associated buffer: a coarse
view of the accumulated experience. It can be the basis for an efficient and ab-
stract description. We use an extended (multidimensional) chain code as an initial
description for skeletons. This representation was originally proposed for coding
curves in space (see Ballard + Brown 82). In space-time it can be used to de-
scribe a skeleton in terms of chains of shape elements each of which represents a
certain direction and a certain speed at a certain point. Forks and joints are also
allowed. The spatiotemporal shape elements of a chain code representation are
quite simple, but it is important to note that temporal order is intrinsic within
a chain-code representation, because single elements can only be accessed via its
temporal predecessors.

Naturally, the chain-code representation can also be used to store individual
trajectories independent of the part they play in the accumulator array. This is
needed, for instance, if single event examples are temporally far apart. Hence they
have to be stored before abstractions can be computed using the buffer.



4.3 Towards generic models

The accumulated experience and resulting skeletons as described in the last section
are situation specific in several respects: They are based on examples collected in
a particular geometric environment, for example, a particular intersection where
turn-right” examples could be observed.

A natural next step towards a generic event description is to derive event
characteristics which are independent of a particular geometry. Using generic
event descriptions, predictions can be made for similar, albeit novel, situations.
Also, experience from different situations can be combined.

As an example, we now consider the task of making the experience accumulated
al a particular street intersection applicable to another intersection with a different
shape. This is an important generalization as we cannot have direct perceptual
experience for every possible geometric environment. Note that this generalization
step can also be seen as computing an analogy.

The key idea is: First, to enrich the basic trajectory representation by comput-
ing perceptual primitives as additional descriptive properties. Second, to select
invariant event properties from the set of perceptual primitives for the generic
model.

4.3.1 Invariant event properties

Invariant event properties are taken to constitute necessary and sufficient condi-
tions for generic event descriptions. The aim is to derive a particularly conve-
nient set of descriptive primitives given the tasks of interest. The set of invariant
event properties should facilitate tasks (be useful for later stages of processing)
and should be robustly and efficiently accessible from the data. In addition they
should provide a complete event representation with respect to the tasks for which
they are needed and they should be relatively independent for compactness.

Primitives need not to be independent in a strict sense. Rather independence is
defined only in terms of the information explicit (see Levesque 86), i.e. the informa-
tion accessible with little or no computation according to the primitive operations
available in the system. Therefore independence means not easily derivable within
the time available. For example, we would call velocity and acceleration of an
object to be independent although information about the speed of an object over
time contains information about its acceleration. The point is that acceleration is
only represented implicitly.

Invariant event properties are in general a subset of the rich repertoire of percep-
tual primitives exploited by perceptual systems in general (in Ullman 84 processes
which extract these primitives are called ’visual routines’). Perceptual primitives
which show regularities over different examples are candidates for this subset.
Naturally the dimensions already available in the buffer (z y d v) belong to these
candidates. In addition it is useful to include temporal derivatives of these basic
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physical observables as well as measurements relative to an object of reference.
Note that these new dimensions are already implicit in the buffer representation
given the availability of reference objects. The following features constitute a use-
ful set of perceptual primitives for characterizing time-varying events in terms of
invariants.

1. location,

2. orientation,

3. orientation change,

4. velocity,

5. acceleration,

6. location relative to a reference object (distance),
7. distance change

8. orientation relative to a reference orientation,

9. orientation change relative Lo a reference orientation,

The repertoire of perceptual primitives contains some properties which refer
only to trajectories (1-5), and some properties which refer to a relation between
trajectories and an object of reference (6-9).

It is interesting to note the similarity between these primitives and the prim-
itive events used for bottom-up event recognition in Section 3. Earlier, primitive
events were derived by analyzing natural language motion verbs, which are taken
to define complex events. These qualitative primitives can be computed from a
quantitative scene description comprised of exactly the same quantities as in this
repertoire of perceptual primitives. Constant values (like constant velocity or con-
stant motions), restricted values (like ’parallel’, "close to” or 'beside’), comparative
values and constant derivatives (like constant acceleration) formed a basic set of
primitives. The main concern was to generate a natural language description of
time-varying scenes. Therefore a propositional event description based on such
primitives is a useful intermediate representation. Because our goal here is to
use event descriptions in an image-like context, our representations looks differ-
ent. Nevertheless, both cases have strong similarities with respect to the set of
perceptual primitives and the process of abstraction.

It is an interesting question when to extract the set of invariant properties. In
general there are many objects and the number of candidates for invariants grows
exponentially with the number of interesting objects. Due to this complexity
we believe that invariants cannot be extracted simultaneously, in pace with the
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changing environment. By having the invariants implicit in a description based
on the buffer, this can be left for subsequent reasoning using visualizations and
local and parallel processes. This will be touched in the next section; for now we

assume invariant properties to be available.

4.3.2 Examples

We describe generic event models collected from observations for "turn-off’ events
and ’overtake’ events.

turn-off’:

A detailed description of the buffer loaded with "turn-off” events has already
been given in the previous section. The buffer contains the dimensions (z, y, d, v).
As pointed out above, complete information about additional dimensions may
not be explicit in the original buffer. After refilling the buffer and under the
assumption that the stationary background is known, invariant dimensions can be
made explicit, variant dimensions can be removed.

In the case of 'turn-off’, the spatial dimensions zy and the orientation d of
velocity are variant with changing geometry. But the following dimensions capture
invariant event properties:

e speed (v),
e relative orientation between car and sidewalk (ro),
e distance between car and sidewalk (di).

In the generic model of a turn-off event, speed information consists roughly of
three parts: a constant deceleration at the beginning of the event, constant speed
at the intersection and a constant acceleration at the end of the event. The relative
orientation between car and sidewalk and the distance between car and sidewalk
remains almost constant over the whole intersection. This might change in a more
detailed model but it serves as a good first approximation. In order to learn a
generic event model, the invariant information has to be identified and determined
from a possibly large number of examples.

The following example demonstrates the use of a generic turn-off’ model. A
buffer for "turn-off” is instantiated for a new intersection using information derived
from another intersection which differs in shape.

The left illustration in Figure 12 shows five ’turn-off’ trajectories on an inter-
section. Based on these event instances the invariant perceptual primitives were
computed to build up a generic model. The original dimensions like zy-locations
are only stored implicitly in the generic model. In order to apply the information
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Figure 12: Five turn-off” trajectories on an intersection from which the generic
model was derived (left). "Turn-off” information for the new intersection (right).

to the particular geometry of the intersection in the right figure they have to be
recomputed. The right illustration of Figure 12 shows information instantiated
from the generic model derived from the street shape in the left illustration.
Information collected in a particular environment in space-time has been trans-
formed to be applicable in a different environment by conserving event dependent
information and abstracting away irrelevant information. This figure can also be
interpreted as showing the computed visualization of "turning-right’ events on in-
tersection 2 in analogy to observed ’turning-right’ events on intersection 1.

’overtake’

Let’s turn to another example. After observing several ’overtake’ events be-
tween two cars on different locations of a street scene, a generic model can be
based on:

o the distance between the two cars (di),
e their relative orientation (ro), and
e their relative speed (rs).

The observed trajectories follow a typical path through this 3-dimensional
space. For example, distance and relative orientation over time might look as
shown in Figure 13.
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IFigure 13: Generic Model for ’overtake’

The generic model can be viewed as a trace through a more-dimensional space
like the skeleton introduced above. Hence, the information can in principle be
stored by coding segments of the path using the chain code as described for skele-
tons.

Following Palmer’s definition (Palmer 78) the generic model is analogical with
respect to its dimensions. To bridge the gap towards abstract language oriented
event models as used in Section 3, a propositional description of generic models,
based on qualitative predicates, will be derived in the following subsection.

4.4 Towards propositional generic models

Some tasks related to object motion require abstract propositional event descrip-
tions, for example, for verbal communication (see Section 3). A natural next step
towards further abstractions is to describe the generic event model by some of
its meaningful segments or points. This leads to more compact and qualitative
descriptions which can be used for a subsequent predication.

We turn to the ’overtake’ example from the previous subsection. We derive
here an intuitive predication. The values which characterize the distance between
the two cars and their relative orientation can be segmented into the following
intervals.

The segments correspond roughly to ’approach’, ’behind’, *beside’, ’in-front-of’
and ’recede’. Of course, it is a complex problem to define the right set of primitives
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Figure 14: Predication over a generic Model for overtake’

for a propositional characterization of an event. This can not only be based on
the event to be described but has to be seen in comparison with other events. Be
have not yet developed an algorithmic solution, but we can show that using the
generic event model the appropriate dimensions for a subsequent predication are
made explicit and therefore facilitate this task.

5 Spatiotemporal reasoning

In this section we discuss several relevant spatiotemporal reasoning tasks. The
tasks are all based on visualizations within the analogical spatiotemporal buffer
and local processes working on it. We view this kind of reasoning as a useful
alternative for propositional and logic-based reasoning about the environment.
The restricted analogical representation allows to reduce complexity for several
tasks because spatiotemporal relations are easily derivable and the representation
is complete with respect to space and time.

First, we describe the instantiation of a spatiotemporal buffer from long-term
memory (5.1). Second, we discuss the visualization of single and multiple trajec-
tories (5.2). Third, we show how to compute spatiotemporal relations using the
buffer and local spreading activation processes (5.3), and fourth, we discuss how
event models can be constrained by current perceptual data. This will allow for
reasoning in situations which slightly differ from the accumulated experience. For
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example, in street traffic scenes with obstacles (5.4).

5.1 Instantiation of a spatiotemporal buffer

The spatiotemporal buffer is instantiated on demand from long-term memory.
Depending on the system’s current knowledge the long-term memory contains:

e Information about instances from particular geometric environments; no gen-
eralizations and abstractions have been computed so far. The examples can
be filled into the buffer without further computation because they are rep-
resented in buffer dimensions.

¢ Information about prototypical paths (skeletons) for a given geometric envi-
ronment. The skeleton can be filled in by loading the chain code description.
The dimensions of the skeleton correspond to the dimensions of the buffer.

o Information about a generic event model as described in the last section.
For example in case of "turn-off’, the generic description contains qualitative
descriptions of the dimensions 'distance to the sidewalk’, ’relative orientation
to the sidewalk” and ’speed’. This generic information has to be adapted
to a new instance (the actual geometric environment) by reintroducing the
dimensions (z, y, d), which depend now on the new location. Each point
of the new intersection has a certain distance to the sidewalk and a certain
orientation relative to the sidewalk. Its value is set according to the activity
in the generic description for this combination of coordinates.

In addition, the buffer can be filled with actual data from low-level vision
processes, for example, information about the current static scene parts, obstacles
on the street etc. The buffer is a shared representation between perceptual and
cognitive processes.

In Figure 15 an example of a "turn-off” event model in long-term memory 1s
shown. As described above, the systems knowledge can be in three possible states.
Note that they do not exclude each other. For example, the system might have a
generic model for ’turn-off” as well as a specific model for a particular intersection
at the same time.

5.2 Visualization of trajectories

Let us consider now the visualization of trajectories using an instantiated spa-
tiotemporal buffer. We can think of different situations where this task is useful.
In general it can provide predictions about a scene based on an event model.
For example, given starting points of observed objects and assumptions about the
event to be seen, predictions allow for a significantly constrained scene analysis (see
Mohnhaupt + Fleet 88, Mohnhaupt + Neumann 90). In addition, visualization
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EVENT MODEL "TURN - OFF"

PROPOSITIONAL DESCRIPTION:

INFORMATION TO FILL THE BUFFER:

(TURN-OFF OBJ1 OBJ2 T1 T2)
= —

(TURN OBJ1 T1 T2)
(PARALLEL OBJ1 OBJ2 T1 T3)
(ON OBJ1 OBJ2 T1 T4)
(NOT-ON OBJ1 OBJ2 T4 T2)

a. Generic Model:
DIMENSIONS: V,RO,DI
PATH: - Starting point
- Chain of path
elements (Chain Code)
- (Standard deviation)

b. Prototypical Information:

DIMENSIONS: X,Y,V,D
PATH: - Starting point
- Chain of path
elements (Chain Code)
- (Standard deviation)

c. Instances:

DIMENSIONS: X,Y,V,D
PATH:

Figure 15: "Turn-off” event model in long-term memory.




of prototypical trajectories allows for spatiotemporal reasoning about the collision
of objects. For example, given starting points of several objects, a likely accident
can be predicted. As described in Section 3, visualizations are also advantageous
for several communication tasks; for example, using visualizations in natural lan-
guage understanding one can check the propositional content for consistency and
completeness (see also Waltz + Boggess 79, Adorni and Di Manzo 83, Habel 89).
In the next section it will be shown how visualizations can be used for computing
perceptual primitives.

Successor
neighborhood

Cell (n,m,v,d)

Predeccessor
neighborhood

Figure 16: Visualization algorithm

We now describe the visualization algorithm. Given a starting cell the obvious
operation to visualize a typical trajectory is to look for the maximal counter in
the four-dimensional vicinity. Note that not all zy-neighbors are eligible if the
velocity direction is restricted to vary smoothly. Figure 16 demonstrates possible
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predictions. The successor neighborhood represents possible successor cells of cell
(nm v d). In the figure, the orientation dimension d is represented by the orien-
tation of arrows, and speed v is represented by the length of the arrows. When
visualizing the most typical trajectory, the cell with the highest activation value
is chosen from the successor neighborhood. In the case of visualizing a bundle of
likely trajectories, all elements above a certain activation threshold are chosen (see
examples). The predecessor neighborhood is also important, it will be discussed
in Section 5.4.

Figure 17: Single visualized trajectories given different starting points (left). Bun-

dles of visualized trajectories (right).
The left pictures in Figure 17 illustrate the visualization of single trajectories

given different starting points (solid). The right illustrations show bundles of
possible trajectories which are most likely given the starting points. A bundle

29



can be used, for example, as search area for top-down controlled image sequence
analysis. The upper illustrations are based on the simulated examples in Figure 10
after generalization and convergence operations. The lower illustrations are based
on the examples in Figure 11. Other examples of the prediction algorithm can be
found in Mohnhaupt 87 and Mohnhaupt + Neumann 87.

It is interesting to note that a prediction is physically plausible because it
relies on observations of physical behavior and plausible generalizations thereof.
Hence, the constraint of physical plausibility is internalized in the representation;
no further computation is necessary.

The same trajectory visualization mode is used in multiple object situations.
Given starting points of objects, their temporal relations, and an event model of
their future behavior (one might be a ’turn-off’; the other might be an ’overtake’
event), collision of object paths can be predicted. By allowing only one object per
zy position, physical plausibility is maintained. In addition, trajectory prediction
can be used to support event recognition as discussed in Section 3. The trajectory
of a recognized event is compared to the typicality distribution within the buffer
to decide how typical or atypical the event is.

5.3 Computing spatiotemporal relations

In Section 4 we described the importance of perceptual primitives for the extrac-
tion of invariani event properties. Perceptual primitives express spatiotemporal
relations. They are of general interest for important tasks in any vision system
including path-planning, obstacle avoidance, and so on. Therefore, robust and fast
extraction of spatiotemporal relations is crucial for intelligent systems.

The spatiotemporal buffer representation allows for the measurement of spa-
tiotemporal relations by simple spreading activation processes. The reason is that
spatiotemporal relations are explicitly represented within the analogical spatiotem-
poral buffer. We demonstrate the use of spreading activation processes with an
example.

The task in the example is to measure the perceptual primitive ’distance’ be-
tween object I and object 2 as shown in Figure 18. Object 1 (which covers a certain
position in zy) sends a pulse of activation to its spatially adjacent cells. Upon this
the neighbors send a pulse to their neighbors with a certain decay of activation
and so on. Each cell which belongs to an object 'remembers’ the maximum level of
activation of all incoming signals. Hence, lines of equal activation represent lines
of equal distance. After the activation process is finished, each cell of object 2
keeps the shortest distance to object 1 coded as activation value. The spreading
activation process can also be modeled as reaction diffusion rule (see Steels 88).

While there are efficient ways to compute spatial relations, we do not assume
that all perceptual primitives can be extracted in real-time in pace with the in-
coming information. The reason is the possibly very large number of potentially
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OBJECT 1

IFigure 18: Computing the distances between two objects

interesting relations and the need to consider several examples in order to find rele-
vant primitives. Therefore the buffer is initially used to build up basic information
about location and velocity in an intermediate representation (see Figure 15). A
subsequent visualization process using the instantiated spatiotemporal buffer is
then explored to compute perceptual primitives. Hence, initial storing and sub-
sequent processing like learning and reasoning can be separated. This is a useful
computational feature of the proposed representations. It can also be viewed as
reinterpreting the initial observations.

There is a dispute in the 'imagery’ literature about possible reinterpretations of
mental images. Finke + Pinker + Farah 89 present evidence for the possibility of
reinterpreting mental images and Reisberg + Chambers 86 argue against it using
different empirical results. From a computational point of view a reinterpretation
might be necessary and useful, for example, for computing additional perceptual
primitives.

In principle, relevant spatiotemporal relations could also be measured on a
qualitative propositional level using logic-based deduction. Unfortunately such
representation and mode of processing leads to undesirable complex operations.
In Figure 19 a more complex distance measuring situation is shown including an
obstacle. The task is to determine the shortest-path distance from object 1 to
object 2. By using the buffer and spreading activation processes the complexity
remains the same in spite of the obstacle. But consider the case of using proposi-

31



OBSTACLE

OBJECT 2

Figure 19: Computing the distances between two objects with obstacle

tional descriptions of all objects in terms of coordinate pairs. Euclidean distances
for obstacle-free situations could be easily computed. With obstacles, however, a
much more complex shortest-path computation would have to be carried out.

5.4 Constraints on event models

Now we want to show how event models represented in the spatiotemporal buffer
can be adjusted to cope with slightly different situations, e.g. situations with
obstacles which were absent when the experience was accumulated. We show
that the representation is flexible enough to allow meaningful predictions in these
situations. We also use this example to demonstrate the integration of cognitive
representations (event models) with perceptual data (obstacles in a given situation)
in the spatiotemporal buffer.

An ohstacle is a subspace of the 4-dimensional buffer where activities are not
allowed, for example, due to a parking car or due to a forbidden range of velocities
(in case of snow on the street). We introduce an obstacle into the buffer by setting
the counter values of the appropriate subspace to zero. Then we propagate this
information through the buffer by using a local inhibition operation.

Inhibition:
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We inhibit a cell S by setting its counter value to zero if:

o All the counter cells which can be reached from S are equal to zero (successor
neighborhood, see Figure 16),

o or all the counter cells from which S can be reached are equal to zero (pre-
decessor neighborhood).

This operation is performed repeatedly for all cells until no more changes occur.
Thus, one is sure that all cells which have no active predecessor or no active
successor are sel to zero. We demonstrate the inhibition operation with examples.

. -
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Figure 20: Skeleton of a buffer containing *turn-off” examples with obstacles (left).
The same skeleton after inhibition (right).

The left illustration of Figure 20 shows a buffer filled with information about
‘turn-off” events after introducing two obstacles. The effects of the inhibition
operation are visible in the right illustration. All trajectories which would pass
through the obstacle are inhibited. Hence the representation is adapted to the
constrained situation.

The left illustration of Figure 21 shows a skeleton within a buffer after intro-
ducing an obstacle that does not allow for any of the prototypical paths. The
effects of the inhibition operation are visible in the right illustration. The com-
puted trajectories avoid the obstacle. The limits of this kind of obstacle avoidance
are set through the observed and generalized examples. If none of the stored paths
(obtained from observations and generalizations) allows for obstacle avoidance, a
meaningful prediction is impossible.
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Figure 21: Another skeleton of a buffer with an obstacle (left). The skeleton after
inhibition (right).

Figure 22: Predictions before inhibition (left). Prediction of a previously blocked
trajectory after inhibition (right).
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This example shows the effects of inhibition for predictions given particular
starting points. The predictions are based on the accumulated examples in Fig-
ure 8. After inhibition a previously unplausible prediction (left) is appropriately
adapted to the obstacle.

6 Representation issues

Choosing an adequate representational scheme and mode of computation is cer-
tainly a key problem for intelligent systems. There are few sound principles to
favor one representation over another. Despite this it is instructive to view the
current approach from this perspective.

Following Palmer 78, who is concerned with a computational metatheory for
representation, a representational system consists of two worlds, namely, a repre-
sented world and a representing world. The objects of interest in the represented
world are mapped onto the representing primitives. The function of the represen-
tation is to preserve information (or structure) from the represented world. Thus,
constraints are imposed on the representing world in a way that reflects relations
between their associated objects in the world. We adopt several points of Palmer’s
theory and describe differences and extensions resulting from our work. Other rel-
evant discussions about the usefulness and applications of analogical /quantitative
vs. propositional/qualitative representations can also be found in e.g. Sloman 75,
Sober 76, Levesque 86, or Janlert 88.

At least two steps are necessary to develop a representational theory on which
the choice of adequate representations can be based. First, one has to identify
general constraints on representations as well as constraints resulting from the do-
main of interest, and second one has to identify general features of representations
which allow to overcome the limitations imposed by these constraints.

6.1 Constraints on the representation

e Learning: Our work shows that viewing learning as a fundamental concern
puts extra constrainis on the representation and associated processes. The
exemplar-based approach using the spatiotemporal buffer leads to a natural
transition from observations to accumulated and possibly prototypical expe-
rience. A distance measure for abstractions and generalizations is given by
the representation without further computation. Moreover, physical plausi-
bility of the models is intrinsic because they are based on physically plausible
observations.

e Temporal constraints: The temporal order of the world is a general con-
straint which should be reflected by an adequate representation. In addition,
in the area of object motion there are certain intrinsic temporal constraints
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6.2

of the domain. For example, in case of moving obstacles, the time available
to prevent possible collisions is limited.

Frame problem: Shoham 86 investigates the so called frame problem. In
discussing how people solve a prediction task concerned with a billiard game
he concludes:

“The inevitable answer seems to be that they 'visualize’ the problem, identify
a solution wn some mysterious (‘analog’) way, and only then wvalidate the
solution through physics”

We see our work as an attempt to clarify this mysterious analog way. Physi-
cal plausibility is maintained at low cost by relying on concrete observations
and abstractions thereof as well as by representing basic physical knowl-
edge (e.g. one object per point in space) intrinsically. In addition, the
spatiotemporal buffer representation guarantees that relevant spatiotempo-
ral relations change automatically through reasoning by visualizations and
local processes. Consistency of a description of spatiotemporal occurrences
at a certain point in time can be easier maintained within the quantitative
analogical representation because it is constrained in the right way. The
propositional qualitative representation is more general and allows to repre-
sent almost everything, but for the price of extra costs to maintain constraints
implied by a particular domain.

Features of the representation

Intrinsic and extrinsic constraints: Palmer 78 calls a representation in-
trinsic whenever “the representing relation has the same inherent constraints
as its represented relation.” Thus the structure of the represented world is
preserved through the choice of a primitive vocabulary, accompanied by its
own intrinsic constraints.'® One major reason for the past use of analogical
representations has been their intrinsic constraints on spatial relations such
as distances, areas, relative locations, and orientations. Our work suggests
that similar arguments apply in space-time. In addition, important physical
constraints can be maintained using the analogical buffer.

Explicit and implicit information: The terms explicit and implicit refer
to the mode of processing, where explicit refers to accessibility with little or
no cost; i.e., the information is extracted using only primitive operations.'!

In general one must reconcile memory costs, task requirements (temporal

'®Palmer suggested that the intrinsic-extrinsic distinction accounts for the analogical-proposi-
tional distinction (imagery debate) (see e.g., Kosslyn 80, Block 81 and Pylyshyn 84).

""When discussing the information content of a representation, in contrast to Palmer 78, we
feel that it is useful to specify the derivability of information as a function of cost (in time and

space).
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priorities), processing capacities, and the time required during knowledge
acquisition. As more information becomes explicit, redundancy results and
efficiency of memory decreases. Exactly what knowledge is made explicit
depends on the frequency with which such information is required, and the
priority of the tasks for which it is required.

Within the spatio-temporal buffer relevant dimensions for describing object
motions are either explicit (like zy), or they can be made explicit through
the use of visualizations and local processes.

Informational and computational equivalence: This issue is related to
the previous one. Two representations are informationally equivalent if the
information derivable is equivalent; they are computationally equivalent if
the same information is derivable with the same costs. Informational equiv-
alence is only of theoretical interest. If some piece of information is only
implicit and the task is needed for requires an immediate reaction, then the
information is not derivable in practical terms. For example, a human being
should have a fast access to the relevant models if a tiger is approaching. In
case the information what a tiger looks like is only implicit, its derivability is
only of academic and postmortem interest. Many aspects of spatiotemporal
relations are only implicitly stored in our long-term qualitative event rep-
resentation. Therefore we introduced a restricted analogical representation
specialized for several tasks and instantiated by demand. The two represen-
tations are informationally equivalent, but in the latter relevant relations are
explicit and therefore more easily accessible.

A common representation for perceptual and cognitive processes:
Perception and cognitive processes are often investigated separately in the
literature. Analogical quantitative representations are still questioned in
the reasoning community, but are well established in the vision literature
(see e.g. the 2 1/2-D Sketch representation in Marr 82). Our belief is
that cognition merges smoothly with perception, thereby implicating shared
representational structures and processing capabilities (e.g., sce Finke 85).

A shared representation also makes the basic perceptual apparatus available
to the cognitive system with which to solve problems. For it is often ex-
pedient to place cognitive tasks within a representational structure that is
well-suited to, and constrained by our perceptual model of the world. The
study of recognition, prediction, and learning of object motion within the
spatiotemporal buffer is simply one step toward a possible understanding of
this 'perceptual-cognitive junction’. Consequently, the spatiotemporal buffer
allows for the integration of bottom-up and top-down information within
one representation. This was shown in the last section and in the area of
top-down controlled image analysis, where model-based predictions about
ongoing object motion computed by the cognitive system have been used
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to focus and enhance low-level motion analysis (see Mohnhaupt + Fleet 88,
Mohnhaupt | Neumann 90).

e Local and parallel style of processing: The style of processing within a
representation has severe consequences for the performance in certain tasks.
From this perspective the transition from the qualitative/propositional event
models to the quantitative/analogical spatiotemporal buffer can be seen as
‘organizing the representation such that local and parallel processes become
useful’. This is a general rule for the design of adequate representations.

The processing within the buffer can also be viewed as subsymbolic following
the perspective given by Steels 88. In his work tasks like reasoning about
the behavior of liquids are performed on a subsymbolic layer. In addition he
presents evidence that even very abstract problems (like the 8-puzzle) can
be solved within such a framework.

7  Summary

We have developed a framework for understanding object motion. We presented a
hybrid system of representations and associated processes to solve relevant tasks
related to object motion. The two main representations are:

1. A qualitative propositional representation including logic-based reasoning
processes for event recognition, verbalization, and long-term memory.

2. An analogical quantitative spatiotemporal buffer including local processes
for several learning and spatiotemporal reasoning tasks. This representation
is initialized from long-term memory on demand.

Event recognition is performed using hierarchical matching. This takes propo-
sitional primitives describing the current scene as input and generates instantiated
events as output. The propositional primitives are qualitative predicates on per-
ceptual primitives.

Several learning tasks have been investigated. First, we accumulate examples
using the spatiotemporal buffer. Second, we use local operations for computing
generalizations and abstractions. This leads to skeletons containing condensed
information about the buffer which can be used for efficient storage. We have
shown how to exploit a rich set of perceptual primitives to compute invariant
event dimensions and to obtain generic event models which are independent of a
particular scene geometry. Finally we have sketched how a predication of generic
models can lead to the propositional event models used for recognition.

In addition, we have discussed the use of accumulated experience for spatiotem-
poral reasoning tasks concerned with concrete visual data. These data are either
given from perceptual processes or instantiated from long-term memory. Reasoning
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is performed by visualizations and local processes. We have described the predic-
tion of single and multiple typical trajectories and the computation of perceptual
primitives through spreading activation processes. Predicted trajectories can be
adapted to constrained situation, e.g. obstacles in traffic scenes. Predictions can
also be used to control visual processes, to reason about collision of objects and
to decide how typical or atypical a recognized trajectory is.

The hybrid representation has been motivated by general constraints and by
constraints in the domain of object motion: learning as a fundamental concern,
temporal constraints, and the frame problem. This lead us to develop an ana-
logical representation which is specialized for several problems of this domain. It
features intrinsic physical constraints and explicit representation of spatiotempo-
ral information. In addition, it serves as a common representation for perceptual
and cognitive processes, which supports the use of a local and parallel style of
processing. A propositional representation at this level could be informationally
equivalent and more general, but for the price of extra cost to maintain the con-
straints of the domain of object motion.
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