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Abstract

We examine the possible use of Description Logics as a knowledge representation and reasoning
system for high-level scene interpretation. It is shown that aggregates composed of multiple parts and
constrained primarily by temporal and spatial relations can be used to represent high-level concepts
such as object configurations, occurrences, events and episodes. Scene interpretation is modelled as a
stepwise process which exploits the taxonomical and compositional relations between aggregate
concepts while incorporating visual evidence and contextual information. It is shown that aggregates
can be represented by a Description Logic ALCF(D) which provides feature chains and a concrete
domain extension for quantitative temporal and spatial constraints. Reasoning services of the DL
system can be used as building blocks for the interpretation process, but additional information is
required to generate preferred interpretations. A probabilistic model is sketched which can be
integrated with the knowledge-based framework.

1. Introduction
Interpreting a visual scene is a task which in general resorts to a large body of prior

knowledge and experience of the viewer. Consider an every-day street scene as illustrated in
Fig. 1.

Figure 1: Street scene for scene interpretation



Based on common-sense knowledge and experiences, we recognise that two persons are
engaged with garbage collection while a third person is distributing mail. With visual
evidence as sparse as a single snapshot, we obtain an interpretation which extends over time,
supplements invisible objects outside the field of view, ignores uninteresting details, provides
an estimate of daytime and season, and may even include assumptions about the intentions
and emotions of the people in the scene. It is evident that scene interpretation is a knowledge-
intensive process which is decisively shaped by the way common-sense knowledge and
experiences are brought to bear.

While people seem to perform scene interpretations without effort, this is a formidable and as
yet unsolved task for artificial vision systems. One reason is the often still unsatisfactory
performance of low-level vision, in particular segmentation, tracking, 3D analysis, object
recognition and categorisation. Often it is argued that the problem of complex scene
interpretation cannot be tackled before reliable low-level results are available. However, low-
level vision is not always the bottleneck. As the above example suggests, an even more
important role may be played by high-level knowledge and experiences. Given suitable high-
level knowledge structures, far-reaching interpretations may be obtained including
propositions about parts of the scene for which there is no direct evidence at all.

Furthermore, high-level knowledge may provide top-down guidance to facilitate and improve
low-level processes. This has been known for a long time (e.g. [Kanade 78]), but there are
few examples (e.g. [Arens & Nagel 03]) where vision systems exploit high-level knowledge -
beyond single-object descriptions - for low-level processing and decisions.

In view of the importance of knowledge for scene interpretation, it is useful to be aware of the
rich body of research on knowledge representation and knowledge-based system methodology
when designing a scene interpretation system. For an overview see the corresponding sections
in Al textbooks such as [Russell & Norvig 03, Nilsson 98, Stefik 95]. Out of the many aspects
of past and ongoing developments in knowledge representation, the following seem to be
particularly significant for scene interpretation.

1. Knowledge representation needs a sound formal basis when the body of knowledge
becomes large and diverse. Many of the early representation formalisms such as semantic
networks, early frame languages and rule systems suffer from the lack of precise semantics in
the sense that the correct use of represented knowledge is partly based on intuitive notions
which do not necessarily provide a consistent basis for large-scale knowledge processing.

2. Knowledge representation systems may provide standardised inference services, which can
be used (and reused) for application development. Typical inference services are consistency
checking, inheritance, instance classification and model construction, but many more have
been proposed and investigated, for example pattern matching services [Baader & Kiisters
00]. Inference services are interesting for scene interpretation as they may provide important
functionality for the interpretation process in terms of existing software with well-defined
properties.

3. There is a growing body of research about spatial and temporal knowledge and related
reasoning services [ Vila 94, Stock 97, Cohn 01]. Space and time play a dominant role in
visual scenes, and one may hope that spatial and temporal reasoning services provide useful
support for scene interpretation. However, it is conspicuous that so far only few examples
exist where spatial and temporal reasoning services have been integrated into a vision system
[Haag et al. 97, Nagel 99, Cohn et al. 03]. One of the problems seems to be the mismatch
between the quantitative spatial and temporal information arising from low-level vision and
the mostly qualitative nature of spatial and temporal reasoning services.



4. Description logics (DLs) constitute a family of knowledge representation formalisms
which have obtained much attention in the last decade. DLs provide object-oriented
knowledge representation similar to frame systems used in many knowledge-based
application systems, but based on formal semantics. DLs realise a subset of First Order
Predicate Calculus which is generally chosen as to guarantee the decidability of consistency
checking and other key inference services. Furthermore, recent developments of sophisticated
optimisation techniques have led to implemented DL systems which combine an expressive
representation language with highly efficient services. [Baader et al. 03] provides an excellent
overview of the state-of-the-art of DL methodology.

In this contribution we report about an approach to using a DL for high-level scene
interpretation. The insights and results are primarily based on long-standing work both on
high-level vision and on formal knowledge representation in the Cognitive Systems
Laboratory at Hamburg University, but certainly also try to reflect the development of the two
fields in their respective research communities. The organisation of the following sections
roughly mirrors the corresponding research history.

In Section 2 we examine the conceptual structures which are needed to represent knowledge
for high-level vision. The guiding scenario is a living room, observed by a stationary smart-
room camera. A typical scene is table-laying, when one or more human agents place dishes
onto the table and the system has the task to recognise table-laying occurrences. Laying a
table is, of course, only an exemplary task, and the goal is to develop a methodology which is
applicable to high-level scene interpretation in greater generality. For example, based on this
methodology, it should also be possible to recognise interesting occurrences in traffic scenes
(as a possible task of a driver assistance system), team behaviour in soccer (or robocup)
games, criminal acts in monitoring tasks, etc. Occurrences, object configurations and other
high-level structures can be represented by aggregates which are introduced informally as
representational units. Compositional and taxonomical hierarchies of aggregate concepts are
proposed as the main structures of a high-level conceptual knowledge base. The aggregate
structure represents the representational requirements which must be met by a DL system.

In Section 3 we discuss requirements for the interpretation process within the conceptual
framework introduced before. In high-level vision, interpretation tasks may be highly context-
dependent, involving prior information from diverse sources. Scene evidence may be
incomplete, in particular in evolving time-varying scenes. Hence hypothesis generation and
prediction become important issues. However, it is known that in the end, a valid scene
interpretation must be a "model" (in the logical sense) of the conceptual knowledge and the
scene data.

After having discussed knowledge representation requirements for high-level scene
interpretation, we examine the potential of DL systems for this task. In Section 4 we give an
introduction to the family of DLs and the conceptual expressions which can be formulated. As
an extension important for scene interpretation, symbolic reasoning may be augmented by
predicates over concrete domains such as real numbers representing temporal or spatial
coordinates. We also introduce inference services offered by DL systems. They promise
benefits both for knowledge base maintenance and application development.

In Section 5 we examine the use of DL knowledge representation and inference services for
scene interpretation. It is shown that the representational requirements for high-level vision
aggregates can in fact be met by a particular DL called ALCF(D) (for the DL nomenclature
see [Baader et al. 03]). Regarding inference services for scene interpretation, logical model
construction - which is a service provided by modern DL systems such as RACER or FaCT -
is in principle a candidate. However, scene interpretation requires that the logical models not
only satisfy all constraints expressed by conceptual knowledge and visual evidence, but also
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be most "plausible" or "preferred" with respect to a measure. Furthermore, the interpretation
process must be flexible to adapt to a given focus of attention and other situational context.
While this poses requirements which cannot be met by existing DL systems, such an
interpretation process appears to be realisable in principle.

In Section 6 we shortly describe ongoing work towards an interpretation system where
probabilistic information guides the interpretation process within the conceptual framework of
a formal knowledge representation system.

Section 7, finally, summarises our findings and suggests directions for further research. One
of the major impediments for decisive progress appears to be the prevailing segregation of the
respective research communities of Computer Vision and Knowledge Representation. So far,
the Computer Vision community has not succeeded in attracting significant attention of the
Knowledge Representation community for research into high-level vision. But this is not
really surprising in view of the enduring predominance of lower-level vision research.

2. Conceptual Structures for High-level Scene Interpretation

In this section we first explain what we mean by "high-level interpretation". We then propose
conceptual structures which can describe such "interpretations". We introduce "aggregates" as
representational units for object configurations, occurrences, episodes and other concepts
which occur in high-level interpretations. We also discuss the interface between conceptual
high-level descriptions and the data provided by lower-level processes.

2.1 High-level Interpretations

We define high-level scene interpretation as the task of "understanding" a scene beyond
single-object recognition. In a knowledge-based framework, a high-level interpretation is
determined by constructing a description of the scene in terms of concepts provided in a
conceptual knowledge base (Fig. 2). A scene is assumed to be a connected region of the 4-
dimensional space-time continuum. Our guiding example is a table-laying scene in a living-
room where table-laying actions are observed over a certain time interval. We do not commit
ourselves to a particular camera setup but simply assume that visual evidence is associated
with the scene.

high-level
scene interpretations

conceptual
context — o— ﬁ < P

information knowledge-base

geometrical scene description (GSD)

1

image sequences of
dynamic scenes

Figure 2: Knowledge-based framework for high-level scene interpretation



In order to be able to focus on high-level interpretation we will bypass lower-level image
analysis issues and assume that a partial geometrical reconstruction of the scene in terms of
objects and their properties is available which will constitute the input to high-level
interpretation. This intermediate representation, called Geometrical Scene Description (GSD),
has been introduced in earlier work [Neumann 89] as a convenient separation between high-
level and lower-level processes. In this work, however, we assume that high-level and lower-
level processes will be able to interact. In fact, it is one of the goals of high-level processes to
provide expectations and support for lower-level processes. Hence a GSD is not assumed to
be complete and correct in any sense. In particular, objects in the GSD need not be fully
classified, may be missing or may represent multiple scene objects. Imperfections at the level
of the GSD will be a touchstone for robust high-level interpretion.

What are the requirements for describing scenes at a "high" conceptual level? From the
examples given earlier we gather several characteristics. High-level scene interpretations
typically

- involve several objects and occurrences;

- depend on the temporal and spatial relations between parts of the scene;

- describe scenes in qualitative terms, omitting geometrical detail;

- exploit contextual information;

- include inferred facts, unobservable in the scene;

- are based on conceptual knowledge and experiences about the world.

Consider, for example, the table-laying scene with a snapshot shown in Fig. 3. A high-level
interpretation would express that a person is placing a cover onto a table. This is a qualitative
summary of several individual occurrences involving different objects. The scene has a
characteristic spatio-temporal structure. The final spatial configuration is described by the
term "cover" referring to a priori knowledge about dish arrangements. Similarly, there is a
typical temporal structure of the scene. For example, usually we would expect that the plate is
placed before the saucer and the cup. Further expectations may arise from context
information. If we know that it is early in the morning, we might infer that a breakfast table is
laid and someonemay intend to have breakfast soon.

Figure 3: Snapshot of a table-laying scene

From the example it is apparent that a scene interpretation may involve many conceptual
levels above the level of single-object recognition, corresponding to different degrees of
abstraction. At a low abstraction level we may talk about placing a fork beside a plate. Ata
higher level we may say that the table is laid for breakfast. It will be the task of the conceptual
knowledge base to provide the corresponing conceptual structures.



Intuitively we may think of the elements of a high-level scene interpretation as "occurrences".
The term emphasises the general case of a time-varying scene (ranging from simple object
motions to large-scale episodes), but is not meant to exclude concepts for stationary situations
such as a cover configuration on a table.

It has been mentioned that an interpretation should exploit contextual information. As
"context" of a scene we denote any information at any abstraction level which is relevant for
the interpretation of that scene but not observable. For vision, spatial and temporal context are
particularly important. Spatial context is understood to influence the interpretation of a scene
via spatial constraints. For example, context information about the location of the table border
will constrain expected cover locations. Similarly, temporal context provides temporal
constraints, for example, knowing the daytime may exclude certain interpretations such as
"breakfast-table". (The example suggests that it may be more appropriate to change certainty
values rather than exclude an interpretation alltogether. Uncertainty management as an
extension of a logic-based framework will be addressed in Section 6.)

In general, context may be provided in terms of diverse kinds of information. For example, it
may be known by verbal communication that the table is being laid. This top-down
information may faciltate a detailed scene analysis and interpretation. Context may also be
given in terms of known intentions of agents. For example, if it is known that an agent intends
to have breakfast, but the table is covered with other items, say books, then it may be
expected that the agent will clear the table and then place dishes.

Another kind of context may be given by focussed attention. In the smart-room setting of our
example scenario, for example, attention may be directed by queries of a human user such as
"Is there a plate on the table?". The query will restrict the space of interesting interpretations

to those which include a plate.

2.2 Aggregates

We turn now to the task of describing occurrence concepts in a knowledge-representation
framework. This will be done initially in a frame-based notation. In Section 5, we will
rephrase the frame-based models as conceptual expressions of a Description Logic.

The main conceptual entities are called aggregates. An aggregate consists of a set of parts tied
together to form a concept and satisfying certain constraints. There are no a priori
assumptions about dependencies between parts or specific reasons to combine them in an
aggregate. We simply assume that one is interested to recognise an aggregate as a whole.

As an example, consider the occurrence of placing a cover on a table. Fig. 4 shows the
corresponding conceptual model. It is a crude conceptual description of a scene where a plate,
a saucer and a cup are placed onto a table to form a cover. The place-cover aggregate includes
a table top, three transport occurrences and a cover configuration as parts (the spatial
constraints expressed by cover are not shown here). Parts are assumed to be existentially
quantified. Furthermore, there are time marks which refer to the beginning and ending of the
place-cover occurrence. In the constraints section, there are identity constraints, such as pc-
tpl.tp-ob = pc-cv.cv-pl, which relate constituents of different parts to each other (the plate of
the transport sub-occurrence is identical with the plate in the cover), and qualitative
constraints on the time marks associated with sub-occurrences. For example, pc-tp3.tp-te >
pc-tp2.tp-te denotes that the cup transport should end after the saucer transport. Aggregates
involving mobile objects typically require that the objects fulfill certain temporal and spatial
constraints.



The example shows that an aggregate may have other aggregates as parts. Hence a
compositional hierarchy is induced. The hierachy is built on top of primitive occurrences
which are generated as part of the GSD which will be discussed futher down.

As indicated by the "parents" slot, aggregates are also embedded in a taxonomical hierarchy
which is the usual organisational form for concepts at different abstraction levels.

name: place-cover
parents: :is-a agent-activity
parts: pc-tt :is-a table-top

pc-tpl :is-a transport with (tp-obj :is-a plate)
pc-tp2:is-a transport with (tp-obj :is-a saucer)
pc-tp3 :is-a transport with (tp-obj :is-a cup)
pc-cv :is-a cover

time marks:  pc-tb, pc-te :is-a timepoint

constraints:  pc-tpl.tp-ob = pc-cv.cv-pl
pc-tp2.tp-ob = pc-cv.cv-sc
pc-tp3.tp-ob = pec-cv.cv-cp

pc-tp3.tp-te > pc-tp2.tp-te
pc-tb < pc-tp3.tb
pc-te > pc-cv.cv-tb

Figure 4: Conceptual model of a place-cover scene

Note that scene objects such as plate, saucer etc. are considered as aggregates composed of (i)
a physical object or "body" in the 3D world and (ii) a "view" which is the visual evidence of
the object in the camera view. As an example, Fig. 5 shows the conceptual model of a plate in
a scene, where plate body and plate view are combined as an aggregate.

name: plate
parents: :is-a scene-object
parts: pl-body :is-a body with pl-body-preds

pl-view :is-a view with pl-view-preds
constraints:  (constraints between pl-body-preds and pl-view-preds)

Figure 5: Conceptual model of a plate in a scene

The constraints section contains constraints which relate the parts to each other, e.g. ensuring
that the view is compatible with the 3D shape of the physical object (which is, of course, not
trivial). Note that the aggregate and its parts are embedded in distinct taxonomical hierarchies:
scene-objects, bodies, and views. Only physically coherent objects will be modelled with a
view, for example a candlestick. Aggregates with mobile parts, such as a cover, will in
general not be described by views at the aggregate level.

The main motivating criterion for defining an aggregate is to provide a coherent description of
entities which tend to co-occur in a scene. This is regardless of whether the entities are visible
or not. In fact, aggregates provide the means to hypothesise parts without evidence. As an
extreme example, aggregates may include mental states of agents along with occurrences in a
scene, in particular desires or emotional states. The aggregate in Fig. 6 is a sketch of an
"intended place-cover", specifying an agent along with the place-cover occurrence and an




desired cover configuration as the mental state of the agent. Relational descriptions including
mental states have also been used in [Barwise & Perry 83] as a basis for situation semantics.

name: intended-place-cover
parents: :is-a intended-action
parts: ipc-pc :is-a place-cover

ipc-ag :is-a agent

ipc-cv :is-a cover
constraints:  ipc-ag.desire = ipc-cv

(and other constraints)

Figure 6: Conceptual model of an intended action

The view concepts associated with physical object concepts refer to the interface between
high-level and lower-level vision, as instances of view concepts are provided by lower-level
processes. The next subsection deals with this interface.

2.3 Interfacing High-level and Lower-level Representations

The main task of the interface between high-level and lower-level vision is to ground symbols
of symbolic descriptions in data structures provided by lower-level vision processes. It is
assumed that, from below, the scene is described in terms of segments or blobs, each endowed
with a rich quantitative description. As mentioned before, a similar scene description, denoted
Geometrical Scene Description (GSD), has been introduced in earlier work [Neumann 8§9].
Here, we do not require that objects of the GSD have been preclassified, but only postulate
that view classes can be distinguished, e.g. "disk-shaped". A single view instance may be
related to several object concepts, hence unambiguous recognition solely based on views may
not be possible.

Blobs are mapped into instances of object views which are associated with object concepts of
the conceptual knowledge base as described above. Basically, this mapping assigns symbols
for qualitative subspaces of the quantitative blob descriptions. For example, a subspace of
shape descriptions could be classified as "disk-shaped".

In addition to instances of object views, qualitative relations between object views are
computed, for example topological relations such as "touch". There is a large set of relations
which can in principle be computed from the GSD. From a cognitive perspective, qualitative
predicates over distances and angles between suitable reference features, as well as temporal
derivatives of distances and angles, are of primary importance. For example, qualitative
spatial relations such as "right-of" or "parallel-to" are of this kind.

In general, it may not be feasibleto compute distances and angles beween all pairs of objects.
Utility measures and focus of attention come into play as well as verification requests of
higher-level interpretation processes. It is therefore useful to think of instances of qualitative
relations in terms of information which can be provided on demand.

In dynamic scenes, object motion and time-dependency of relations play an important part.
The interface provides instances of views of primitive occurrences which are the basic
building blocks for occurrences such as "place-cover" and other higher-level concepts. A
primitive occurrence is defined as a conceptual entity where a qualitative relation is true over
a time interval. Typical primitive occurrences are:

- object motion,




- straight object motion,

- approach or depart segment of an object motion relative to a second object,
- turning object motion,

- upward or downward motion.

If a predicate over a perceptual primitive is true throughout a scene, one usually does not talk
about an occurrence. We will use the term primitive relationship instead, well aware that there
is no inherent representational difference between a constancy which happens to change
within the duration of a scene and one which does not.

3. Requirements for the High-level Scene Interpretation Process

In this section we identify requirements which must be met by a high-level scene
interpretation process. Further down, these requirements will be compared with existing
inference services of DL systems.

3.1 Context-based Interpretation

An interpretation of a scene is a partial description in terms of instances of concepts of the
conceptual knowledge base. It is partial because only parts of the scene and a subset of the
concepts are interesting in general, depending on the pragmatic context. This principle is well-
known from work on Active Vision [Blake & Yuille 92] and knowledge-based attention
mechanisms [Howarth 95]. In our knowledge-based framework, we allow an interpretation to
be incomplete in three respects:

(1) Objects need not be identified as parts of an aggregate. In particular, view objects may
remain "unrecognised", i.e. not assigned to a scene-object aggregate.

(i) Objects need not be assigned to the most specific concept.
(ii1) Aggregates need not be instantiated at the parts level.

Context information can enter the interpretation process in terms of instantiated aggregates
which constrain other possible scene objects. For example, if the context of a breakfast scene
is given, it is assumed that a corresponding aggregate is instantiated and possible parts - such
as the occurrence "laying-the-breakfast-table" - are expected as constituents of the
interpretation. Context-based instances are often not fully specified, with properties left open
or partially constrained. For example, the begin and end times of an instance of "laying-the-
breakfast-table" may initially be loosely constrained to the typical morning hours, e.g. to
times between 6 and 11a.m.

Spatial and temporal context play a special part in scene interpretation, since spatial and
temporal constraints provide important coherence in visual aggregates. The constraints section
in aggregates will contain predominantly spatial and temporal constraints. In view of
interpretation tasks under varying contextual conditions it is highly desirable that temporal
and spatial constraints can be propagated between all constraint variables. For example, if a
plate is interpreted as part of a cover, the plate location constrains other part locations,
restricting possible choices and possibly even causing top-down guided image analysis in
restricted areas.

As a consequence of context information, scene interpretation may be performed under
diverse boundary conditions and the interpretation process must be influenced accordingly, in
particular regarding the order in which possible hypotheses are tested. Hence one of the
requirements for interpretation services must be flexibility to adjust to varying contexts.



3.2 Navigating in Hallucination Space

An interpretation may reach far beyond visual evidence, for example by including predictions
about the temporal development of a dynamic scene or expectations about unvisible objects.
Hence instantiations with incomplete or no visual evidence are more the rule than the
exception. This is aptly expressed by the sentence "Vision is controlled hallucination"
attributed to Max Clowes (1971).

Considering the potentially large space of possible hallucinations and the flexibility required
for varying contexts, it is useful to model the interpretation process as an incremental
construction process with the goal to create and verify any instance which may be useful for
the overall goals of the vision system. We know that logically, an instance of an aggregate C
can only be verified if it is asserted by context information or its parts can be verified under
the constraints specified in the concept definition of C. This recursive definition may
eventually bring scene objects and hence visual evidence of the GSD into play. But scene
objects cannot be verified - logically - from visual evidence alone as shown in Fig. 5, but
would require assertions about the corresponding physical object. Hence logical verifiability
cannot be a criterion for accepting an instance in an interpretation. However, it can be assured
that interpretations are consistent with evidence and conceptual knowledge. Unfortunately,
the space of consistent interpretations may be huge and the knowledge-representation
framework does not offer a suitable criterion for preferring one consistent interpretation over
the other. Hence addtional information is required, for example in terms of likelihoods of
interpretations. We will discuss preference measures for guiding the interpretation process in
Section 6.

In [Neumann & Weiss 02] a repertoire of three basic interpretation steps has been identified:
aggregate instantiation, instance refinement and instance merging. For clarity, it is useful to
further distinguish two variants of instance refinement: instance specialisation and instance
expansion. The interpretation steps are designed to move around freely in hallucination space,
i.e. to allow the construction of any consistent interpretation. In the following, the four kinds
of interpretation steps will be described.

Aggregate instantiation is the act of inferring an aggregate from parts, also known as part-
whole reasoning. Given instances of (not necessarily all) parts of an aggregate and satisfied
constraints, we want to establish an instance of the aggregate. The question when evidence in
terms of parts justifies aggregate instantiation is, of course, related to the verification question
raised above, and we note that aggregate instantiation requires guiding information.

The second kind of interpretation step is instance specialisation. Specialisation means
tightening properties and constraints, either along the specialisation hierarchy or by checking
objects for possible roles in aggregates. Hence instance specialisation steps are predetermined
by the structure of the specialisation hierarchy and the aggregate definitions. As above, it
must be noted that the conceptual structures do not specify preferred choices if alternative
specialisations are possible.

The degree to which instances should be specialised depends on the overall task of the vision
system, and no generally valid rule can be given. On the other hand, we know from Cognitive
Science that "natural kinds" play an important role in human thinking and communication.
Roughly, a natural kind is a concept which describes essential visual properties of its
instances [Johnson-Laird 83]. In our domain, "plate" is a natural kind whereas "dish" is not.
Asserting natural kinds could be a useful guiding goal for specialisation steps.
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Instance expansion is the step of instantiating the parts of an aggregate if the aggregate itself
is already instantiated. Logically, asserting an aggregate instance would generally imply the
assertion of parts instances. But for a task-oriented and context-dependent interpretation it is
useful to be able to suppress details. Hence it will not be required that parts are instantiated if
an aggregate is instantiated. A typical reason for instance expansion is the need to connect
higher-level aggregates to visual evidence.

The fourth kind of interpretation step, instance merging, is required because of the distributed
nature of interpretation activities. New instances may be generated at any level and in any
branch of the compositional hierarchy depending on visual evidence, context information and
current interpretation state. Hence different sequences of interpretation steps may lead to
identical instances which must be merged. This will happen in particular when instantiations
are initiated both bottom-up and top-down, for example caused by visual evidence on one side
and strong context-based expectations on the other. In our domain, context information such
as "the table is laid" may have led to the top-down instantiation of a cover and its parts. Visual
evidence about a plate and other items must then be merged with these instances. Again, we
note that there may be many choices, and guiding information is needed.

3.3 Scene Interpretation as Model Construction

As shown by [Reiter & Mackworth 87] and further elaborated in [Matsuyama & Hwang 90,
Schroder & Neumann 96, Schroder 99], image interpretation can be formally described as
constructing a partial model. "Model" is used here in the logical sense and means a mapping
from the symbols of logical formulae into a domain such that the formulae are true.

Applied to scene interpretation, there are three sets of formulae, (i) generic knowledge about
the world, (ii) knowledge about a specific scene in terms of visual evidence and context, and
(ii1) propositions which are generated as the scene interpretation. Model construction means
connecting constant, predicate and function symbols of the formulae with corresponding
individuals, predicates and functions of a real world domain. The fact that the third set of
formulae, the scene interpretation, is not given but incrementally constructed, is one of the
differences to the notion of interpretation as used in formal knowledge representation.

The constructed model is "partial" in that neither all possible nor all implied
conceptualisations of the scene must be expressed as formulae, and in particular that image
analysis must not be perfect.

In addition to these general properties of a model, Schroder postulates that two requirements
must be fulfilled. First, it must be possible to extend the partial model to a complete model.
This ensures consistency of any scene interpretation since it is always part of a model.
Second, disjunctions must be resolved. This ensures completeness with respect to
specialisation.

It is interesting to transfer Schroder’s criteria for scene interpretation into our conceptual
framework, although this is not formulated in a precise logical language. Scene interpretation
as outlined in Subsections 3.1 and 3.2 is an interpretation in the logical sense, i.e. the scene
interpretation process determines a mapping from symbolic expressions into the real world,
by connecting symbolic constants to individual entities in the scene via sensory input and
computational procedures. For example, instantiating a place-cover aggregate connects the
corresponding formula with the real-world scene via spatio-temporal constraints and whatever
visual evidence is related to the occurrence.

The mapping is a model, if it causes all symbolic expressions of the conceptual knowledge
and the scene-specific knowledge to become true. For example, if a plate is on the table in the
scene, then a corresponding symbolic relation ON should hold for symbolic tokens PLATE1
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and TABLE] assigned to the scene objects. This is the case if the real-world meaning is
correctly represented by the computational procedure which determines the ON-relation for
the scene object.

Sometimes, our intuitive notions may differ from what is being computed and one might
argue that in those cases a vision system does not compute a model. Discrepencies may range
from obvious mistakes (e.g. interpreting a shadow as a physical object) to disputable
propositions where even people might disagree (e.g. calling a spatial relation "near"). For a
formal analysis, it is therefore useful to avoid references to intuition and accept the
operational semantics realised by the conceptual models and computational procedures. In
this sense consistent scene interpretations always correspond to logical models.

Schroder’s consistency requirement makes sure that a partial model is always the kernel of a
potentially complete model. In our framework, requirements for scene interpretations have
been introduced without this condition, and it is not apparent at this stage how one could
ensure that a partial scene interpretation remains consistent if it is completed by further image
analysis. As an example, imagine a scene where a plate is placed onto an empty table. The
vision system may come up with the interpretation of "table-laying" including predictions
about future actions. The continuation of the scene, however, may show that the plate is
picked up again and put elsewhere. Hence the premature interpretation cannot be completed
to be consistent with the scene.

In view of the fact that visual evidence is ambiguous as a rule (and not as an exception), we
expect that Schrdder’s consistency requirement cannot be met in practice. Rather, we must be
prepared to (i) withdraw an interpretation if it becomes inconsistent with additional
information, and (ii) provide guiding information which helps to select between multiple
possible models.

Let us now consider Schroder’s specialisation requirement which calls for interpretations
without unresolved disjunctions. Disjunctions occur naturally in conceptual descriptions
where choices are left open, for example, when a concept may be specialised further
according to the taxonomy, or when a property may have several values. Requiring
interpretations without disjunctions is equivalent to enforcing interpretations at the lowest
possible abstraction level. This is clearly not the right answer for all vision tasks and
pragmatic contexts which one can think of. For example, in an obstacle avoidance task the
vision system could well do without the most specific classification of obstacles as long as
their geometry is recognised properly.

In summary, we see that model construction, although the right logical framework for scene
interpretation, leaves several questions unanswered regarding a practically useful
interpretation process. These questions will be brought up again when we examine DLs for
possible interpretation services, and will also be addressed in Section 6.

4. Knowledge Representation and Reasoning with Description Logics

Description Logics (DLs), also called terminological logics, originated from the work of
several researchers who tried to replace the intuitive semantics of semantic networks and
frame systems by a formal logic-based semantics [Woods 75, Brachman 75, Hayes 79, Woods
& Schmolze 92]. It was soon realised that semantic networks and frames do not require full
first-order logic, but fragments suffice for typical representation and reasoning tasks.
Moreover, since inference problems are found to be decidable in these fragments, reasoning
can be operationalised by sound, complete, and terminating algorithms. This is a clear
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advantage compared to theorem provers for full first-order logic or theorem provers for Horn
clauses with function symbols (e.g., PROLOG).

DLs have taken a remarkable development as both solid theoretical foundations and
successful operational systems have been achieved. The interest in developing efficient DL
systems and using these for practical applications is due to several attractive aspects.

e The family of DLs comprises a variety of representation languages ranging from
languages with polynomial complexity such as CLASSIC [Brachmann et al. 91] to highly
expressive languages which - in the worst case - are no longer polynomial, such as
SHIQ(D,) [Horrocks et al. 00, Haarslev et al. 01].

* DL systems offer various kinds of inference services which can be used for application
development. Systems are available off the shelf and are based on international standards
for web based system development (e.g., OWL [Harmelen et al. 03]). An excellent
presentation of the history and current state of DL technology is offered in [Baader et al.
03]. One example for a current DL system is RACER [Haarslev & Mdller 01]. RACER
supports the logic SHIQ(D, )

*  The representation language is object oriented and supports frame-like representations.

For the purpose of this contribution it is useful to introduce DLs in terms of a repertoire of
language features which are potentially important for scene interpretation, rather than
focussing on particular DLs. In Section 5, we will then examine how to meet the knowledge
representation requirements for scene interpretation. Unfortunately, not all features of the
repertoire can be combined in a single language without losing decidability, so a careful
analysis is necessary and a restricted use may be imposed.

4.1 Syntax and Semantics od Description Logics

Knowledge representation in DLs is based on unary predicates called concepts (or concept
terms), binary predicates called roles (or role terms), and so-called individuals. A concept is
interpreted in a Tarski-style set-theoretical semantics as a set of elements from a domain of
discourse (also called universe), a role is interpreted as a set of pairs of elements from the
domain, and an individual denotes an element of the domain. The elements in the second
position of a role pair are called role fillers. Functional roles which map each first argument
into at most one role filler are called features.

Building Blocks: For each application one has to _x a set of concept names (so-called atomic
concepts), a set of role names (also called atomic roles), and a set of individuals. Names can
be used to build complex concept and role terms. This is accomplished with the help of
operators whose meaning is precisely de ned in terms of the set-theoretical semantics. Below
we present the language for building complex concept terms. We rely on a notation with the
following abbreviations (possibly used with index):

C concept term CN  concept name
R role term RN  role name

F feature term n natural number
| individual

Concept terms may be formed as follows:

C— CN concept name
*top™ universal concept (containing all other concepts)
*bottom™ empty concept
(not C) negation of a concept
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(and C, ... C) intersection of concepts

(or C, ... C) union of concepts

(some R C) existential quantification

(all R ©) value restriction

(at-least n R C) qualified at-least number restriction
(at-most n R C) qualified at-most number restriction
(exactlyn R C) qualified exact number restriction
(same-as F, F,) feature (chain) agreement

(subset R, R,) role-value map

(one-of I, ... 1) singleton set

Role terms may be formed as follows:

R — RN role name
*Etop** universal role (containing all other roles)
*bottom™** empty role
(inverse R) inverse role
(and R,..R)) intersection of roles
(or R,..R) union of roles

(compose F, ... F)  feature chain
(compose R,..R)) role composition

The concept expressions involving roles may require some explanations. The value restriction
(all R C) denotes a class of objects where all rolefillers of R belong to the concept C. Hence
(and plate (all has-shape oval)) describes plates whose shapes are oval (but the shape for a
plate must not necessarily be known). To express that a candlestick must have at least one
candle, one can use the existential role restriction (and candlestick (some has-candle candle)).
Several forms of number restrictions can be used to further restrict the role-fillers for a class
of objects. For example, (and candlestick (at-least 2 has-candle candle)(at-most 2 has-candle
candle)) describes the candlesticks with exactly two candles.

With so-called feature (chain) agreements one can describe elements of the domain which
possess the same fillers for (possibly different) feature chains. Consider the definition of a
cover which requires that plate and saucer have the same colour. This restriction could be
expressed as

(same-as (compose has-plate has-colour) (compose has-saucer has-colour))

Feature chain agreement is one of those constructs which cannot be combined with other
critical constructs without jeopardizing decidability. In particular, feature chain agreement is
part of the CLASSIC language. But feature chain agreement cannot be used in a language as
expressive as SHIQ(D,) [Baader & Hanschke 92].

Another critical construct is a role-value map (subset with role chains). In general, this
construct cannot be integrated even into the (less expressive) CLASSIC language without
losing decidability [Schmidt-Schauf3 89]. But as can be seen from the previous example and
some other examples shown below, both constructs appear to play a natural role in human
concept formation.

SHIQ(D,)  is an example of a DL language that does not only support the description of
abstract objects (in the universe) but also supports additional domains with objects for which,
for instance, an order is defined and certain algebraic operators (functions) such as addition
and multiplication are specified. An additional domain plus a set of predicates syntactically
constructed with reference to a set of predefined operators is called a concrete domain.

Concrete domains were introduced with the language ALC(D) [Baader & Hanschke 91]. The
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(D) part stands for concrete domains. The language ALC [Schmidt-Schau3 & Smolka 88]
comprises the first eight concept constructors from the grammar shown above. Another
important extension of DLs in terms of predicates over concrete domains was established by
[Baader & Hanschke 92] with the language ALCF(D) (i.e., ALC with feature agreements and
concrete domains). The integration of concrete domain predicates allows to include
predicates which are evaluated outside the description logic reasoner. Examples of concrete
domain predicates interesting for scene interpretation are inequalities over real numbers,
Allen's interval calculus [Allen 83], or the RCC-8 calculus about spatial regions [Randell et
al. 92].

At the time of this writing RACER is the only optimized DL system which supports concrete
domains with the language SHIQ(D,)". In particular, the concept language offers operators for
forming concepts based on predicates involving (in)equalities over the integers and the reals.
The following shows the syntax for concrete domain concept expressions (CDCs) which
extend the list of concept terms presented earlier. AN denotes an attribute name which
specifies an integer- or real-valued variable.

CcDC — (a AN) (an AN) attribute filler exists restriction

(no AN) no attribute filler exists restriction
(min AN integer) integer predicate exists restriction
(max AN integer)
(equal AN integer)
(> aexpr aexpr) real predicate exists restriction
(>= aexpr aexpr)
(< aexpr aexpr)
(<= aexpr aexpr)
(= aexpr aexpr)
aexpr —> AN
real
(+ aexprl aexprl*)
aexprl

aexprl — AN

real
(* real AN)

It can be seen that concrete domain predicates offer an interesting way to integrate
quantitative data from low-level vision with symbolic reasoning in high-level vision. As an
example, we could define an integer-valued attribute "size" for the number of pixels of a
plate-view and express a conceptual restriction on the size of the plate-view by means of the
concept expression:

(and (min size 13) (max size 20))

Conceptual Knowledge: The language for building concept terms as introduced above can
be used to describe subsets of the universe. Concept definitions and logical relationships
between concepts are introduced by terminological axioms (for definitions, C; is a concept
name):

(equivalent C; C,) (identity relationship between the sets associated with C; and C,)
(implies C; C;)  (subset relationship between the sets associated with C; and C,)
(disjoint C; ... C,) (the sets associated with C, and C; are disjoint)

As the examples further down show (Figs. 7 - 9), the identity relationship expressed by the
equivalence construct can be used to introduce names for interesting configurations and
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occurrences in scenes. Given that all parts and constraints on the right of an identity
relationship are true, one can conclude that the concept on the left is true, and vice versa. The
subset relationship, on the other hand, expresses a unidirectional implication and can be used
like a rule. For example, one can state that there is no dinner table without a cover:

(implies dinner-table (some has-cover cover))

Similar to concept definitions, relationships between roles can be enforced:
(equivalent R; Ry)
(implies R; R»)

In addition, in the language SHIQ(D,) roles may be declared to be features or have other
properties such as transitivity or symmetry. For historical reasons, a set of axioms is
referred to as a TBox (terminological box).

It is apparent that n-ary predicates (or in set terminology: n-ary relations) cannot be directly
represented. However, there is a well-known way around by reifying n-tuples. Let

RCCixCx..xCy

be an n-ary relation. Define C as the set of all n-tuples of R and R; as the binary relation
between an n-tuple and its ith component.

Ri Q CXCi, i=1..n

The concepts C and C; ... C, together with the roles R; ... R, represent the n-ary relation R.
Reification will be used extensively for defining concepts for high-level scene interpretation
which typically relate many components to each other.

Assertional Knowledge: So far, we have presented constructs for representing conceptual
knowledge in a TBox. DL syntax also includes constructs for representing factual
(assertional) knowledge about individuals. This body of knowledge is called an ABox. Let IN,
IN1 and IN2 be individual names, then the following constructs express concept membership
and role membership, respectively:

(instance IN C) IN is instance of C
(related IN1 IN2 R) IN1 is related to IN2 via role R

The following ABox constructs are provided for concrete domain extensions:
(constrained IN AN ON)

A concrete domain object ON is the filler for an attribute AN with respect to an individual IN.
(constraints <constraint-expr1> ... <constraint-exprN>)

Constraint expressions describe relationships between objects of a concrete domain.
A knowledge base is a pair of TBox and ABox. Practical systems such as RACER support
multiple knowledge bases. In particular, one TBox can be referred to by multiple ABoxes.

4.2 Reasoning Services of Description Logics

In addition to providing the framework for knowledge bases, a DL system offers specific
kinds of reasoning services. They are logical inferences based on the formal semantics,
similar to inferences in first-order predicate logic. From an application-oriented point of view,
the reasoning services are useful for two main purposes, (i) organizing and maintaining a
potentially large knowledge base, and (ii) providing complete and correct procedures as
building blocks for application systems.

Typical reasoning services of a DL system determine
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- whether a concept is satisfiable (i.e. consistent),

- whether a concept is subsumed by another concept,

- whether two concepts are disjoint,

- whether a TBox is coherent (i.e. contains no inconsistent concept names),

- what are the parents (children) of a concept,

- whether an ABox is consistent w.r.t. a TBox,

- whether an individual is an instance of a concept,

- what are the most-specific atomic concepts of which an individual is an instance,

- what are the instances of a concept,

- what are the individuals filling a role for a specified individual,

- what pairs of individuals are related by a specified role

- general queries for tuples of individuals mentioned in ABoxes that satisfy certain predicates
(so-called conjunctive queries).

It can be shown that all of these services can be reduced to consistency checking of an ABox
w.r.t. a TBox. Hence, in implemented DL systems, a premium is on efficient and optimised
algorithms for consistency checking. One way to do this is by model construction as this is
one way for defining an algorithm for proving satisfiability. Many DL systems are based on
model construction techniques (they use so-called tableau provers). This is interesting because
model construction has been shown to be the logical paraphrase of scene interpretation
(Section 3.3).

Usually, inference services of DL systems are based on the open-world assumption (OWA) as
opposed to the closed-world assumption (CWA). Employing the CWA means that if a fact
does not follow from a knowledge base, then the negation is assumed to hold. In consequence,
inferences can only be drawn to the extent that they are not affected by additional
information. This precludes intuitive inferences which might be useful for scene
interpretation. For example, if there is evidence for two dinner covers on a table, the
interpretation of a "dinner-for-two" cannot be logically inferred as additional covers may be
added to the knowledge base. Note however, that the DL system RACER supports a very
expressive query language for ABoxes (conjunctive queries) that also allows for CWA-based
inferences.

There are also so-called non-standard inference services which have been intoduced mainly in
support of knowledge enineering, for example providing normalised forms for concept
definitions. Some of the non-standard inferences may also be interesting for scene
interpretation, for example, the generalisation operation LCS which computes the most
specific concept subsuming several specified concepts [Cohen et al. 92]. However, due to
space restrictions we cannot report on details here.

5. Scene Interpretation with Description Logics

We now examine in detail how scene interpretation - according to the ideas and requirements
put forth in the previous sections - can be supported by knowledge representation and
reasoning with a DL system. We will first deal with representational requirements and then
with the interpretation process.

5.1 Representing Aggregates with DL Concepts

The main representational unit which has been identified for conceptual knowledge
representation is an aggregate. An aggregate expresses the properties and constraints which
make a particular set of objects worth being recognised as a whole. As shown in Section 2,
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aggregates can be described informally by frames, and it is straightforward to translate basic
frame notation into DL notation: Slot identifiers become role names, concept expressions for
slot values become role value restrictions, and the whole frame is represented as a union of
role restrictions.

The assignment of role names deserves some consideration. One might be tempted to
represent all roles connecting an aggregate to parts with a single role type "has-part" (or some
other standard name). This would ignore that, in general, parts "play different roles" in an
aggregate, and unwanted inheritance relations may result if these roles are not distinguished.
It is useful to think of an aggregate as a reified n-ary relation where the roles relate
components to corresponding positions in the n-tuples, as pointed out in Section 4.1. Hence
role names within an aggregate should in general be distinct.

On the other hand, there may be aggregates related to one another by specialisation, for
example "cover" and "breakfast-cover". Here, parts in different aggregates could play
identical roles and should have identical names so that the specialisation relation between
"cover" and "breakfast-cover" can be deduced.

In order to function within a vision system, individuals in the ABox of a DL system must
interface to lower-level vision. Mechanisms to feed concrete data into the ABox are common-
place for DL applications, so this is no serious challenge. In the framework presented in
Section 2, lower-level processes will supply data for instances of view concepts which are
modelled as parts of scene objects. Also, context information may be entered into the ABox in
terms of instantiated aggregates.

Representing the constraints section of aggregates is a more difficult issue. First, there is the
need to express the sameness (or distinctness) of properties of different parts. In the following
simple example a DL concept is defined for a cover consisting of a plate, a saucer near the
plate, and a cup on the saucer.

(equivalent cover
(and configuration
(exactly 1 cv-pl plate)
(exactly 1 cv-sc (and saucer (some near plate)))
(exactly 1 cv-cp (and cup (some on saucer)))
(subset cv-pl (compose cv-sc near))
(subset cv-sc (compose cv-cp on))))

Figure 7: DL concept for a simple cover

The requirement that the saucer is located near the same plate as referred to by the role cv-pl
is expressed by the subset construct which relates the filler of the role cv-pl and the filler of
the role chain (compose cv-sc near). The requirement that the cup is located on the same
saucer as referred to by the role cv-sc is expressed in a similar way. Concept terms involving
the subset and same-as operator as well as role and feature chains are often required in
aggregates for scene interpretation, hence these DL features are indispensable.

A special task of the constraint section of an aggregate is to express spatial and temporal
constraints. In principle, this could be done in a manner similar to the example in Figure 7
where the symbolic roles "near" and "on" do the job. For example, in a (simplified) place-
cover aggregate one could express the temporal "before" relation between the place-saucer
and the place-cup occurrences as follows:

(equivalent place-cover
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(and agent-activity
(exactly 1 pc-tpl (and transport (some tp-obj plate))
(exactly 1 pc-tp2 (and transport
(some tp-obj saucer)
(some before (and transport (some tp-obj cup)))
(exactly 1 pc-tp3 (and transport (some tp-obj cup))
(subset pc-tp3 (compose pc-tp2 before))))

Figure 8: Simplified DL concept for place-cover

This would require that qualitative temporal and spatial relations needed for conceptual
modelling (such as "on" or "before") must be instantiated bottom-up by processes outside of
the DL system. Assuming separate control structures of high-level and low-level processes,
this would lead to bottom-up computation of a potentially very large number of pairwise
spatial and temporal relations, from which only a small number may play a part in a high-
level interpretation.

By integrating quantitative computations into the high-level concepts, a more efficient and
also more transparent solution may be achieved. This can be made possible by concrete-
domain concept terms as introduced in Section 4.1. As a convenient shorthand for feature
composition we now use the concatenation operator o, for same-as we write =.

(equivalent place-cover
(and agent-activity
(exactly 1 pc-tpl (and transport (some tp-obj plate))
(exactly 1 pc-tp2 (and transport (some tp-obj saucer))
(exactly 1 pc-tp3 (and transport (some tp-obj cup))
(<= pc-tp2 o tp-end pc-tp3 o tp-end)
(= pc-beg (minim pc-tpl o tp-beg pc-tp2 o tp-beg pc-tp3 o tp-beg))
(= pc-end (maxim pc-tpl o tp-end pc-tp2 o tp-end pc-tp3 o tp-end))
(<= (- pc-end pc-beg) max-duration))))

Figure 9: DL concept of place-cover with temporal constraints

Four temporal constraints are specified:

(1) The end of the place-saucer occurrence must be before the end of the place-cup
occurrence.

(i) The begin of the place-cover occurrence is the minimum of the begins of its constituent
occurrences.

(ii1) The end of the place-cover occurrence is the maximum of the ends of its constituent
occurrences.

(iv) The overall duration must not exceed a given maximal duration.

The constraints involve attributes relating an occurrence to its begin and end time, expressed
in terms of values of the concrete domain of integers. Different from the first formulation with
qualitative roles, the content of the constraints is now part of high-level concepts. This opens
up the way for flexible interpretation strategies where constraints are propagated in order to
restrict possible instantiations at choice points. In particular, constraints pertaining to
hypothesised objects without visual evidence can be used to constrain lower-level processes.
For example, if evidence for a plate has led to instantiating a cover, spatial constraints
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between plate and missing cover parts, such as cup and saucer, can be exploited for top-down
guided image analysis at the constrained locations. Our approach differs from temporal or
spatial logic approaches in that it does not attempt to integrate inherent properties of space
and time into the symbolic realm, but rather exploits the computational facilities of a metric
space. The need for a metric space between signal and symbol processing has also been
pointed out in [Gérdenfors 00].

Note that the minim and maxim operators are not part of a regular DL syntax. But the
intended semantics can also be expressed by a disjunction of inequalities between pairs of
variables.

In summary, we have shown that the basic structure of an aggregate as introduced in Section 2
can be modelled by a DL system using the following scheme:

(equivalent <concept-name>
and <parent-conceptl> ... <parent-conceptN>
p p p p
(<number-restriction1> <role-namel> <part-concept1>)

(<number-restrictionK> <role-nameK> <part-conceptK>)
<constraints between parts>))

Currently, the syntax for constraint expressions is not sufficiently developed in RACER to
allow concise and intuitive formulations. But from the theoretical foundations of DLs one can
conclude that the requirements for aggregate models can be met at least in principle.

5.2 Supporting the Scene Interpretation Process with a DL System

Support of the interpretation process has already been an important aspect for choosing
particular constraint representations in the previous subsection. We now examine in more
generality how the interpretation process can be supported by reasoning services of a DL
system. As pointed out earlier, the use of DL reasoning services would offer two main
advantages:

1. The formal semantics of a DL language helps to avoid misunderstandings which often arise
if knowledge bases and inference procedures are constructed intuitively.

2. Correct inference procedures may obviate the need for developing parts of application-
specific programs.

Looking at the list of services presented in Section 4.2 we see that the first group deals with
concept terms only and is mainly useful for the construction and maintenance of a knowledge
base. The key inference service of this group is a satisfiability test from which all other
concept-related services can be derived, for example concept subsumption which tests
whether one concept is more general than another, and concept classification which
determines the parent concepts for a given concept term.

The second group deals with ABoxes and TBoxes together and hence is more directly
relevant for scene interpretation. It should be clear from the preceding that the TBox of a DL
takes the role of the conceptual knowledge base and the ABox of a container for concrete
scene data. Referring to Fig. 2, the ABox contains (i) visual evidence in terms of the GSD, (i1)
context information in terms of partially specified concept instances, and (iii) the high-level
scene description generated by the interpretation process. A DL system always checks
consistency of the ABox w.r.t. the TBox, hence the ABox formally corresponds to a (partial)
model of the TBox and - given its role in the scene interpretation framework - is a (partial)
scene interpretation. We conclude that DL consistency checking can be used to ensure
consistent scene interpretations.
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Another key inference service is the instance check (called individual-instance? in RACER)
which determines whether an individual is an instance of a given concept w.r.t. the current
ABox and the TBox. Several other services may be derived from instance checking, for
example ABox realisation which checks the ABox for consistency and computes the most
specific concepts for each individual.

On a first glance, instance checking appears to be an inference service which is immediately
applicable for scene interpretation. Given an image segment represented as an individual in an
ABox, this service would deliver the most specific concept applicable to this individual. But
this will not work in general because of two main reasons:

(1) Scene interpretation (and image interpretation in general) cannot be solely modelled as
deduction. It is well-known that image evidence is generally not conclusive regarding a
classification because of the many-to-one nature of the imaging process. Hence an inference
service which infers a class membership cannot solve the full interpretation problem. As
elaborated earlier, it appears to be more adequate to model image interpretation as a (logical)
model-construction task.

(i1) Individuals do not yet exist for aggregates which must be discovered. Hence instance
checking cannot be applied. A work-around would call for the creation of tentative
individuals for possible aggregate concepts. However, this would turn interpretation into a
top-down trial-and-error procedure which cannot be efficient in general.

We now turn to the interpretation steps identified in Section 3. The first kind is aggregate
instantiation, also known as part-whole reasoning. Given an individual in an ABox, what are
the possible aggregates supported by this individual, and which aggregate should be chosen
first? More formally, which aggregate concepts require a given individual as a role filler?
Assuming that aggregates are modelled by DL concepts as explicated above, it is possible to
identify the roles which connect aggregates to parts, and to identify the concept terms which
describe the respective role fillers. Hence what remains to be done is instance checking of the
individual against each concept term. This can be done with a readily available reasoning
service. A concrete solution for part-whole reasoning in RACER will be presented in the next
subsection.

However, no support can be given for the strategic decision which aggregate - out of possibly
many candidates - should be tried first. This requires a preference measure which is outside
the scope of current DL systems. It must be expected that uneducated choices will lead to
backtracking and hence inefficiency of the interpretation process. The development of a
preference measure for part-whole reasoning must be considered a prerequisite for the
employment of DL systems in practical scene interpretation applications.

The second kind of interpretation step required for scene interpretation is instance
specialisation. One of the main advantages of a DL system is the specialisation network
automatically generated for all concept definitions. Hence all specialisations of a given
(atomic) concept can be efficiently retrieved. To compute the possible specialisations of an
individual, the most specific atomic concept subsuming this individual can be determined by a
service called instance classification (in RACER individual-direct-types), and then by
consulting the specialisation hierarchy. In general, there will be alternative choices, and it is
useful to have guidance for a "best" choice. As with part-whole reasoning, such guidance is
outside the sope of current DL systems.

Instance expansion is a step applied to instantiated aggregates and causing its parts to be
instantiated. This operation is completely determined by the concept definition of the
aggregate, and extending an existing DL system to include this new service should be possible
without serious problems.
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The fourth kind of interpretation step needed for scene interpretation is instance merging. As
pointed out earlier, this step is typically required when a top-down generated hypothetical
instance has to be connected with bottom-up evidence. Formally, the reasoning service
required here is to determine whether it is consistent with the TBox and the current ABox to
unify the descriptions of two individuals. Unification requires specializing the role fillers of
the individuals until the most general common representation is found. This must be applied
recursively to the instances of parts of aggregates and terminates at the level of instances of
primitive concepts. It will be shown below for the RACER system how instance merging can
be supported by RACER query services.

As observed for other kinds of interpretation steps, DL systems do not offer guidance when
alternative choices are possible and an order of preference becomes important.

In summary, the logical structure of DL concepts can be exploited for constraining possible
choices of interpretation steps to those which lead to a logical model, i.e. to a description
consistent with visual evidence, context and conceptual knowledge. But in general, there are
many models, and degrees of freedom are left open regarding choices among alternatives. The
decisive question is which model to prefer in the face of several possiblities. From an answer
to this question one can expect criteria regarding the preferred order for interpretation steps
and other choices. Our understanding of vision suggests that these choices are critical for a
practically useful performance of vision systems.

5.3 Scene Interpretation Using RACER’s Query Language

In this subsection we examine how scene interpretation can be implemented using the DL
system RACER [Haarslev & Moller 01]. RACER implements the highly expressive DL called
ALCQHIg+(D") according to the established nomenclature (each letter stands for a particular
syntactic feature, see [Baader et al. 03] for details). The same language is also called
SHIQ(D,) in other work [Horrocks et al. 00].

RACER offers a large number of inference services, including all those mentioned in Section
4.2. Recently, the RACER query language RQL has been added [Haarslev & Moller 04]
providing an extension to existing ABox query services in terms of query expressions with
variables. In the following we will show how RQL can be conveniently used to support the
scene interpretation process.

The retrieval operator of RQL has the general format
(retrieve <list-of-objects> <query-body>)

where the list-of-objects may contain variables (beginning with "?") and individuals. The
query-body is essentially a boolean combination of possible ABox entries with individuals
replaced by variables, augmented by some additional constructs. A query can be seen as a
template which is applied to the ABox and delivers all variable bindings satisfying the
template.

As an example, let us assume that the current ABox contains various plates, cups and saucers.
The following query will retrieve all combinations of parts which satisfy the aggregate
definition of a cover given in Fig. 7.

(retrieve (7x 7y 7z) (and (?x plate)
(?y saucer)
(?7z cup)
(7x ?y near)
(% 7y on)))
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Note that the same-as relation can be expressed by using the same variable name. The result
of the query is a list of all possible bindings of the variables to individuals of the ABox. For
the fictitious ABox of this example, the result could be

(((?x platel) (?y saucer3) (?z cup2))
((?x plate4) (?y saucer2) (?z cup4)))

indicating two combinations of plate, saucer and cup which satisfy the constraints of the cover
definition.

This opens up an interesting way to support part-whole reasoning for scene interpretation. The
query mechanism can be used to efficiently retrieve combinations of ABox individuals which
justify the assertion of an aggregate instance. Furthermore, such queries can be automatically
generated from the aggregate definitions. To establish an aggregate for each set of bindings
retrieved by the query, a new individual must be entered into the ABox as an instance of the
aggregate concept and related to the retrieved individuals via the roles of the aggregate
concept. For the first set of bindings shown above, the new ABox entries would be:

(instance coverl cover)
(related coverl platel cv-pl)
(related coverl saucer3 cv-sc)
(related coverl cup2 cv-cp)

As a convenient service of the DL system, the new individual coverl will be automatically
classified w.r.t. all TBox concepts and implicit subsumption by other concepts - e.g. by
specialisations of cover - will be discovered.

In order to be able to assert aggregate instances also in cases of partial evidence, it is
necessary to provide "partial queries" for subsets of parts, in addition to the "complete query"
for all parts of the aggregate. For the cover in our example, one could generate queries
involving any two of the three parts of a cover. For aggregates with many parts, the number of
possible queries could become very large, however, and additional considerations are required
to control query invocation. This points to the need of a preference measure based on the
expected success of a query. This is the subject of the next section.

6. Preferred Models for Scene Interpretation

It has been shown at several points in the previous sections that stepwise interpretation needs
guidance for selecting the most "plausible" or preferred partial interpretation among
alternatives. In Al, various approaches have been developed to augment the knowledge base
with preference rules of some sort[Russell & Norvig 03]. In earlier work we have explored
extensions of DLs using default rules [Mdller et al. 99]. The main drawback of rule-based
approaches is the need to handcraft the rules, so it is worthwhile to look for preference
measures which can be generated from general principles or can possibly be learnt. This has
led us to investigate probabilistic approaches and ways to combine probabilistic information
with a structured knowledge base. The basic idea is to compare alternative interpretation steps
by the probabilities of the resulting (partial) interpretations given current evidence, and to
choose the interpretation step which maximises this probability.

Intuitively, the probability of a particular scene follows from statistics about scenes in a given
domain, and it is not implausible to assume that such statistics can be obtained, at least
qualitatively. For example, the statistics would tell that in a table-laying scene a saucer is
more likely to be part of a cover than part of a candlestick. Similarly, typical locations of
cutlery relative to a plate could be distinguished from less typical locations.
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Let us go one step further and assume that the cases giving rise to the statistics are available in
a case-base. Then a partial interpretation can be viewed as a set of assertions which matches a
subset of the cases in the case-base. Turned into a query of the RACER query language RQL,
the partial interpretation would retrieve this subset from the case-base. Hence, the probability
of a partial interpretation can be viewed as the fraction of cases matching the interpretation.
Furthermore, preferring an interpretation step which leads to a most probable interpretation
means preferring the interpretation which is least restrictive regarding the number of
remaining cases. Note that this is a strategy of least commitment.

Different from approaches which try to model the space of interpretations by a Bayesian Net
[Binford 89, Rimey 93] with aggregate nodes "causing" part nodes, we model a scene
probabilistically at the level of primitive visual events provided by the GSD. Descriptions at
higher abstraction levels are assigned probabilities according to the constituting primitive
events. This motivates the following probabilistic structure for aggregates:

b=f(aja; ... an)

|

P(AiA; ... An)

Figure 10: Probabilistic structure of an aggregate. The upper node, described by a JPD P(B),
represents export features. The lower nodes, described by a JPD P(A A, ... Ax), represent
import features of the parts. fis a deterministic mapping between import and export features.

Each aggregate is described probabilistically in terms of a joint probability distribution (JPD)
over part features ("import features") and a JPD over aggregate features ("export features")
which are derived from the part features (Fig. 10). For example, the aggregate "cover" is
described probabilistically by a JPD over part features such as location, size and colour, and a
JPD over the export features of a cover, such as size and location of an enclosing rectangle.
The JPDs are fragments as each JPD only represents probabilities for the subspace of features
for positive occurrences. So if the aggregate in Fig. 10 describes a cover, then P(B) is actually
the fragment describing P(B, cover = yes). This is equivalent to specifying the prior P(cover =
yes) and the conditional P(B | cover = yes). Similar structures have been proposed in [Laskey
& al. 01] and [Gyftodimos & Flach 02].

We pose no particular independency assumptions about part features within a single
aggregate. However it is assumed that dependencies between different aggregates can be
modelled exclusively with export features which then describe the aggregates as parts in a
higher-level aggregate. For example, a "romantic-cover" could be defined as an aggregate
consisting of a cover and a candlestick. Then it is assumed that the export features of cover
suffice to model dependencies between the candlestick and all parts of the cover.

As a consequence, the probabilistic dependencies between aggregates remain tree-shaped
when partial interpretations are constructed from several aggregates. Within an aggregate,
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however, the JPD may not always be representable by a tree-shaped Bayes Net, as typical
dependencies in our table-setting scenario show. This increases the computational complexity,
but it is limited by the number of parts and features combined in one aggregate.

To compute a measure of preference for an interpretation decision, for example of a part-
whole-reasoning step, the probabilities of competing choices given evidence and context
information are computed by a propagation algorithm similar to inferencing in a tree-shaped
Bayesian Network [Pearl 88] except of the structures within aggregates. It is beyond the scope
of this contribution to present the inferencing procedure in detail. Instead, we will illustrate a
typical preference computation by an example.

Consider a scene with a plate and a saucer as visual evidence, and context knowledge to the
effect that a lonely-dinner table has been laid (Fig. 11). Let us assume that the current
interpretation step is to assign the saucer either to the aggregate "cover" or the aggregate
"candlestick". Hence the probabilities of the two alternatives must be compared:

P(altl) = P(cv-saucer = saucer | lonely-dinner=yes, plate-view, saucer-view)
P(alt2) = P(cs-saucer = saucer | lonely-dinner=yes, plate-view, saucer-view)

Depending on the visual evidence, in particular on the locations of plate and saucer, and the
JPD relating cover and candlestick in the aggregate cover, one alternative will be more likely
than the other and determine the interpretation step.

sLCINE

lonelv-dinmes cluttered-tahle

candlestick

/T

IL"".'-FI]H.lL' =W-LUp Ch=hadllICCT =l LICET cs-candle

|

Eel LT

plate-view || phys-plate saucer-view || phys-saucer

CLVETD

Figure 11: Partial interpretation with two choices for assigning the saucer to an aggregate.
Dotted lines denote specialisations, solid lines parts.

Summarising this section, we have sketched a probabilistic inference scheme which provides
preferences for choices left open by consistency-based interpretation. While probabilistic
inferencing for scene interpretation has been proposed before, the new aspect in this research
is the combination of probabilistic information with logic-based knowledge representation.
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7. Conclusions and Future Research

We have presented a conceptual framework for knowledge-based scene interpretation and
examined how it could be realised with a DL system. It has been shown that the
representational requirements can be met by a DL system of the type ALCF(D) which offers
feature chains, the same-as construct, and a concrete domain extension for the representation
of temporal and spatial constraints. Unfortunately there are not yet operational systems with
these capabilities.

It has also been shown that the knowledge-based framework leaves several degrees of
freedom regarding the selection of possible interpretations. A probabilistic approach has been
sketched which provides guidance by preferring the most probable interpretation at choice
points in the interpretation process. Further research on combining the probabilistic
information with the conceptual units of the knowledge representation system is in progress.

In order to be able to carry out experiments with DL-based scene interpretation, it is
envisaged to modify the existing description logic system RACER.
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