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Abstract

Language is a natural medium for communicating the results of high-level image se-
quence interpretation. This report investigates events as conceptual units mediating
between vision and natural language. Events are similar to motion concepts used in
earlier approaches to image sequence interpretation, except that they are linked to
the deep case structure of corresponding natural language utterances. Several
representational and procedural requirements are discussed, which follow from the
communication situation. The requirements are compared with the framework for
metion understanding developed by Tsotsos.



NATURAL-LANGUAGE ORIENTED EVENT MODELS FOR
IMAGE SEQUENCE INTERPRETATION: THE ISSUES

Bernd Neumann* and Hans-Joachim Novak*

Department of Computer Science
niversity of Toronto, Canada

1. miroduction

This report is concerned with high-level interpretation of image sequences containing
motion. By this we mean the recognition of concepts which go beyond the traditional
paradigm of object recognition (location, shape description, classification and
identification of individual objects in a still-frame), in particular we are concerned
with the recognition of temporal concepts like object motion. Clearly, an interpreta-
tion of a scene with motion would be incomplete in all but exceptional cases, if object
descriptions were given only for individual instances of time. We would like a vision
system to interpret a time-varying scene in terms of meaningful concepts extending
over time.

While the need for higher-level conceptual units appears to be indisputable, it is not at
all clear what these should be. Beginning with basic concepts of change (e.g. shrink,
translate) one could proceed to recognize composite motion patterns (e.g. swing, roll).
In addition to general purpose concepts one might try to recognize domain specific
motion, e.g. overtaking cars in a traffic scene, a cell dividing under the microscope, a
heart beat anomaly in an X-ray sequence. Yet concepts like these seem to be only at
the beginning of still higher levels of interpretation. If a vision system is ever to rival
human capabilities of interpreting silent movies {which are no more than image se-
quences), it must be able to assign significance to motion in terms of causality, inten-
tionality, social acceptability, etc. For example, if in a scene person A inserts a knife
into person B, the interpretation should not be homomorphic to person C inserting a
spoon into pudding. Similarly, if in a traffic scene a car yields to another car, the
danger of collision should somehow be explicit. One might argue that high-level con-
cepts like "yield" do not necessarily constitute a vision concept since much of the
significance is not "observable” but derives from general knowledge about people,
their typical behavior, etc. On the other hand, a vision sysiem may very well be given
the task of finding a "yield" situation much like finding a particular shape. Hence,
when thinking about high-level vision it does not seem wise to restrict oneself to the
more readily observable concepts like "overtake".

There have been only few approaches to high-level interpretation of image sequences
so far. Badler [BADLER 75] investigated the recognition of motion concepts like
"swing"” and "bounce" as well as associated adverbials. As far as the introduction of
conceptual units is concerned, his approach is noteworthy for the taxonomical
representation of motion concepts (using a specialization hierarchy) as well as their
orientation towards natural-language (using verbs of motion and adverbials). The werk
of Okada [OKADA 80] is similar in the respect that he also considers a conceptual de-
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composition of motion verbs. His primitives, however, are not the basis of a taxonomy
but constitute features for pattern recognition. Tsotsos refines and extends the work
of Badler in several ways [ TSOTSOS 81]. He creates a framework of general motion con-
cepts (including e.g. lengthen, area-expand, rotate) and defines particular meotions of
his domain of interest (left ventricular heart motion) by using composition and con-
straints on more general motion types. Tsotsos is not concerned with verbalization.
Most of his concepts, however, correspond to certain natural-language notions of
change, some of which being less natural than others (e.g. "posterior-rapid-fill", which
is a special leftventricular motion).

Finally, the work of Marburger and Novak [MARBURGER and NOVAK 81] gives an exam-
ple of strictly natural-language oriented motion recognition. They developed a system
which answers decision questions on simple motions in a traffic scene, e.g. "Did the
yellow VW turn off Schlueterstreet into Hartungstreet?". Motion concepts are
represented in terms of top-down recognition procedures attached to a verb's case
frame. Furthermore, the deep cases extracted from the question (e.g. source and
goal) can be used as procedure parameters.

This report describes work on project NAOS which has grown out of the decision-
question scheme of Marburger and Novak, and aims at bottom-up verbalization as well
as top-down question answering for the domain of traffic scenes. In spite of the com-
mitment to natural-language communication, a major concern of NAOS is high-level
vision. Scene data are provided in terms of an image sequence interpreted up to the
level of object recognition. Hence for each instance of a traffic scene we assurne com-
plete knowledge about class, identity, 3D-shape and 3D-location of every object which
might be talked about. This representation is termed "geometrical scene description"”
(GSD). The first step, then, in obtaining a natural-language description is the recogni-
tion of higher-level concepts from the GSD, which is a vision task. From this we instan-
tiate case frames for simple natural-language utterances. Selecting from instantiated
case frames we finally obtain a natural-language description of the scene. Question
answering is viewed as a top-down process constraining the steps outlined above.

From this introductory discussion one may rightly conclude that the goals of NAOS are
similar to previous work, in particular to the work of Tsotsos, while simultaneously in-
troducing new elements in terms of a different domain (traffic scenes), a natural-
language interface, and the necessity of both bottom-up and top-down processing. Op-
portunity and wisdom led us to study these similarities and differences in some depth
while still in the design phase of NAOS. The results of this study are reported in the fol-
lowing sections.

First, we shall investigate the consequences of our natural-language commitment.
"Event models" are introduced as conceptual units tailored around verbs for traffic
scene description. Many event models are conceptually not much different from the
motion concepts considered elsewhere, but some verbs necessitate new methods of
representation. Event models must also identify components corresponding to the
verb's deep cases. Questions to the system may provide constraints on the event type
and on these components. Thus dynamic (i.e. context dependent) constraints are in-
troduced into event models which, in turn, affect the control structure. Finally,
several more subtle requirements of natural-language communication are shown to be
also connected to control structure issues.

In section 3 we discuss possibilities of realizing NAOS using the framework of the AL-
VEN system developed by Tsotsos. In particular, we compare representational and con-
trol flow requirements. While ALVEN's representational formalism is a demonstrably
elegant tool for encoding event models, major difficulties arise when applying ALVEN's
interpretation strategy to the NAOS problem domain. Both, the differences in the
respective domains and the requirement for a question-dependent control flow, let
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ALVEN's interpretation strategy appear unsuited for NAOS.
2. Talking About Events

In the previous section we tried to provide some motivation for wondering about high-
level conceptual units in a vision system. Several approaches have been sketched,
ranging from taxonomically oriented motion concepts to more pragmatically oriented
conceptual units. We now investigate the approach followed in NAOS, where the con-
ceptual units - called event models in NAOS - are required to link up with a natural-
language system. The idea is not new as has been shown above. The consequences of
following this idea up, however, have not yet been analyzed in prior work.

Verb-centered event madels

Given a natural-language utterance about an event, many characteristic features of
the event are usually captured by the verb. In fact, most of the motion concepts men-
tioned so far have been referred to using verbs. Other components of the utterance,
e.g. adverbials, modifiers, tense, agent and other case specifications, seem to play
only subordinate roles, reflecting certain aspects of the event. Hence it seems useful
to organize event models around verbs. Whenever a particular event model is instan-
tiated, a natural-language utterance involving the corresponding verb describes this
event. One may further differentiate event models according to combinations with ad-
verbials, e.g. "backward swing”, “forward swing", as in [BADLER 75]. In fact, many
verb-adverb combinations in English translate into composite verbs in German. Once
event models are required to represent verb meaning, their structure and properties
are no longer free to choose. Given a certain verb vocabulary, the design of event
models essentially follows from studying the semantics of these verbs. This has been
done for the vocabulary used in NAOS, which includes some 70 verbs for describing
locomotion in street traffic [NOVAK 82]. Several observations can be made.

(i) Verbs describe interval events and point events.

Interval events extend over a definite period of time. They can be thought of as begin-
ning at a certain instance and ending at a later instance. Examples are "walk", ""over-
take"”, "cross”. It is useful to distinguish the subclass of durative interval events
(similar to the linguistic notion in [MILLER/JOHNSON-LAIRD 75]). An event (over a cer-
tain interval) is durative if any subinterval is also such an event. "Walk", "accelerate"”,
"stand" are all durative. Durativity can be exploited during the recognition process,
where alternate instantiations of interval boundaries may be required.

Point events (elsewhere called "instantaneous” events) usually mark the transition
between two interval events. For example, "reach x" happens when "approach x" ends
and "be at x" begins. Although it has been suggested to model point events as extend-
ing over some small time interval, we feel that conceptually only a time peint is in-
volved and event models should be structured accordingly.

(ii) There may not be verbs for conceptually interesting events.
Natural language has not developed to be easily embedded in a conceptual taxonomy
as used, for example, by Tsotsos. When trying to relate verb oriented event models to

each other using the is-a and part-of relationship, one frequently stumbles upon con-
cepts which are taxonomically useful but do not correspond to any particular verb.
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Consider the is-a parent of "walk" and "drive”, which might be called "locomove".
"Move" would be too general. Many other verbs involve "locomove" as either part-of or
is-a parent, e.g. "overtake”, "stop", "speed”, etc., hence "locomove” is a useful concep-
tual unit Similarly, many geometrical concepts like "rotate" or "translate” do not be-
long to the natural vocabulary for scene description. In NAOS we take a hybrid ap-
proach by having both, verb-oriented and "conceptual” event models.

(iii) Some verbs depend not only on scene data.

There are several verbs used in every-day language for traffic scene description, which
express more than can actually be observed in the scene. We shall first give some ex-
armples and then suggest an approach to deal with verbs of this kind. Consider the verb
“speed”. It is natural to model speeding events as locomotions with a velocity exceed-
ing a certain threshold. Unfortunately there does not seem to be an easy way of speci-
fying this threshold. It depends on the agent (pedestrian, car, wheelchair) as well as
many environmental facters (local speed limits, type of road, daytime, traffic density,
etc.). Clearly. in order to recognize a "speed” event one has to judge "the appropriate-
ness” of the agent's velocity Another example is “continue walking” (which translates
into a single verb in German). One of its meanings denotes an uninterrupted walk
where stopping had been expected, e.g. "he continued walking in spite of the red
light”. To recognize such an event, one obviously has to generate expectations about
the development of the scene. Finally, consider "avoid" or "yield". These verbs involve
judgement of intentions based on necessarily indirect evidence. For example, if car 1
stops at an intersection, then car 2 passes in front, and then car 1 continues, it is like-
ly to be a "yield". If after stopping the driver gets out to mail a letter, it probably is
not.

The examples demonstrate that the event models of some verbs require interaction
with general knowledge which can not be justly considered part of the verb semantics.
Such event models can only be instantiated after certain common-sense reasoning on
the scene data has been performed. Thus a departure from the traditional paradigm of
pattern matching and constraint satisfaction seems to be indicated. In NAOS we plan
to use an approximative construction where ezpectations about the development of
the scene are generated as a substitute for reasoning. Expectations can be provided
without resorting to a large body of general knowledge.

Verb case frame instantiction

The deep case frame of a verb is a useful interface to a natural-language system.
Giver an instantiated case frame, simple utterances can be produced. Conversely,
given an utterance, a case frame can be derived and used to constrain the search for
events in a scene [MARBURGER et al. 81]. How can event models be linked to the
corresponding case frames? As it turns out, verb-oriented event models can be formu-
lated in such a way that certain token variables correspond to the deep cases of the
respective verb. For example, the object of a scene for which a "walk" event can be in-
stantiated will obviously also fill the agent slot of the "walk" case frame. Similarly,
the object's location at the beginning of the event is the source case. (A verbalization
of the - abstract - source case will usually require a nearby object which specifies this
location. This is not part of the event model). Also, start and end time of an interval
event or the instance of time of a point event play a role quite analogous to the other
deep cases. The corresponding token variables of the event model can be directly
used for the selection of tense and time adverbials. In the following example we
present a simplified version of the event model for "walk" together with an associated
case frame to illustrate these points. All numbered identifiers denote token variables
which must be instantiated. The @-operator (introduced by Tsotsos) selects a time
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point or time interval for evaluation.

(EVENT-MODEL E-WALK
(PARAMETERS OBJ1 TIME1 TIMEZ)

(KERNEL
(INSTANCE OBJ1 PEDESTRIAN)
(LOCOMOVE OBJ1)@(TIME! TIME2))

(C-FRAME C-WALK))

(CASE-FRAME C-WALK

(CASES
(VERB WALK)
(AGENT OBJ1)
(START TIME1)
(END TIMER)
(SOURCE OBJ1@TIME1)
(GOAL OBJ1@TIMER)
(PATH OBJ1@TIMES
(WITHIN TIME3 (TIME1 TIMEZ)))
(LOCATIVE OBJ1@(TIME! TIMEZ)))

(E-MODEL E-WALK))

Question answering

While in the case of bottom-up scene description the process of verbalization can be
separated from event recognition, this is not desirable for question-answering. Ques-
tions may provide strong additional constraints as to which events should be recog-
nized. Consider

"Did the yellow VW stop in Schlueterstreet?" (1)

Clearly, we are interested only in (a) stopping-events of (b) certain agents and (c) in a
certain location. The constraints (b) and (c) issued by the parser are of the same na-
ture as those in the event models, except that they are dynamic and combine with an
event model to define a dynamic event madel. The dynamic quality of event models
and as such of high-level vision models has not become apparent in prior work, which
emphasized bottom-up recognition of certain fixed motion cone epts.

Apart of representational requirements dynamic event models call for a flexible con-
trol structure of the recognition process. Consider the following variation of the above
example:

"Did a car stop in front of the post office?”  (2)

The order of evaluating the constraints arising from this question should be quite
different from the former example, since possible stopping events are narrowed down
most effectively by the agent specification “'the yellow VW" in question (1) and by the
locative "the post office” in question (2). Preliminary investigations indicate that a
promising (possibly suboptimal) order of evaluation can indeed be determined by a
sufficiently simple algorithm.



The communication fask

Verbalization and question answering are usually part of a communication situation
and as such governed by certain conventions, some of which also affect the underlying
event recognition task. One such convention concerns the negation of decision ques-
tions. Tt is often desirable to provide more information than a simple "no". For exam-
ple, if question (1) must be negated, several extended answers are conceivable (all as-
suming the same scene):

"No, the yellow VW drove through Schlueterstreet” (3)
"No, the yellow VW stopped in Hartungstreet" (4)
"No, the black Mercedes stopped in Schlueterstreet” (5)

Any one of these answers is generated by relaxing one or more of the constraints
which caused the failing. It is clearly the task of the recognition process to instan-
tiate these relaxed event mocdels. It can also be observed that the preoper answer - in
this case probably {4) - is easily achieved if constraint evaluation proceeds in a partic-
ular order. Fortunately (and curiously) these order requirements seem to conform
with those minimizing computational cost.

There are several more aspects to the communication situation which affect event
recognition. For one, the desired level of detail of a scene description bears on the
type of events which one should consider in the recognition phase. It is not yet clear,
however, how "detailledness” of an event model could be determined. Similarly, dialo-
gue facus restricts or favours event recognition of certain parts or certain aspects of
a scene. Also, expectations raised in the course of the dialogue can cause instantia-
tion of expectation-dependent events discussed earlier, e.g. "continue walking"”. These
are, of course, subtleties conipared with the central task of recognizing high-level vi-
sion concepts. We believe, however, that awareness of these subtleties can improve
system architecture even if simplified goals have to be pursued for some time.

3. Comparison With ALVEN

In the previous section we have analyzed the task of NAOS: verbalizing events and
answering questions for the domain of traffic scenes. Several problems and require-
ments arising from the natural language aspect have been discussed, this being the
major difierence to earlier work in high-level vision. We now turn to Tsotsos' system
ALVEN which may be considered the most advanced system for high-level motion
recognition existing today, and examine to which extent the formalisms and the
framework of ALVEN can be used ir NAOS.

Overview of ALVEN

ALVEN is an expert vision system for left ventricular heart motion [TSOTSOS 80, TSOT-
SOS 81, TSOTSOS et al. 81]. Its input are X-ray image sequences which display heart
motion in terms of displacements of markers implanted into a patient’s heart wail. AL-
VEN encompasses a framework for general motion recognition and a knowledge base
containing models for normal heart motion as well as several distinct anomalities.
Models are embedded in a part-of and is-a hierarchy and hence are ultimately based
on motion primitives which can be directly instantiated from the data. There are also
exception links connecting models which differ with respect to a certain property.

The interpretation process is essentially bottom-up except of a certain amount of top-
down guidance provided by expectations about marker positions. Hypothesis genera-

.



tion makes heavy use of the taxonomical relationships between motion concepts.
Given evidence for a certain hypothesis A, various hypotheses conceptually close to A
are also examined: specializations of A along is-a links, hypotheses which contain A as
a part, hypotheses which follow in temporal order, and hypotheses which are accessed
via exceptions in case A fails. Certainty values determine doom or eventually success
of hypotheses.

We now compare ALVEN's representation and control flow with the requirements of
NAOS in some more detail,

Representational /ssues

ALVEN's motion concepts are represented using a frame notation based on PSN
(LEVESQUE and MYLOPOULOS 78]. PSN is a general tool for knowledge representation,
hence it is not surprising that the conceptual entities of NAOS can be represented us-
ing the same formalism NAOS requires some frame types, however, which do not ce-
cur in this form in ALVEN. The following is a synopsis of the respective types of both
systems (ignering is-a specializations):

ALVEN NAOS
PHYSICAL OBJECT PHYSICAL OBJECT
(RD-centroids of markers) (3D position and orientation, color

and 3D shape)

MOTION MOTION
(conceptual motion frame, (same as left)

constraints on object trajec-
tories, taxonomical relations)

- INTERVAL EVENT
(MOTION plus link to CASE-FRAME,
common-sense interface)

POINT-EVENT
(sequence of two MOTIONS, otherwise
same as INTERVAL-EVENT)

CASE-FRAME
(deep case structure of natural
language utterance, link to EVENT
frame)

The coexistence of motion concepts (MOTION) and event models (INTERVAL-EVENT and
POINT-EVENT) in NACS has been explained in section 2: motion concepts are taxonomi-
cally motivated conceptual units while event models owe their existence to
corresponding verbs.

In ALVEN motion frames actually express more than constraints to be satisfied for in-
stantiation. They also contain information directing the flow of control along various
paths of the hierarchies. This aspect of the representational formalism cannot be car-
ried over to NAOS, however. Commonalities end where matters of control flow begin.



Contral Structure

ALVEN's control structure, i.e. the sequencing of computations to oblain an interpre-
tation of the data, has characteristics unlike other major interpretation systems, e.g.
HEARSAY-II or ACRONYM. The most prominent feature is hypothesis activation along
is-a, part-of, temporal-next, and exception links between motion frames. This appears
to be a very reasonable way for propagating and accumulating evidence in the absence
of tep-down constraints. It is not adapted, however, to highly restricted tasks like
question answering.

Another characteristic is the strict progression along the time axis. At any instance of
time, hypotheses are based only on data up to this time. Furthermore, future evidence
cannot activate hypotheses retroactively. Hence a hypothesis pertaining to motion
over a certain interval must be activated right at the beginning of the interval. The
main advantages of this strategy seem to be, first, that backtracking can be complete-
ly avoided, second, that expectations can be generated in a unified way, and third, that
the strategy works well for ALVEN's problem domain.

A look at the problem domain of NAOS, however, forecasts difficulties with ALVEN's
"progressive” interpretation strategy. For many events in a traflic scene evidence may
be very weak for a long period following the beginning of the event interval. For exam-
ple, if a moving car is observed, a very large number of events may yet develop, e.g.
"stop", "drive”, "overtake”, "turn-off”, "arrive”, etc. Evidence to the contrary may be-
come available only very late: if "stop"” ever fails, it fails at the end of the sequence.
We do not suggest to hold back on hypothesis activation - Tsotsos' scheme seems to be
very reascnable in this respect. Faced with many weak hypotheses, however, one
should try to disprove them earlier. This can only be achieved by examining discrim-
inating constraints regardless of the temporal order, thus abandoning progressive in-
terpretation. For example, if an "overtake" hypothesis has been activated, the follow-
ing constraints should be evaluated:

(LOCOMOVE OBJ1) @(TIME? TIMER)
(LOCOMOVE 0BJ2) @(TIME1 TIMER)
(BEHIND OBJ1 OBJ2) @TIME1

(BEHIND OBJ2 OBJ3) @TIME2

(WITHIN (TIME3 TIME4) (TIME1 TIMER))
(BESIDE OBJ1 OBJ2) ®(TIME3 TIME4)
(APPROACH OBJ1 0OBJ2Z) @(TIME1 TIMES)
(RECEDE OBJ1 OBJ2) @(TIME4 TIME2)

Start time and end time of the overtake event {as well as other time variables) are
governed by linear inequalities arising from the constraints. They can be effectively
determined using linear programming methods [MALIK and BINFORD 82].

A flexible order of evaluation for constraints within a hypothesis is certainly necessary
if the control flow requirements discussed in section 2 are to be met. Due to the
dynamic nature of constraints arising from questions there is no single best order
which could be fixed once and for all. Note also the order requirements connected with
answer generation for decision questions.

4. Conclusions

Language is a natural medium for communicating high-level concepts recognized in
an image sequence. To this end representational tools and control strategies have to
be developed which meet the demands of both, high-level vision and natural language
communication. We have approached this task from the vision end, extending earlier
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work in motion recognition. The main question of section 2 was: What requirements
are placed by natural-language communication on representation and control in
high-level vision? We found that verb-oriented concepts (called event models) are use-
ful conceptual units which easily map into case frames of a natural-language system
and also tend to cover the conceptual motion space investigated in earlier high-level
vision work. Unfortunately, however, due to the unruliness of natural language not all
useful motion concepts correspond to a verb and not all verbs correspond to observ-
able motion. The former can be remedied by introducing non-verbal motion concepts
along with verb-oriented event models. The latter calls for common-sense reasoning
as part of the recognition process.

In the case of question answering the conceptual search space may be highly restrict-
ed. Questions can be viewed as adding dynamic constraints to those implied by the
event models. As an important consequence, the control flow should be adaptable to
the task at hand. Several aspects of the communication situation have also been
shown to affect recognition control.

Comparing these requirements with the motion interpretation framework developed
by Tsotsos for a task in the medical domain, we found that his representational for-
malism can be easily extended to include event models and case frames along with
motion concepts. Also, his approach to hypothesis activation based on conceptual
proximity seems to be a generally valid technique. Major changes would be necessary,
however, when adapting to the control flow requirements arising from question
answering. Tsotsos' progressive interpretation strategy does not leave room for
dynamically ordered constraint evaluation.
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