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Zusammenfassung 
 

 

In dieser Mitteilung wird ein neuer Ansatz zur Modellierung und Auswertung probabilistischer Abhängigkeiten 
in kompositionellen Hierarchien für modellbasierte Szeneninterpretation vorgestellt. Mit einer "Bayes'schen 
Kompositionellen Hierarchie" (Bayesian Compositonal Hierarchy, BCH) werden Zusammenhänge innerhalb von 
objektzentrierten Aggregaten in uneingeschränkter Form repräsentiert, zwischen Aggregaten jedoch nur entlang 
der kompositionellen Beziehungen. Dadurch können probabilistische Inferenzen in Szenen sehr effizient 
berechnet werden. Die Prädiktionsleistungen einer BCH werden mit alternativen Modellen verglichen (reine 
Bayes-Netze, uneingeschränkte Verbundwahrscheinlichkeiten) und an Beispielen evaluiert. Als praktische 
Anwendung wird die Überwachung einer Flugzeugabfertigung vorgestellt. Mithilfe einer BCH können 
Vorhersagen über den zu erwartenden zeitlichen Ablauf einer Flugzeugabfertigung aus bereits vorliegenden 
zeitlichen Daten schritthaltend angepasst werden.  

 

 

 

 

 

Abstract 

In this note I describe a novel approach to modelling and exploiting probabilistic dependencies in compositional 
hierarchies for model-based scene interpretation. I present Bayesian Compositional Hierarchies (BCHs) which 
capture all probabilistic information about the objects of a compositional hierarchy in object-centered aggregate 
representations. BCHs extend typical Bayesian Network models by allowing arbitrary probabilistic dependencies 
within aggregates, yet providing efficient inference procedures. New closed-form solutions are presented for 
inferences in a multivariate Gaussian BCH. Results are presented comparing a BCH with existing methods (pure 
Bayesian Networks, unrestricted Joint Probability Distributions). Monitoring aircraft service operations is 
presented as a practical application. It is shown that predictions about the expected temporal development of 
service operations can be generated dynamically from available temporal data. 
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1. Introduction 

Scene interpretation can be roughly defined as the task of assigning meaning to visual scenes beyond single-
object recognition. From previous work [1, 2, 3, 4] it is evident that the compositional structure of higher-level 
entities is essential both for a well-structured organization of the model base and for an effective guidance of the 
interpretation process. Furthermore, judging from the success of probabilistic models in many subareas of 
Computer Vision, a sophisticated uncertainty management seems undispensable also for high-level scene 
interpretation. 

In this article we present a new approach to probabilistic scene interpretation which combines the 
compositional structure of a model base with a reasonably general probabilistic framework, without 
presupposing a particular interpretation strategy. The main idea is to provide each node of the compositional 
hierarchy (called aggregate) with an expressive probabilistic description correlating its parts in a realistic way, 
yet preserving a probabilistic tree structure between the aggregates to enable efficient inferences. In its general 
form, the structure is called a Bayesian Compositional Hierarchy (BCH) because of its similarity to Bayesian 
Networks [5]. The main service of a BCH is to propagate the probabilistic effect of interpretation steps and 
provide dynamic priors for evidence assignment during an interpretation process. The focus of this contribution 
is on a BCH with multivariate Gaussian distributions which gives rise to particularly effective probability 
propagation procedures. 

In the next section, we define a BCH and the probabilistic inference procedures supported by a BCH. In 
Section 3, we show how these models can be applied to spatial and temporal reasoning in scene interpretation. In 
Section 4, we derive closed-form solutions for a BCH where all aggregates have multivariate normal 
distributions. We then compare our aggregate models to existing Bayesian Network models and demonstrate 
their superior accuracy in typical prediction tasks. 

2. Bayesian Compositional Hierarchies 

In this section we will briefly introduce Bayesian Compositional Hierarchies (BCHs) as probabilistic 
structures for scene interpretation. A compositional hierarchy is defined to be a tree of aggregates, each 
representing a meaningful entity composed of parts, except for the leaves of the hierarchy which are primitive 
aggregates. For each aggregate, probabilistic relations between parts can be modelled as accurately as desired. 
By postulating conditional-independence properties between aggregates, efficient inference procedures can be 
attained similar to tree-shaped Bayesian Networks. 

An aggregate is represented by the following random vectors and a corresponding joint probability density 
P(A B1 .. BK C), understrokes denoting a vector: 

A  header of the aggregate, represents the aggregate as a whole 
B1 ... BK headers of the parts of the aggregate 
C  properties relating the parts to the aggregate and to each other 
The intuition is that the header of an aggregate is an external description which abstracts from details of the 

parts. As an example, consider the aggregate "Aircraft-Arrival-Preparation" in a compositional hierarchy for 
aircraft services (Fig. 1a). The aggregate describes four activities which together constitute the arrival 
preparation. The  overall duration D is taken as the aggregate header, the parts are primitive with durations Dk as 



part headers and “gaps” Gk as properties relating the parts to each other (Fig. 1b). The GPU (Ground Power 
Unit) first enters the ERA (Entrance Restricted Area) and then the GAA (GPU Access Area). After a while the 
handler gets out and deposits chocks for the aircraft, concluding the arrival preparation. 

 
 
 
 
 
 
   a)                                                          b) 

Fig. 1. (a) Compositional hierarchy of aircraft service operations. (b) Temporal structure of the aggregate “Aircraft-Arrival-
Preparation” 

We now introduce conditional independence requirements for a compositional hierarchy which reflect the 
intuition that the probabilistic influence of an aggregate is solely exerted by its header to the above and by the 
part headers to the below. Let Z represent an aggregate: 

1. Given Z, the properties of the successors of Z do not depend on the parent of Z. 
2. Given Z, the properties of the successors of Z do not depend on the siblings of Z. 
3. Given the siblings of Z, the successors of the siblings are statistically independent. 
Given these abstraction requirements, evidence propagation will simply have to follow the structure of the 

compositional hierarchy. 
Exploiting these abstraction requirements, a factorization formula for the JPD of a complete compositional 

hierarchy can be derived [5]. Let A(k), k = 1 ... M, be all objects of the compositional hierarchy (represented by 
their headers) and A(1) the root of the hierarchy. Let P(A(k) B(k) C(k)) be the JPD of the aggregate with header A(k), 
B(k) = B1

(k) ... BN
(k) its part headers, and C(k)  its relational part properties. Then 

 
P(A(1) ...A(M) ) = P(A(1) ) P(

k=1...M
∏ B(k) C(k) | A(k) )  (1) 

Because of the remarkable similarity to the well-known Bayesian Network factorization formula, we call 
compositional hierarchies meeting the three abstraction requirements "Bayesian Compositional Hierarchies" 
(BCHs). The BCH factorization formula states that all probabilistic inferences can be carried out solely based on 
aggregate descriptions in terms of the JPDs of part headers and relational part properties, given aggregate 
headers. Furthermore, the root probability must be known, which will be 1 if the domain covered by the 
compositional hierarchy is known. 

We now show how a BCH can be used for probabilistic inferences in a scene interpretation task. A typical 
interpretation step is to assign evidence e to one of the hierarchy leaves. Given several choices, the BCH 
provides priors in terms of the marginal probabilities. Let us assume that e is assigned to an aggregate Z(k) such 
that the JPD of Z(k) becomes P’(A(k) B(k) C(k)), restricting the properties of Z(k) according to the crispness of the 
evidence. To update the rest of the BCH, we propagate the change along the compositional structure of the 
hierarchy. 
Propagating up: Let Z(k) be the changed aggregate with JPD P´(A(k) B(k) C(k)). We marginalize to obtain P´(A(k)). 
A(k) is simultaneouly the header part Bi

(m) of the parent aggregate Z(m) and hence P´(Bi
(m)) = P´(A(k)). The parent 

aggregate is now updated as follows: 

 ʹ′P (A(m) B1
(m) ... BM

(m) C(m) ) = P(A(m) B1
(m) ... BM

(m) C(m) ) ʹ′P (Bi
(m) ) / P(Bi

(m) )  (2) 

Propagating down: Let Z(k) be the changed aggregate with JPD P´(A(k) B1
(k)... BN

(k) C(k)). We marginalize to 

obtain P´(Bi
(k)), i = 1 .. N. Each Bi

(k) is simultaneously a header  A
(ni )

of a child aggregate  Z
(ni )  and hence 

 ʹ′P (A(ni ) ) = ʹ′P (Bi
(k) ) . A child aggregate  Z

(ni )  is now updated as follows: 

 ʹ′P (A(ni ) B(ni ) C(ni ) ) = P(A(ni ) B(ni ) C(ni ) ) ʹ′P (A(ni ) ) / P(A(ni ) )  (3) 

Note that the assignment of crisp evidence can also be modelled by Eqs. 2 and 3. 
Summarizing, a BCH provides a probabilistic description of a compositional hierarchy with three advantages: 

(i) All probabilistic information is captured in aggregate descriptions, preserving object-centered knowledge 
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representation, (ii) arbitrary probabilistic dependencies can be modelled within an aggregate, and (iii) 
probabilities can be efficiently updated by propagation along the hierarchical compositional structure. 

We now show how a BCH can be used to model compositional hierarchies of simple 2D shapes and - with one 
dimension omitted - of the temporal structure of activities. 

3. Spatial and Temporal Aggregate Models 

In scene interpretation, spatial and temporal information play a prominent part, hence it is useful to consider 
probabilistic spatial and temporal models in more detail. 

We first present box models as an instantiation of a 2D spatial BCH. Hierarchical box models are generally 
popular in Computer Vision and have been applied, for example, to facade interpretation [6]. The facade of a 
building can be modelled in terms of constituent structures like balconies, window arrays or entrance ensembles, 
which in turn can be further decomposed into parts such as doors, windows, canopies etc. 

A box model for an aggregate is structured as shown in Figure 2a. Given a compositional hierarchy of 
aggregates, a BCH can be obtained by assigning JPDs P(Bk Ck | Ak) to each box model.  

In Eqs. 2 and 3, we have considered probability update rules where evidence affects the properties of a single 
aggregate. Unfortunately, this is not the case when absolute location evidence is provided for a hierarchy of 
boxes with relative location variables. Absolute locations are typically given in scene or image coordinates 
corresponding to the reference frame of the root of the hierarchy. If provided for an object several levels down 
the hierarchy, the evidence constrains the chain of offsets between the nested reference frames as shown in 
Figure 2b. 

 
 
 
 
 
           a)        b) 

Fig. 2. (a) Box model for aggregates in a BCH. A represents the aggregate as a whole, B1 .. B3 represent parts and C1 .. C3 
determine the position of the parts relative to the aggregate reference frame. (b) Offset chain corresponding to absolute 
location evidence in a compositional hierarchy 

In order to maintain conditional independence between aggregates along the offset chain, we have to introduce 
additional random variables Q(k) = C(1)+ .. +C(k) in each aggregate along the offset chain, each representing the 
sum of the offsets from the root to this aggregate. In consequence, an observation of Q(k) can be propagated with 
the propagation rules given in Equations 2 and 3. 

It is easy to see that the box model described above can be applied to temporal aggregates by omitting one 
dimension. Dedicated variables for absolute time points are also required analogous to absolute location 
variables. Thus, probabilistic temporal properties of the aircraft service domain used as an example in Fig. 1 can 
be modelled by a BCH. The BCH can then be used for dynamically updated temporal predictions, for example 
about the duration of future activities or the conclusion of a service. 

4. Gaussian Bayesian Compositional Hierarchies 

A BCH for a small domain (such as aircraft service operations) may encompass a considerable number of 
probability distributions which must be maintained for each interpretation step. Even for moderate resolutions of 
spatial and temporal properties, the demands on storage and computation time may be excessive. We have 
therefore investigated the use of multivariate Gaussian distributions for implementing a BCH. Gaussian models 
may be a good approximation for sufficiently symmetric unimodal distributions in a range corresponding to -2σ 
.. +2σ of a Gaussian distribution. It will be shown now that all propagation operations can be expressed by 
closed-form formulas which give rise to highly efficient propagation procedures.  

Let G = [E F] be a vector of Gaussian random variables representing an aggregate. Let F be the subset whose 
distribution is changed by evidence or incoming propagation. F can be the aggregate header in the case of 
downward propagation or a part header in the case of upward propagation. We want to compute the effect of the 
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changed distribution of F on G. Before propagation, the distribution of G is  P(G) = N(µG ΣG) where µG is the 
mean vector and  Σ G the covariance matrix. The partitions corresponding to E and F, respectively, are denoted as 
shown: 

 
∑G =

∑E ∑EF

∑EF
T ∑F

⎡

⎣
⎢
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⎤

⎦
⎥
⎥
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µ
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⎣
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⎢

⎤
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⎥
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For a probability update, we assume that the distribution of F is changed to 
 
ʹ′P (F) = N( ʹ′µ

F
, ʹ′∑F ) . Then the new 

distribution is 
 
ʹ′P (G) = N( ʹ′µ

G
, ʹ′∑G )  with 

 
ʹ′∑G =

ʹ′∑E ʹ′∑EF

ʹ′∑EF
T ʹ′∑F

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 
 
ʹ′µ
G
=

ʹ′µ
E

ʹ′µ
F

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

    where 

 ʹ′∑E = ∑E −∑EF ∑F
−1 ∑EF

T +∑EF ∑F
−1 ʹ′∑F ∑F

−1 ∑EF
T  (4) 

 ʹ′∑EF = ∑EF ∑F
−1 ʹ′∑F  (5) 

 
ʹ′µ

E
= µ

E
+ ∑EF ∑F

−1( ʹ′µ
F
− µ

F
)  (6) 

To the best of our knowledge, the Gaussian updating rules in Eqs. 4 to 6 are new results. They can be derived 
by determining the resulting Gaussian distribution for  ʹ′P (G) = P(E | F) ʹ′P (F)  using the formulas for 
multivariate Gaussian conditionals. 

It is evident that both upward and downward propagation for an aggregate with random variables A B1 ... BK 
C can be performed by fairly simple matrix computations. From the equations, we observe that the covariance 
matrix of F must be non-singular for its inverse to exist. This is the case if two conditions are fulfilled: 

(i)  The prior covariance matrices of the aggregate header A and of the internal aggregate variables  B1 ... BK 
and C must each be non-singular. Note that this does not preclude deterministic mappings between B1 ... BK and 
A which are natural for aggregate descriptions in a BCH. 

(ii)  Crisp evidence F = f which is introduced by updating P(F) with P´(F) = N(µF´=f, ΣF´=0) may not be 
updated again (the inverse of ΣF´does not exist, of course). This is naturally the case in a monotonic 
interpretation process where evidence may not be retracted. 

Note that the box model and its temporal version presented in Section 3 can be modelled with multivariate 
Gaussians, if the aggregate header A is a linear combination of part headers B and relational part properties C, 
for example, the sum of part dimensions and distances.  

5. Evaluation 

To demonstrate the properties of a BCH as compared to standard Bayesian Networks (BNs), we now compare 
three kinds of aggregate models for simple estimation tasks based on the temporal structure of  “Aircraft Arrival 
Preparation” (Fig. 1), neglecting D1 ... D3 which are irrelevant here.  

 
 
 
                    a)                   b)                    c) 

Fig. 3. Three models for an aggregate with two parts: BN models (a and b) give rise to a purely tree-shaped BN of a 
compositional hierarchy. The BCH aggregate model (c) allows an arbitrary aggregate JPD while preserving an overall tree-
shaped compositional hierarchy. 

Model 1 (Fig. 3a) is a Bayesian Network (BN) model where an aggregate "causes" its parts, as proposed e.g. 
by [7, 8]. Model 2 (Fig. 3b) is a BN model where parts "cause" an aggregate. This is a plausible BN when parts 
are the primary meaningful entities. Model 3 (Fig. 3c) is a BCH aggregate model with an unrestricted JPD. 
All random variables are modelled by a JPD PZ of Gaussians with mean and covariance shown in Fig. 4a.. Only 
a single nonzero covariance value has been assumed for internal properties, correlating G1 and G3. To represent 
the aggregate as Model 1, the distributions P(D) and P(G1|D) ... P(D4|D) were computed from PZ, similarly P(G1) 
... P(D4) and P(D|G1 ... D4) were computed for Model 2. The three models were compared regarding the 
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prediction of G3 and D after observing G1 with values differing from the mean of G1 up to twice the standard 
deviation.  

 

 
 
 
 
 
                  (a)                        (b)                         (c) 

Fig. 4. (a) Mean and covariance of multivariate Gaussian JPD for temporal structure “Aircraft Arrival Preparation” (s. Fig. 
1). (b) Predictions of G3 given G1 based on the aggregate models presented in Fig. 3. (c) Predictions of D given G1, based on 
the same three aggregate models. 

As to be expected, the prediction error of BN models can be significant. For predicting G3 the error is up to 
28% for Model 1 and 150% for Model 2 (which always estimates the mean of G1). For predicting D, Model 1 is 
error-free, but Model 2 deviates from the true estimate by up to 25%.  

A BCH owes efficient propagation to the conditional independence requirements presented in Section 2. It is 
interesting to evaluate the estimation error of a BCH model if the independence requirements are not valid. Fig. 
5a shows a simple BCH with three aggregates consisting of four primitive parts (Gaussian random variables X1, 
X2, Y1, Y2) and aggregate headers X=X1+X2 , Y=Y1+Y2, Z=Z1+Z2. Fig. 5b shows mean and covariance of the 
primitive parts, with σ* as a variable parameter to model unequal individual dependencies between parts of 
different aggregates. In the BCH, these dependencies can only be represented by a single parameter, the 
covariance σZ1,Z2 in the parent aggregate.  

 
 
 
 
 
 
                  a)                             b)                       c) 

Fig. 5. (a) Simple BCH structure with Gaussian variables X1, X2, Y1, Y2, Z1=X1+X2, Z2=Y1+Y2. (b) Mean and covariance of 
primitive parts. (c) Variance of estimation error using BCH approximation of original covariances for different choices of σ*. 

An analysis reveals that for a given covariance matrix there is an optimal choice of σZ1-Z2 minimizing the error 
incurred by estimating Y1 or Y2 given X1 or X2 using the BCH instead of using directly the covariances of the 
primitive parts. Furthermore, the mean of these errors will always be zero. The variances of the errors depend 
very much on how well individual part covariances can be approximated by aggregate headers representing an 
abstraction in terms of the sum of the parts. For the example, the variances of estimates Y1 or Y2 given X1 or X2 
are plotted against the parameter σ* in Fig. 5c. It can be seen that the errors remain small as long as the 
individual variations of inter-aggregate covariances are small. 

Using the BCH structure, a probabilistic temporal model has been constructed for the aircraft service  
hierarchy shown in Fig. 1a. Each activity, primitive or aggregate, has been modelled by its duration D and offset 
C to the aggregate reference frame, comprising a total of  18 random variables. Estimations of various kinds 
have been performed, e.g. “Aircraft arrival preparation has begun at t=20, when is unloading likely to begin? 
When will the aircraft be ready for departure?” It should be clear, however, that the main intended use of a BCH 
is to support ambiguous interpretation steps where context-dependent priors - computed by a BCH - guide the 
decisions. 

The computational effort using Gaussian distributions is very small and not worthy a discussion, it will easily 
scale to thousands of variables. Regarding space complexity, the BCH shows its advantages as space 
requirements grow linearly with the number of aggregates. This has to be compared with the space requirements 
of complete covariance matrices which grow with the square of the number of variables.  
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6. Discussion and Outlook 

The BCH presented in this paper is a step towards probability-guided high-level scene interpretation where 
object-oriented knowledge at multiple abstraction levels must be brought to bear to provide a probabilistic 
context at each interpretation step. A BCH is in the spirit of tree-shaped BN models [7, 8, 9] but extends their 
expressivity significantly by allowing arbitrary distributions within aggregates, yet preserving efficient inference 
procedures. A BCH provides a general framework for modelling probabilistic information for a compositional 
hierarchy, but offers particularly elegant solutions in the case of multivariate Gaussian probabilities, as presented 
in this paper. 

The evaluation has shown that the gain of accuracy compared to purely tree-shaped networks can be 
significant, while the loss of accuracy compared to completely unrestricted networks is tolerable as long as the 
abstractions in the compositional hierarchy are justified. 

A BCH for probabilistic temporal dependencies will be employed for aircraft service operations in the joint 
project Co-Friend.  
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