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Abstract

The aim of medical image registration is to bring different images into the best possible spatial correspondence in order to obtain

complementary information for clinical applications. When using physically-based techniques for image registration the transformation of images

is typically obtained as the solution of partial differential equations of continuum mechanics. Because of the complexity of real boundary

conditions, these equations can usually be solved with the help of numerical techniques only. One standard numerical method is the boundary

element method (BEM) which allows to compute the solution exclusively through boundary integration. This paper investigates the applicability

of BEM for registration of medical images and quantitatively assesses its advantages and disadvantages in comparison to the previously used finite

element method (FEM).

q 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The combination of data from different modalities (for

example CT and MR data), the mapping of an image onto an

anatomical atlas or the simulation of tissue deformations are

important for clinical applications in diagnostics and surgery.

In image registration, a transformation which optimally maps

all image points of one image onto another image has to be

found. Because of the variability of anatomical structures to be

registered, rigid transformations are generally not sufficient

and non-rigid registration methods have to be applied. One

common approach to non-rigid image registration is based on

computing elastic transformations which simulate defor-

mations of a solid body under the impact of applied forces

[6,9]. Theoretical fundamentals for this approach are provided

by elasticity theory, where a linear approximation of the
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deformation of physical bodies is described by the Navier

partial differential equation (PDE) [1]. A general analytical

solution to the Navier-PDE does not exist. However, it can be

solved numerically by applying a standard technique for

solving PDEs, the finite element method (FEM), which is

arbitrarily exact, but also relatively time consuming [7,10].

Others use finite differences for numerical approximation

which is not as flexible as FEM [8].

In this paper, we apply an alternative standard numerical

method, the boundary element method (BEM), for the

registration of medical images and compare it with FEM.

BEM allows to find a solution for given boundary value

problems exclusively through boundary integration. This has

the advantage that only the boundary of the domain of interest

has to be discretized, and therefore the dimension of the

resulting linear system of equations in BEM is significantly

smaller than in FEM. On the other hand, the stiffness matrix of

the classical BEM is in general fully occupied and non-

symmetric, which complicates the application of efficient

solving methods. The existing literature gives no indication

about which of the two methods should be used neither for a

specific problem, nor in general [14]. In this paper, we

introduce for the first time a BEM approach for elastic

registration of medical images. In addition, we perform a

comparison of the BEM approach with an FEM approach and
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provide qualitative and quantitative results using both synthetic

and real images.

The paper is organized as follows. First, we briefly describe

some necessary fundamentals of elasticity theory as well as

numerical techniques for solving linear elastic boundary value

problems, i.e. FEM and BEM. Then, experimental results of

elastic registration using BEM, as well as a quantitative

comparison of the performance between BEM and FEM are

presented.
2. Elasticity theory and numerical solving methods

In elasticity theory, physical bodies are described as

continua. Under applied forces physical bodies are deformed,

which means that they change both their shape and volume.

The inner stresses counteract the applied forces. Using a linear

approximation, we have the following relations between the

strains uik (resp. displacements ui), the stresses sik (resp.

normal stresses or tractions ti) and the applied force density Fi

Equilibrium equation : sik;k ZKFi; (1)

Hook’s law : sik Z
E

1Cn
uik C

n

1K2n
ulldik

� �
; (2)

Navier-PDE : Dðu C
1

1K2n
grad div ðu ZK

2ð1CnÞ

E
ðF ; (3)

where E denotes the Young modulus und n is the Poisson ratio.

Using Eq. (3) for image registration, the transformation of all

image points with coordinates xi in the source image is

completely described if the displacements ui are known

x0i Z xi Cui; (4)

where x0i are the new coordinates of the transformed image

points. The aim of elastic registration is to solve the Navier-

PDE Eq. (3) for given boundary conditions. In practice,

because of the complexity of given problems it is generally

impossible to find analytical solutions. Numerical solutions are

usually computed as a linear combination of independent

functions fk

u0 Z
XN

kZ1

ukfk; (5)

where the unknown coefficients uk have to be found. Let u be

the exact solution of the linear PDE LuZb, where L is a linear

differential operator. The so-called ‘residual’ or ‘error

function’ RZLuKb is equal to zero for the exact solution u

and, in general, different from zero for an approximative

solution u 0. The errors are forced to be zero in a certain average

sense, and this is done differently for each particular method.

Several well-known techniques are based on the so-called

method of weighted residuals (MWR), e.g. FEM and BEM. In

this case, the integral over the error R weighted with functions
jk is set to zero:ð

U

RjkdUZ 0: (6)

The function jk is denoted as weighting functions and

determines how the error R is distributed over the domain U.
3. The finite element method

The general approach in FEM consists of the following steps

[3]: (i) The domain U is subdivided into a finite number of

elements. (ii) All relevant quantities are approximated for each

element through locally defined functions and are incorporated

into Eq. (6). If the weighting functions in Eq. (6) are the same

as the functions fk in Eq. (5), this variant of MWR is called the

Galerkin-method. (iii) Using Eq. (6) together with boundary

conditions, a linear system of equations results with the node-

variables uk

KuZ b; (7)

where u is the vector of the unknown coefficients uk, b is the

load vector andK is the so-called stiffness matrix. The stiffness

matrix contains all integrals and material parameters, is

typically very large, and has a band structure, i.e. it is filled

with zeros except the entries close to the main diagonal. FEM

has been applied to elastic image registration, for example, in

[7,10,11].
4. The boundary element method and its implementation

4.1. Basics of the linear elastic BEM

The main advantage of BEM in comparison to FEM is that

one only needs to discretize the boundary of the domain in

order to compute the solution for the whole domain. Formally,

the domain integrals are transformed into boundary integrals.

In comparison to FEM, where the weighting functions are

defined locally, the weighting functions in BEM are defined

globally. In the latter case, these functions are the so-called

fundamental solutions of the Navier-PDE, i.e. the solutions in

the case of a Dirac-distributed force and an infinitely extended

elastic medium. The sampling property of the Dirac function is

exploited to obtain the solution in the whole domain

exclusively using boundary integrals [2]

uiðPÞZ

ð

G

u*
ijðP;QÞtjðQÞKt*ij ðP;QÞujðQÞ

h i
ds; (8)

where P2U is an arbitrary point within the domain, Q2G is a

boundary point, u*
ij and t*ij are the fundamental solutions of the

Navier-PDE for the displacements and tractions, respectively.

The so-called Somigliana identity Eq. (8) allows to compute

displacements ui(P) in the domain U when boundary

displacements uj(Q) and tractions tj(Q) are known. Since

boundary conditions are usually given only in the form of

prescribed displacements, one has no information about



Fig. 1. Top row, from left to right: boundary of the source image, source image, image grid. Bottom row: boundary of the target image, deformed image, deformed

image grid.
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boundary tractions. However, the tractions can be obtained

from the Somigliana identity Eq. (8) when applying this

equation to the boundary (P,Q2G). In all other respects, the

general approach in BEM is the same as in FEM. After

discretization of the boundary, all relevant quantities are

approximated as in Eq. (5) and incorporated into Eq. (8).

Finally, one obtains a linear system of equations w.r.t. the node

variables

HuZGt: (9)

here, H und G are the so-called hypermatrices which imply the

corresponding boundary integrals and material constants, u and

t are the vectors of the node displacements and tractions,

respectively. The unknown node tractions can simply be

obtained from the known displacements by solving Eq. (9)

w.r.t. t:~tZGK1Hu.
4.2. Implementation details

In the implementation of BEM, the following points require

particular attention (we consider for simplicity only 2D case,

however, most of the issues below are also valid in 3D):

1. Weighting functions in the BEM (the fundamental

solutions) are defined globally. Consequently, all nodes of

the boundary network are coupled with each other and the

resulting system matrices H and G are, in general, fully

occupied and non-symmetric in a difference to the sparse

and symmetric matrices in FEM.

2. Depending on the dimension of the given problem, the

fundamental solutions have a singularity of type rKn or

log(r). This causes a divergence of the numerical solution

for r/0 which is known as the typical BEM failure near

boundaries (see also Section 5.1 below).

3. In order to assembly the linear system of equations, singular
integrals must be computed. This can be done only

numerically at the expense of efficiency.

4. With the image raster, a network of nodes for BEM is

explicitly given. Unfortunately, the 2D boundary resulting

from the ad-hoc parametrization on the basis of raster nodes

is not smooth. This has far reaching consequences for

BEM: the tractions on the non-smooth boundary are

unsteady, which in turn requires additional efforts for the

discretization, i.e. the application of the node duplication

technique, and also leads to non-square stiffness matrices.

In this paper, we assume steady tractions, which premise a

smooth boundary. To satisfy this requirement, the boundary

has to be smoothed, for example by using a Fourier-

expansion [4] as in our case.

The implementation of BEM consists of the following steps:

† extraction and parametrization of the boundary of the

source and target object, for example by using an edge

detection operator,

† derivation of correspondences between the source and

target boundary outlines, for example by using deformable

models or minimal-distance algorithm,

† computation of displacements for all image points by

solving Eqs. (8) and (9).
5. Experimental results

We have implemented the linear elastic BEM approach for

elastic image registration under Khoros [13] in C. For the FEM

approach, we used an existing implementation on the same

software platform [10]. In this section, the experimental results

of image registration via BEM in conjunction with a

quantitative comparison with FEM are presented.



Fig. 2. Difference between the BEM and the FEM computed displacement

vectors (in pixels). The largest deviations of the BEM solution from that of

FEM arise due to the singularity of the fundamental solution near the boundary

(XZ0 and 90). However, as can be seen these deviations are smaller than one

pixel.
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5.1. Comparison of the registration accuracy

In the first experiment, we analyzed synthetic images. A

square has been transformed into a circle (see Fig. 1).

In this example, the boundaries have not been smoothed for

the BEM approach, since with the exception of the four corner

points of the square the boundary is already smooth. Boundary

correspondences have been computed by making the boundary

of the square act like a ‘snake’ [5]. The registration result using

FEM has been obtained by applying the method from [10]. In

order to be able to compare the displacement fields (ðuBEM vs.

ðuFEM) quantitatively, we calculated the average relative

difference (ARD) and its standard deviation (sARD) as

ARDZ
1

N

XN

i

jðuBEMðiÞKðuFEMðiÞj

minðjðuBEMðiÞj;jðuFEMðiÞjÞ
; (10)
Fig. 3. Top: source image (right) and its boundary outline (left). Bottom: target imag

FEM approach (right).
sARD Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i

jðuBEMðiÞKðuFEMðiÞj
minðjðuBEMðiÞj;jðuFEMðiÞjÞ

KARD
� �2

NK1

vuuut
; (11)

where N is the number of domain points. For the image in Fig. 1

the following values have been obtained: ARDZ0.016515,

sARDZ0.036729. This means that the displacement field

computed with BEM deviates in average up to about 5%

(ARDCsARD) from the result obtained by FEM. In Fig. 2, the

absolute difference between the displacement vectors (BEMK
FEM) along a horizontal line through the middle of the square

(middle of top row in Fig. 1) is shown. The largest deviations of

the BEM solution from that of the FEM arise due to the

singularity of the fundamental solution near the boundary

(XZ0 and 90). However, it can be seen that these deviations

are smaller than one pixel.

For the tests with clinical images, MR-slices of the human

brain have been used. The boundary outline (top left in Fig. 3)

was extracted by applying a Canny edge operator to the source

image (top right) and smoothing it by using a 2D Fourier

expansion, see [4]. In this example, the task is to map the

source image boundary to an ellipse (bottom left) and to

transform the remaining areas accordingly. The correspon-

dences were derived by using a minimal distance algorithm. As

one can see in Fig. 3, the results of the computation with BEM

and FEM visually correspond well.
5.2. Comparison of the efficiency

In order to compute a numerical solution by using BEM, one

needs to discretize only the boundary. Thus, the linear system

of equations is one dimension smaller compared to that of

FEM. Consequently, the matrices in BEM require significantly

less memory. On the other hand, the matrices in BEM are in
e boundary outline (left), result of applying the BEM approach (middle) and the



Fig. 4. Computation time (in seconds) for the BEM approach to compute the

matrix GK1 by using the Gauss elimination algorithm as a function of

the number of the boundary points N. The straight line (tZ60) corresponds to

the computation time using FEM for a 256!256 image.
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general fully occupied and non-symmetric in comparison to the

sparse and symmetric matrices in FEM. Therefore, efficient

techniques for solving linear systems of equations with sparse

and symmetric matrices as used in FEM, e.g. the method of

conjugate gradients, cannot be applied in BEM. Instead, we

used the Gauss elimination algorithm which proved to be

relatively time consuming.

The dimension of the matrix G in Eq. (9), which has to be

inverted, is (2!NR)
2, where NR denotes the number of

boundary points. For the 128!128 synthetic image in Fig. 1,

NRZ360 and the dimension of G is (2!360)2Z518400. On a

SUN-Ultra II workstation the matrix inversion took 1 min 35 s.

The total computation time for this image amounted to 3 min.

The computations for the 256!256 image with NRZ548 took

approx. 9 min, thereof 5 min 47 s only for the inversion of the

fully occupied matrix of (2!548)2 elements. The computation

time for the same image using FEM with quadratic elements

corresponding to the image raster took 56 s for a sparse matrix

of (2!256!256)2, see Fig. 4.

6. Conclusion

We have introduced the boundary element method for

elastic image registration and compared it with FEM. BEM

allows to solve a registration problem exclusively through

boundary integration. Thus, only the boundaries of the region

of interest have to be discretized. The resulting linear system of

equations in BEM is one dimension smaller than that of FEM.

Application of BEM for the registration of 2D images has

shown that good qualitative as well as quantitative results can
be achieved in comparison to FEM. In 2D, even if no adaptive

domain discretization is carried out and the whole image raster

used as a mesh, FEM appears to be more efficient for image

registration than the classical BEM. In addition, mesh

generation in 3D requires incomparably more efforts than in

2D. However, recent BEM formulations, e.g. symmetric

Galerkin BEM (SGBEM) [15], indicate that they become

more computationally efficient. Hence, we see a potential for

further application of BEM in elastic registration.
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