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Abstract

We describe a new method to evaluate corner extraction
schemes using invariance methods. Since the locations of
corners in an image depend both on the intrinsic parame-
ters of the camera and the relative position and orientation
of the object with respect to the camera, the exact positions
of corners in an image are generally not known. To circum-
vent the need for this knowledge, we here use sets of points
(instead of individual points) extracted from images of poly-
hedral objects and projective invariants to calculate a mani-
fold of constraints on the coordinatesof the corners. We then
estimate the variance of the detected corners from the dis-
tance of the coordinate vector to this manifold. This is inde-
pendent of the camera parameters and the relative position
and orientation between the camera and the object. Five dif-
ferent kinds of corner extraction schemes are investigated.
The purpose of the paper is to show that invariance meth-
ods can effectively be used to make this comparison rather
than to make a thorough comparison of different corner ex-
traction schemes.

1. Introduction

Corner extraction schemes are important in computer vi-
sion to provide input to other kind of operations, such as
recognition and reconstruction. Most approaches to recog-
nition and reconstruction are based on the locations of ex-
tractable points, usually corners, in one image or in several
images, see for example [18], [6], [4], [10] and [8]. Since
the reliability of the overall approach heavily depends on
the accuracy of the extracted points it is necessary to have
good performance of the corner extraction schemes as well
as having an estimate of how accurate the locations of cor-
ners are. Such estimates can be used in a subsequent step for
hypothesis testing, for example, in recognition tasks.

However, it is difficult to evaluate the performance of
corner extraction schemes because the true positions of the
corners in an image are generally not known. This knowl-
edge would be at our hand only if we knew exactly the in-
trinsic parameters of the camera as well as the relative po-
sition and orientation of the object with respect to the cam-
era. However, since this knowledge is in general not avail-
able it is hard to judge the performance of corner extraction
schemes.

Invariants have been an area of extensive research in
computer vision during the last few years (e.g. [15], [17]).
Invariants tell us relations between the object and image that
are invariant under the camera position, orientation and ge-
ometry, that is intrinsic parameters and extrinsic parameters.
These invariants constrain the locations of the corners in the
image to lie on a certain manifold, here called the manifold
of constraints. This manifold can be used to estimate the
variance of the corner extraction schemes using statistical
methods.

In the present paper we will do this for five different kinds
of corner extraction schemes. The first is manual selection,
the second is the local operator of Kitchen and Rosenfeld
[9], the third is the local operator together with nonlinear dif-
fusion, the fourth is the model fitting approach of Rohr [13]
and the fifth is model fitting in conjunction with nonlinear
diffusion.

There are different invariants that can be used depending
on how much a priori knowledge we have of the object. If
the only knowledge is that the object consists of planar sur-
faces, that is a polyhedral object, the only constraints of the
locations of the corners are obtained from the so called sec-
ond order syzygies, see [7]. If we know the shape of the
different planar surfaces, for example if they are rectangu-
lar, this can be used to constrain the coordinates further, see
[18]. This can be effectively done using the theory of shape
and depth and the so called S-matrix, see [18] and [7]. If we
have a complete model of the object we can estimate the ��
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parameters in the uncalibrated projective camera model and
then calculate the errors.

In previous work, the performance of different corner de-
tectors on real images has mainly been judged by visual in-
spection of experimental results (e.g. [9]). Analytic studies
of corner detectors have been done by Giraudon and Deriche
[5] and Rohr [14]. Giraudon and Deriche use the L-corner
model of Berzins [2] for specific aperture angles of ��o and
��o to compare the localisation of three local (differential)
corner detectors. In Rohr [14] an analytic study of ten lo-
cal (differential) corner operators has been performed. This
study is based on the parametric L-corner model in [12],[13]
and evaluates the localisation of corners for aperture angles
in the whole range of �o to ���o. For each corner detector
an implicit equation is derived which characterises the lo-
calisation of the corner points in dependence of all model
parameters (aperture angle, contrast, image blur).

In Coelho et al. [3] planar invariants (e.g. the cross ratio)
have been used to compare the performance of three indirect
corner detectors. Indirect corner detectors first extract edge
points and then operate on this data to determine the corner
positions.

In the present study, we use projective invariance meth-
ods to investigate the performance of five direct schemes for
extracting corners. In contrast to our previous study for sin-
gle points in [14] we here analyse sets of points. The con-
sidered points are corners of 3D polyhedral objects, e.g. L- ,
T- , Y- , and Arrow-corners. The efficiency of the different
approaches is judged w.r.t. consistency conditions which the
extracted point sets have to fulfil for a valid 3D interpreta-
tion.

2. Corner extraction

We investigate five direct schemes for extracting the cor-
ner positions of 3D polyhedral objects. Direct schemes can
be classified into local and semi-global approaches. From
each class we have selected one representative. Addition-
ally, each of the two approaches has been investigated in
conjunction with a nonlinear diffusion scheme. The results
are compared with manually selected positions.
1. Manual selection: The image is displayed on the screen
and the pixel (integer-)coordinates are picked out by hand.
2. Local operator (Kitchen and Rosenfeld 82): To detect
corners Kitchen and Rosenfeld [9] proposed a differential
operator which consists of the first and second partial deriva-
tives of the image g�x� y�:

KR�x� y� �
g�xgyy � 	gxgygxy 
 g�ygxx

g�x 
 g�y
(1)

In our implementation we have used � � � Beaudet masks
[1] to compute the partial derivatives.

3. Local operator and nonlinear diffusion: One problem
with local operators is that they are relatively noise sensi-
tive. Often points are detected which do not correspond to
corners. Nonlinear diffusion approaches, on the other hand,
reduce the amount of noise while at the same time preserve
the systematic intensity variations. To reduce the influence
of the noise (and the influence of possibly other distortions)
we therefore suggest to apply the local corner operator on
nonlinear diffused images (instead of using the original im-
ages). In our case, we investigate the nonlinear diffusion ap-
proach of Schnörr [16] in conjunction with the local operator
of Kitchen and Rosenfeld [9].
4. Model fitting (Rohr 90,92): In Rohr, [12], [13] a model-
based approach for recognising edges and corners has been
introduced. This approach is based on a parametric model,
which represents the systematic intensity variations of cor-
ners resulting from polyhedral 3D objects. The model is a
superpositionof L-corner model functions and comprises ar-
bitrary complex corners in terms of the number of intersect-
ing edges, for example, L-, T-, Y-, and Arrow-corners. Cor-
ner localisation is achieved by fitting the model directly to
the image intensities within semi-global regions (e.g.	��	�
windows) yielding subpixel positions. Under reasonable as-
sumptions the exact geometric positions of the corners can
be determined independently of the amount of image blur.
Denoting the parametric model with gM �x� y� p� and the im-
age intensities with g�x� y� the parameters p are estimated
by a least-squares fit:

min
p�Rn

mX

i��

�
g�xi� yi�� gM �xi� yi� p�

��
(2)

5. Model fitting and nonlinear diffusion: To reduce the in-
fluence of the noise and of possibly other distortions we here
apply the model fitting approach as described above also
on nonlinear diffused images obtained with the approach in
[16].

3. Invariance methods

In this section we will briefly describe the different meth-
ods used to check the consistency of the detected corners.
We remark that the ‘true’ location of the corners are not
known. This means that we can only check the consistency
of the image with respect to the a priori information of the
object. We remark that the camera model used is the stan-
dard uncalibrated perspective camera and we have assumed
that no nonlinear deviations are present.

The image of the truncated cube, see the left part of Fig-
ure 1, contains 4 planar surfaces, one on top, one on the left,
one on the right and one triangular in the middle. The only
assumption made on the truncated cube is that these four
surfaces are planar. When this assumption is made there is



only one consistency condition on the location of the cor-
ners. Consider the lines between the top surface and the left
surface, between the top surface and the right surface and be-
tween the left surface and the right surface. These lines are
intersections between the surfaces and are seen as lines con-
necting some of the located points in the image. The lines
are determined by the coordinates of the six points on the
lines. The three surfaces defining the lines, the top surface,
the left surface and the right surface, meet somewhere in 3D
space. In general three planes meet in a single point. Since
the three lines mentioned above are intersections between
pairs of these planes, these three lines must also intersect in
one point.
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Figure 1. Image of a truncated cube and an L-
shaped object.

This condition can be formulated mathematically by the
so called second order syzygies of the S-matrix or shape
matrix, see [18], [7]. Let S�Y� denote the S-matrix corre-
sponding to the point configurationY . The S-matrix can be
used to determine whether the line-drawing is correct or not
by using the following theorem, see [7].

Theorem 3.1. X is an impossible planar configuration if
and only if

rankS�A� � jV �A�j � � (3)

for some collection of faces A of Y , where jV �A�j is the
number of points in A.

In this case the image is correct if and only if
rankS�Y� � �. In order to check this condition we have to
examine the rank by using a singular value decomposition.
If the sixth singular value is close to zero we can detect the
corresponding linear combination, w, of the columns that
is closest to zero. Then it is possible to adjust the entries
in the S-matrix such that the linear combination, w, of the
columns are exactly zero, see [7] again. This is a linear al-
gorithm and it decreases the rank of the new S-matrix, �S,
to �. Finally, we must find a point configuration as close
as possible to the original one, in the Euclidean metric, but
with the new S-matrix, �S, as its S-matrix. This problem is

again a quadratic goal function with linear constraints and
the solution is

�x � x� �S� �ST �S��� �STx � (4)

where x is a vector with components xi and similarly for y.
In order to test the consistency of the detected corners for

the L-shaped object in the right part of Figure 1 we must use
more a priori information than just planarity of the faces. We
will use two different levels of a priori information.

First, if we know the shape of the faces, we can calculate
the S-matrix, S�X � of the 3D object, X , see [18]. The fol-
lowing equation, see [18] again, is useful

diag���S�X � � S�Y� diag�c� � (5)

where X is the object, Y is the image, � is a vector contain-
ing the relative depths and c is a vector needed to adjust for
different scale factors. From this equation it is possible to
solve for � and c, using linear methods. Then the new S-
matrix can be calculated as �S � diag���S�X �. Finally we
use (4) again which gives a corrected image.

Secondly, if we have a complete model of the object we
can do a little more. The camera equation can be written,
using a camera matrix, P :

�ixi � PXi � (6)

where xi � 
xi yi ��
T , X � 
Xi Yi Zi ��

T , and �i � ���i
are the inverse relative depths. Here it can also be seen that
these equations are linear in � and P . Thus it is possible,
using only a singular value decomposition, to compute the
relative depths and the camera matrix. Finally, the new cor-
rected coordinates in the images can be calculated from (6)
now when both the relative depths and the camera matrix are
known.

4. Statistics

It is possible to estimate the variance without bias if we
know the degree of freedom, or dimension, of the manifold
that constrains the correct corner positions, see [11] for fur-
ther details. If we measure the error as the distance to some
manifold with dimension d it can be shown that the variance
can be estimated, in a first order approximation, as

��� �
�

n� d

nX

i��

e�i � (7)

In the truncated cube case we have just one constraint on the
image coordinates and thus d � n � � � �� � � � ��.
In the first consistency test of the L-shaped object we have
n�d � �� constraints on the corner positions. In the second
consistency test we also have n� d � �� constraints on the
coordinates, which is the same as the number of coordinates



minus the degree of freedom in the projection matrix for an
uncalibrated camera.

The results are shown in Table 1. The average standard
deviation have been calculated using all points, in the three
tests, that is �� 
 		 
 		 � �	 coordinates and n � d �
� 
 �� 
 �� � 	� as the total number of constraints.

We remark that these estimates are obtained from a
nonexact calculation of the shortest distance to the manifold
of constraints and this will of course bias the estimates, mak-
ing them bigger. We have also used a linear approximation
of the manifold of constraints which will also bias the esti-
mates.

5. Experimental Results

Our approach has been investigated on the camera
recorded images shown in Figure 1. The corner positions for
the truncated cube image have been extracted using the five
schemes described in Section 2. Note, that the quality of the
image is not very good. The noise is relatively large and also
several other distortions are present. Therefore, the appli-
cation of the local operator resulted in many misdetections.
When using the local operator on the nonlinear diffused im-
age the number of misdetections was reduced largely. To ob-
tain the right number of corners, in either case we manually
selected those detected points which were closest to the ac-
tual corner positions. The model fitting approach also has
been assisted interactively to obtain good starting values for
the minimisation procedure. As with the local operator the
robustness improved when using the nonlinear diffused im-
age.

Figure 2 shows the resulting errors (in pixels) of the con-
sistency test described in Section 3 applied to the corner
points of the five extraction schemes. We have also marked
the three points with largest deviations. Note, that our test
only checks the consistency of point sets and therefore the
corrected points may well be displaced from the true posi-
tions. It can be seen that the smallest values of the estimated
standard deviation are obtained with the model fitting ap-
proach and with model fitting in conjunction with nonlinear
diffusion. The local operator yields the largest value. Re-
garding the three points with largest errors we see a remark-
able consistency among the different extraction schemes.
Nearly all approaches rate the corner points 6, 9, and 5 (in
this order) to be farest away from the corrected positions.
Also, we have about the same relative errors in horisontal
and vertical direction.

In Table 1 are the estimated standard deviations (in pix-
els) for the different corner extraction schemes. The best re-
sult is obtained with the model fitting approach followed by
model fitting in conjunction with nonlinear diffusion, man-
ual selection, local operator together with nonlinear diffu-
sion, and local operator. It appears that nonlinear diffusion

as a preprocessing step increases the accuracy of the local
operator by a factor of three while the accuracy of the model
fitting approach decreases slightly.
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Figure 2. Graphical representation of the errors (in
pixels) for the truncated cube(above) and for the
second consistency test applied to the L-shaped
object (below); a) manual selection, b) local opera-
tor (Kitchen/Rosenfeld), c) local operator & nonlin-
ear diffusion, d) model fitting (Rohr) and e) model
fitting & nonlinear diffusion. The three ‘worst’
points are indicated with their point number from
Figure 1.

For the L-shaped object in Figure 1 the resulting errors
(in pixels) of the second consistency test described in Sec-
tion 3 are shown in Figure 2. Table 1 shows the estimated
standard deviations (in pixels) for the different corner ex-
traction schemes using both consistency tests. Also with this
image and the two consistency tests we qualitatively obtain
the same result as before.

Taking all measurements for the two images and the cor-
responding three consistency tests we obtain the average
(corrected) estimates of the standard deviation of the differ-
ent corner extraction schemes as shown in the last row of Ta-
ble 1. For the model fitting approach the standard deviation



turns out to be about ��� pixels. Model fitting in conjunction
with nonlinear diffusion and manual selection are somewhat
worse and the accuracy of the local operator is about three
times worse than the model fitting approach.

6. Conclusions

We have investigated the performance of five different
corner extraction schemes using three different types of
invariants to constrain the locations of the coordinates of
the set of corners. The variance of the corner extraction
schemes has been estimated using the distance to the man-
ifold of constraints. It turns out that the model fitting ap-
proach of Rohr [13] yields the best result, manual selection
is somewhat worse than model fitting and the local operator
of Kitchen and Rosenfeld [9] turns out to be a factor of three
worse. Nonlinear diffusion as a preprocessing step seems to
make the local operator more robust but slightly decreases
the accuracy of model fitting.

The use of invariance methods to evaluate corner extrac-
tion schemes seems to be successful and easy to use, since
the camera does not need to be calibrated and the relative
position and orientation between the camera and the object
need not be known in advance. However, in order to make
a more reliable estimate of the performance of the different
corner extraction schemes one has to use more images and
statistical methods.
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Type Manually Local op. Local op. & Model fitting Model fitting
(Kitchen/R.) nonlin. diff. (Rohr) & nonlin. diff.

Truncated cube 0.2571 1.5750 0.4564 0.1690 0.2486
L-shaped object, I 0.7290 1.9395 1.7015 0.6057 0.6710
L-shaped object, II 0.5869 1.6451 1.4799 0.4852 0.5587

Average 0.6493 1.7892 1.5624 0.5379 0.6060

Table 1. Estimated standard deviations (in pixels) for the different corner extraction schemes.


