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Abstract. Theintegration of vision and natural languageprocessingincreasingly
attracts attention in different areasof Al research. Up to now, however, there have
only been a few attempts at connecting vision systems with natural language
access systems. Within the SFB 314, specia collaborative program on Al and
knowledge-based systems, the automatic natural language description of real
world image sequencesconstitutesamajor research goal, which hasbeen pursued
during the last ten years. The aim of our approach is to obtain an incremental
evaluation and simultaneous description of the perceived time-varying scenes. In
this contribution wewill report on new resultsof our joint efforts at combining the
natural language accesssystem VITRA with avision system. We haveinvestigated
the problem of describingthe movementsof articul ated bodiesin image sequences
within anintegrated natural language and computer vision system. The paper will
focus on our model-based approach for the recognition of pedestriansand on the
further evaluation and language production in VITRA.

1 Motivation

The ability to talk about what we see constitutes an important aspect of our commu-
nicative capabilities. Consequently, the interplay between perception and language in
human-machine interaction constitutes a prominent issue in many potential application
areas of language-oriented Al research. Only recently, the integration of vision and
natural language processing has attracted growing attention in the field (see [2], [7],
[16], [23], [34]).

Leaving out the problem of machine perception, the relationship between natural
language and visual accessible information has mainly been studied in the context of
natural language interfaces to graphical systems (e.g. ANIMNL [3], Swim [5], VIENA
[33], WINTOP [26]) and to geographical information systems (e.g. GEOSYs [10] and LEl
[8]). Only a few approaches have been concerned with a natural language access to
camera-recorded images. LANDSCAN [4] answers questions about aerial images, which
were taken from aminiaturized model of acity. Image analysisin LANDSCAN is guided
by the natural language queries and tries to focus on the recognition of the relevant
objects, mentioned in the questions. Dynamic traffic scenes have been investigated
in the dialog-system HAM-ANS [35] and in the system NAOs [25], which generates
retrospective natural language descriptions. Despite first promising results for rigid
objects [9], the connection to the vision component could not be achieved at that time



and the geometric descriptions of the analyzed time-varying scenes had to be prepared
manually from the underlying image sequences.

In the context of the SFB 314, special collaborative program on Al and knowledge-
based systems, theintegration of image sequence analysisand natural language produc-
tion has been further investigated (see [15]). As afirst step, trgjectories of the centroids
of object candidates in the image plane could be provided and utilized to answer simple
guestions about observations in a short traffic scene [31]. The same image analysis
method, which considers object candidates to be essentialy rigid, has been applied
to short sections of an image sequence recorded from a soccer game. The calibration
of the camera allowed for the transformation of trajectories from the image plane into
world coordinatesand thetransformed trajectories served asinput for the VITRA system,
which generates arunning report for the scene under consideration[14]. The more recent
model-based approach described in [20] accomplishes the automatic 3D-reconstruction
of vehicles in traffic scenes and provides more reliable tragjectories of rigid objects for
the natural language system.

In this contribution we will report on new results of our joint efforts, which extend
the current framework to cope with the automatic perception and verbal description of
the movements of articulated bodies, namely pedestrians, in image sequences. In the
long term, our ongoing investigations in the following application areas will benefit
from a proper treatment of the recognition and natural language description of human
movements:

— Intelligent multimedia systems (see [1])
— Driver support systemsin road vehicles (see [21])
— Autonomous mobile robot systems (see [32])

In addition, the systems envisaged here could serve practical purposesin other areas as
well, e.g., in traffic control and in medical technology.

2 Model-Based Recognition of Human Movements

Within computer vision the automatic interpretation of human movements is one of the
most challenging tasks. A central problem in recognizing such movementsis due to the
fact that the human body consists of body parts linked to each other at jointsto enable
different movements of the parts and therefore, in general, has to be treated as a non-
rigid (or more precisely as an articulated) body. In addition, for general camera positions
always some of the body parts are occluded. Although occlusion can give important
cues in a recognition task, the automatic interpretation gets more difficult. Another
problem that has to be dealt with isthe clothing which can have alarge influence on the
appearence of a person (wide or tight trousers, different jackets, etc.). Clothing can aso
cause complex illumination phenomena that, in addition, change during movement.
Because of these difficulties most existing approaches assumethejoints of the human
body to be marked or they investigate synthetic images. Approaches for real-world im-
ages often analyze gymnastic movements but not locomotionwhichin general simplifies
the interpretation because the effect of self-occlusion is diminished. Other approaches



restrict their analysis of locomotionsto certain parts of the body (for references see, for
example, [6] and [30]).

In this section we describe our model-based approach for recognizing human move-
ments (for details see [28], [29], [30]). With this approach the human body as well as
its movement is represented explicitly. Given a monocular real-world image sequence
recorded with a stationary camera our agorithm determines the 3D positionsas well as
the postures of moving persons. The algorithm is designed for analyzing the movement
of human walking (which isthe most frequent type of locomotion of persons) but could
also be generalized to other movements. In comparison to [17], [18] where aso im-
ages of walking persons were analyzed, in our approach we employ data from medical
movement studies. This data represents an average over arelative large number of test
persons. We also use a Kalman filter for incrementally estimating the model parameters
yielding smooth and robust results. An additional advantage is that our system runs
completely automatic.

2.1 Overview of our Approach

Our algorithm can be subdivided into two phases: initialization and incremental esti-
mation. Whereas in the first phase the images are evaluated in a batch type manner, in
the second phase processing is done on an incremental basis. The main parts can be
summarized as follows.

1. Initialization

Independent evaluation of about 10-15 images:

— Detection of image regions corresponding to moving persons
(using a change detection algorithm and binary image operations)

— Estimation of the movement states, i.e. 3D positionsand postures
(using a calibration matrix for central projection and matching
contours of the 3D model with grey-value edges)

— Determination of starting values for the Kalman filter
(using linear regression and al the estimates from above)

2. Incremental estimation

After initialization the following Kalman filter scheme is applied to each image:
— Prediction of the movement state
(using estimation results from previous images)
— Determination of measurements
(using matching results of the 3D model to the current image)
— Estimation of the current movement state
(using the predicted movement state and the measurements)

2.2 Human Body and M ovement M odel

We represent the human body by a cylindrical volume model as suggested in [22] (see
Fig. 1). For modelling the movement of walking we use a kinematic approach exploiting



Fig. 2. Movement states of walking represented by the
visible contours of the 3D model (pose = 0.0,0.1, 0.2,
Fig. 1. 3D model of thehumanbody 0.3, 0.4, 0.5)

data from the medical movement study described in [24]. The study demonstrates that
the movement curves of the body parts of different persons are very similar. This fact
opens us the possibility to use this data as a knowledge source. Note, however, that
the similarity for different personsis very astonishing if one imagines that it is often
possible to identify persons by their gait.

In our approach we have used the angle values from the movement curves for each
of thejointsat the shoulder, ellbow, hip and knee and have interpol ated them by periodic
cubic splines. Analogously, we have modelled the vertical displacement of the whole
body. Since walking is a symmetric movement, the movement curves of the joints are
only needed for one side of the human body. A nice property is that we need only one
parameter, named pose, to specify the relative positions of all body parts (see Fig. 2).

2.3 Incremental Estimation Using a Kalman Filter
We apply a Kalman filter to incrementally estimate the 3D position X = (XY, 7) as
the center of the torso as well as the posture pose of a person in succesive images:
Pr = Py j—1Pr-1+ Wi_1
zy =H,pr+V
where the searched model parameters are repesented by the state vector p; at the point
of time k. @, ,_, is the transition matrix and w; represents modelling errors. H;
denotes the measurement matrix and v;, represents measurement errors. Predicting the
parameters and the covariance matrix is done by :
pr = Qk,k—lﬁk—l
Py = Qk,k—lgk—lgg,k—l +Q,
With these predictions and the current measurement z;, the estimates p,, and P, in the
current image can be computed as:
Pr = pi + K, (z — Hy pf)
P, =(1-KH,)P;
K, =P/H] (H,P;/H] +R;)™"



Fig. 3. Estimated movement states superimposed onto the original images (images number 20 and
80; for visualization purposesthe upper and lower part of the original images have been cut)

In the following we assume the velocity of the movement to be constant and that the
pedestrian moves parallel to the image plane. In our approach the problem of self-
occlusion is treated by fitting the model as a whole (using a hidden-line algorithm to
remove occluded model contours). Note, that based on the predictions the search space
for matching the model contourswith grey-value edges can considerably be reduced.

2.4 Experimental Results

Our approach has been applied to a real-world image sequence which shows awalking
person crossing the street. The whole sequence consists of 80 images corresponding to
about 3 seconds observation time. Estimated movement states superimposed onto the
original images are shown in Fig. 3. Note, that for visualization purposes we have cut
out the upper and lower part of the original images. The algorithm, however, has been
applied to the whole images. For each image our algorithm provides estimates for the
3D position and the posture. These values are transferred to the natural language access

sytem.



3 High-Level Scene Analysis

Information concerning visible objectsand their locations over time, together with addi-
tional world knowledge about the objects, constitutesthe geometrical scene description
(GSD). This intermediate representation has been proposed in [25] as an idealized
interface between a vision system and a natural language access system.

Further interpretation of the GSD isrequired in order to translate the results of low-
level vision processes into a natural language description. High-level scene analysis
aims at recognizing conceptual units at a higher level of abstraction, including spatial
relations for the explicit characterization of spatial arrangements of objects as well as
motion events for the qualitative representation of object movements. These conceptual
structures bridge the gap between visual data and natural language concepts, such as
spatial prepositions, motion verbs, and temporal adverbs (see Fig. 4).

Digitized Image
Sequence
Sensory
Level

Geometrical Scene Z  PCSE
24o 82 105 17 -870.54 0. 67

Description o -235.50 104. 49 - 870. 54 0. 71
22 -228.25103.95 -870.540.77 ...
: (s-rel-on :refo street-segnent01
Relation Tuples ;1o human0Ol1 ...
Conceptual
Level
o (proceed [0: 01: 04]
Event Propositions (event :type nove-across
:agent hunmanOl ...
(description :object human0l
Deep Structures :descriptors (location ...
Linguistic (add-pp :head "auf-2" :func 'location
Level Surface Structures cidentifier 'pp-1 :regent 'vp-1)
NL-Utterances ... auf der Strasse....

Fig. 4. Levelsof representation in the transformation from visual datato verbal descriptions

Inthe GSD spatial informationisencoded quantitatively. In analogy to prepositions,
their linguistic counterparts, spatial relations provide a qualitative description of spatial
arrangements of objects. Each spatial relation characterizes a class of object configura-
tions by specifying conditions, such as the relative position of objects or the distance



between them. The detailed geometric knowledge, encoded inthe GSD, can be exploited
for the definition of a reference semantics, that does not assign simple truth values to
spatial predications, but instead introduces a measure of degrees of applicability that
expresses the extent to which a spatial relation is applicable (see [13]). Since different
degrees of applicability can be expressed by linguistic hedges, such as ‘directly’ or
‘more or less’, more exact scene descriptions are possible. Furthermore, the degree of
applicability can be used to select the most appropriate reference objects and relations
if an object configuration can be described by several spatial predications.

Our system (for detailssee [11], [13], [32]) iscapable of computing topological (e.g.
in, near, etc.) as well as orientation-dependent relations (e.g. left-of, over, etc.). Since
the frame of reference is explicitly taken into account, the system can cope with the
intrinsic, extrinsic, and deictic use of directional prepositions. A continuous gradation
of the applicability of arelation is achieved by mapping the relevant factors, i.e., the
scaled local distance and if necessary a local deviation angle, onto appropriate cubic
spline functions.

Header: (MOVE-ACROSS ?0* mobile-object ?s* surface)
Subconcepts:. (MOVE ?0) [I1]
(LOC-INTERIOR 2075) [12]
(LOC-EXTERIOR 70 ?%) [I3]
Temporal-Relations:  [12] :during [11]
[12] :meets [I3]
[12] :equals [MOVE-ACROSS]

Fig. 5. Event model for the concept ‘ move-across

The interpretation of object movements in terms of motion events serves for the
symbolic abstraction of the temporal aspects of a time-varying scene. In VITRA, the
recognition of motion eventsis based on generic event models, i.e., declarative descrip-
tions of classes of interesting object movements. These event concepts are organized
into an abstraction hierarchy, grounded on specialization (e.g., runningisamoving) and
temporal decomposition (see Fig. 5). This conceptual hierarchy can be utilized in the
language production process in order to guide the selection of the relevant propositions.

If areal-world image sequence is to be described simultaneoudly as it is perceived,
one has to talk about object movements even while they are currently happening and
not yet completed. Thus, event models are translated automatically into labeled directed
graphs, which alow an incremental event recognition by traversing one edge after
the other. These course diagrams model the prototypical progression of an event and
they rely on a discrete model of time, which is induced by the underlying image
sequence. Since a distinction between events that have and those that have not occurred
isinsufficient, the additional predicates start, proceed, and stop have been introduced,
which can be used to characterize the progression of an event. The edges in the course
diagrams are typed in order to define these basic event predicates [12], [13].



In general, even a high-level analysis as it is depicted here, may not be sufficient
for the selection of an adequate description. Besides spatio-temporal aspects, non-visual
conceptslikethe presumed intentions, plans, and planinteractionsof the observed agents
can play an important role (e.g., in “ The old lady is waiting at the pedestrian crossing
for the traffic lightsto turn green””). In the soccer domain of VITRA, a module for such
an intentional interpretation has already been realized [27].

4 Generating Natural Language Descriptions

The incremental high-level scene analysis continuously provides information as the
image sequence progresses. Simultaneously, natural language utterances have to be
generated in order to provide a running report of the time-varying scene. In VITRA, this
comprises (1) the selection of currently relevant propositions, (2) their ordering into a
linear text structure, and (3) the successive encoding of the selected propositions[15].

Because of the strong temporal restrictions, the description must focus on the most
relevant facts, which are determined by salience, topicality, and recognition state of the
corresponding events. The taxonomic structure formed by the generic event concepts
can be exploited for the valuation of the importance of an event while selecting among
different propositions. Generally, more complex motion events are preferred since they
provide a higher degree of condensation of visual information. The salience of an event
is also determined by the frequency of occurrence. Topicality decreases continuously
for terminated movements and actions as the scene progresses. To avoid redundancy,
an occurrence will not be mentioned if it isimplied by some other proposition already
verbalized. The linearization of propositionsdepends primarly on thetemporal ordering
of the corresponding events and actions; secondarily, focusing criteria are employed to
maintain discourse coherence.

After relevant propositions are selected and ordered, they are passed over to the
encoding component. In the process of transforming symbolic event descriptions into
natural language utterances, first a verb is selected and the case-roles associated with
it are instantiated. In our approach, lexical choice relies on a rule-based conceptual
lexicon, which constitutesthe connecti on between non-linguistic and linguistic concepts.
Considering the contents of the text memory and the partner model additional selection
processes decide which informati on concerning the case-rol e fillers should be conveyed.
The choosen information is then tranglated into natural -language expressions referring
to objects, locations, and time.

Internal object identifiers are transformed into noun phrases by the selection of
attributes that enable the listener to uniquely identify the intended referent. Anaphoric
expressions are generated if thereferent isin focus and no ambiguity is possible. Spatial
prepositionsand appropriate obj ects of reference are sel ected to refer to spatial relations;
time isindicated by the verb tense and by temporal adverbs.

The verbalization process, which includes grammatical encoding, linearization, and
inflection, receives preverbal messages in a piecemeal fashion (see Fig. 6). Itisbased on
theformalism of Lexicalized LD/LP Tree Adjoining Grammar (LTAG), which associates
lexical items with syntactic rules, permits flexible expansion operations and allows
the description of local dominance to be separated from linear precedence rules [19].



(add-utt-par :identifier 'utt-par-1 :intention 'declarativ)
(add-vp : head "geh" :identifier 'vp-1 :mpod 'indicative)
(add-np : head "fussgaenger" :identifier 'np-1
:specifier 'definite)
(add-np : head "strasse" :regent 'pp-1 :func 'prepobject)
(add-pp : head "ueber" :func 'location :identifier ’'pp-1
:regent 'vp-1)

Der Fussgaenger geht ueber die Strasse. (The pedestrian walks acrossthe street.)

Fig. 6. Preverbal messages and generated utterance

These characteristics make LTAG's a good candidate for incremental natural language
generation [1].

Fig. 7 shows the GSD as it has been derived from the real-world image sequence,
presented in Fig. 3, and the corresponding natural language description. In this short
example, the location of the only visible mobile object had to be described first, since
the listener must be enabled to construct a visual conceptualization of the scene. For

Auf der Strasse in etwa rechts

vor dem Osttrakt befindet sich ein

Fussgaenger.

Er geht ueber die Strasse.

(Thereis a pedestrian on the street
A n A d nearlyin front andto theright of the

eastern part of the building.

He walks acrossthe street.)

Fig. 7. Visualization of the GSD (for the images number 20, 40, 60, and 80 of theimage sequence
shownin Fig. 3) and the corresponding verbal description

the synthesis of the localization expression several spatial predications are combined in
this case. Despite the high degree of applicability for the topological relation ‘on’ this
spatial reference is not specific enough, because of the extent of the reference object
‘street’. Two projective relations have to be composed in order to relate the pedestrian
to the partly visible building, which constitutes a salient landmark in the scene. Taking



into account the prominent front of the building, an intrinsic orientation of the reference
object has been selected instead of the deictic frame of reference, asit isestablished by
the perspective view. In our example, the crossing of the street constitutes the salient
motion event, which is verbalized as the movement continues.

5 Conclusion

One of the goals of language-oriented Al research is to attain a completely operational
form of referential semanticsthat reaches downto the sensoric level. Inthiscontribution
we have reported on current progress in our attempts at integrating vision and natural
language processing. These resultsconstituteafirst step towardsautomatic simultaneous
description of human movements in real-world image sequences. An advantage of our
approach isthe emphasis on concurrent image sequence eval uation and natural language
processing, carried out on an incremental basis. These features constitute an important
prerequisite for real-time performance.

So far, from the point of view of natural language generation, image anaysis is
till restricted to rather short and relatively simple image sequences. For more complex
scenes the vision system would require an extension for the classification of different
kinds of mobile objects and different movement types. In addition, image anaysis
may not be restricted to the recognition of moving objects, but could provide the 3D
reconstruction of the stationary background as well. Because of the simplicity of the
investigated time-varying scene, which contains a single mobile object and only a few
landmarks, there isno need to fully exploit the 3D reconstruction of the articul ated body
in the course of high-level analysis and language production. In order to investigate the
generation of more complex textual descriptions, appropriate synthetic scenes have to
be studied as well. For methodical reasons, however, it seems to be decisive to cope with
available data from real-world image sequences if current limitationsin the integration
of vision and language processing are to be overcome.

6 Technical Notes

The computer vision system has been implemented in ADA on a DEC Workstation.
The VITRA system is written in Common Lisp and CLOS, with the graphical user
interface implemented in CLIM, and has been developed on Symbolics UX1200S Lisp
Coprocessors, and on HP 9720 as well as on SUN Workstations.
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