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Abstract. We consider elastic registration of medical image data based
on thin-plate splines using a set of corresponding anatomical point land-
marks. Previous work on this topic has concentrated on using interpola-
tion schemes. Such schemes force the corresponding landmarks to exactly
match each other and assume that the landmark positions are known
exactly. However, in real applications the localization of landmarks is
always prone to some error. Therefore, to take into account these local-
ization errors, we have investigated the application of an approximation
scheme which is based on regularization theory. This approach generally
leads to a more accurate and robust registration result. In particular,
outliers do not disturb the registration result as much as is the case
with an interpolation scheme. Also, it is possible to individually weight
the landmarks according to their localization uncertainty. In addition to
this study, we report on investigations into semi-automatic extraction of
anatomical point landmarks.

1 Introduction

In neurosurgery and radiotherapy it is important to either register images from
different modalities, e.g. CT (X-ray Computed Tomography) and MR (Magnetic
Resonance) images, or to match images to atlas representations. If only rigid
transformations were applied, then the accuracy of the resulting match often is
not satisfactory w.r.t. clinical requirements. In general, nonrigid transformations
are required to cope with the variations between the data sets. A special class
of general nonrigid transformations are elastic transformations which allow for
local adaptivity and are constrained to some kind of continuity or smoothness.

This contribution is concerned with elastic registration of medical image data
based on a set of corresponding anatomical landmarks. Such a feature-based
approach comprises three steps: (1) Extraction of landmarks in the different
data sets, (2) Establishing the correspondence between the landmarks, and (3)
Computing the transformation between the data sets using the information from
(1) and (2). Among the different types of landmarks (points, lines, surfaces, and
volumes) we here consider point landmarks.



Previous work on point-based elastic registration has concentrated on i) se-
lecting the corresponding landmarks manually and on ii) using an interpolating
transformation model (Bookstein [2], Evans et al. [6], and Mardia and Little
[10]). The basic approach draws upon thin-plate splines and is computationally
efficient, robust, and general w.r.t. different types of images and atlases. Also,
the approach is well-suited for user-interaction which is important in clinical
scenaria. However, an interpolation scheme forces the corresponding landmarks
to exactly match each other. The underlying assumption is that the landmark
positions are known exactly. In real applications, however, the localization of
landmarks is always prone to some error. This is true for interactive as well
as for automatic landmark localization. Therefore, to take into account these
localization errors, we have investigated the application of an approximation
scheme where the corresponding thin-plate splines result from regularization
theory. Generally, such an approach yields a more accurate and robust regis-
tration result. In particular, outliers do not disturb the registration result as
much as is the case with an interpolation scheme. Also, it is possible to indi-
vidually weight the landmarks according to their localization uncertainty. We
have applied this approach to elastic registration of 2D tomographic images of
the human brain. Investigations for 3D images are under way. Additionally, we
report on investigations toward the automatic extraction of anatomical point
landmarks using differential operators. We will present first experimental results
on 2D and 3D tomographic images. Algorithms for this task are important since
interactive selection of landmarks is time-consuming and often lacks accuracy.

In the following, we first discuss clinical applications of point-based elastic
registration. Then, we briefly review the original thin-plate interpolation scheme
and extend this approach to an approximation scheme. Finally, we describe in-
vestigations into semi-automatic landmark localization.

2 Clinical Applications for Elastic Registration

Although elastic matching is not routinely used in clinical practice yet, there
are several application scenaria in which elastic matching is believed to improve
current therapeutical procedures.

2.1 Image-atlas matching

One possible application is trajectory planning for neurosurgical intervention.
Pain treatment as well as epilepsy treatment sometimes require to localize a
functionally important region not visible in the available image data. There are
instructions available in the literature how to construct the position of such a
region given landmarks which can be identified in CT or MR images. Hence,
it is useful to superimpose an atlas with a medical image as already proposed
by Talairach. Due to the individual variability of anatomical structures, rigid
registration is generally not sufficient and elastic matching should be applied.



2.2 CT-MR matching

Another application is the registration of CT and MR images for the purpose
of radiotherapy planning. Additionally, a template atlas can be superimposed
on the MR image to indicate, for example, organs at risk. This superposition
result is then overlayed on the CT image prior to dose calculation and isodose
visualization on the MR image. It is questionable whether rigid registration is
suitable for this purpose since MR images are geometrically distorted. On the
one hand, scanner-induced distortions have to be coped with which are caused
by, e.g., inhomogeneities of the main magnetic field, imperfect slice or volume
selection pulses, nonlinearities of the magnetic field gradients, and eddy cur-
rents [11]. These distortions can be reduced by suitable calibration steps: The
inhomogeneities of the main magnetic field are minimized by passive and ac-
tive shimming whereas, e.g., the gradient nonlinearities cannot be completely
shimmed. Thus, depending on the scanner protocol, the sum of all remaining
distortions leads to a residual error of a few millimeters (for a spherical field
of view of 25 cm). On the other hand, there are geometrical distortions in MR
images that are induced by the patient and cannot be removed by calibration.
Parameters such as susceptibility variations, chemical shift for non-water protons
and flow-induced distortions for vessels are very important. While the suscep-
tibility difference of tissue and bone is negligible, the susceptibility difference
between tissue and air is approximately 107°. This can result in a field vari-
ation of up to 10 ppm and geometrical distortions of more than 5 mm [9],[4]
which is most important for the nasal and aural regions. Consequently, due to
the scanner- as well as the patient-induced distortions of the MR image CT and
MR images cannot be satisfactorily registered using a rigid transformation.

3 Thin-Plate Spline Interpolation

The use of thin-plate spline interpolation for point-based elastic registration of
medical images was first proposed by Bookstein [2]. Here, we briefly describe this
method in the general context of d-dimensional images (see also [15]): Given two
landmark sets each consisting of n landmarks p; and q;, ¢ = 1,...,n in two
images of dimension d, find the transformation u within a suitable Hilbert-space
H? of admissible functions, which i) minimizes a given functional J : H¢ — IR
and ii) fulfills the interpolation conditions

u(p;) = q, i=1,...,n. (1)
We only consider such functionals J(u) which can be separated into a sum of
similar functionals that only depend on one component of the transformation
u. Thus, the problem of finding u can be subdivided into d problems for each
component z of u. In the case of interpolation the functional is fully described

through the dimension d of the domain and the order m of derivatives used [5]
and can be written as

2
din m! "z
Jm(Z) = Z arl - ay! /IRd <8$<1X1 ,,.3$gd) dx. (2)
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The functional is invariant w.r.t. translations and rotations.

Let a set of functions ¢; span the space Hm_l(IRd) of all polynomials on IR?
up to order m — 1, which is the nullspace of J%. The dimension of this space is
M = (d4+m—=1)1/(d!(m—1)!) and must be lower than n (this gives the minimum
number of landmarks). The solution of the minimization problem can now be
written as:

z(x) = Zai¢i(x) +sz’Uz’(X), (3)

with some basis functions U; = U(-, p;) depending on i) the dimension d of the
domain, ii) the order m of the functional J to be minimized and iii) the Hilbert-
space H of admissible functions [5, 15]. If we choose the Sobolev space H = H?2,
we obtain the kernel

U(x,p) = { m.d|X — Pl n|x — p| m even positive integer

O a|x — p|?™~1 otherwise

with 6., 4 as defined in [17]. Note, that the basis functions U; span an n-dimen-
sional space of functions that depends only on the source landmarks.

The coefficient vectors a = (ay,...,ap)? and w = (wy,...,w,)T can be
computed through the following system of linear equations:
Kw+4+Pa=v (4)

Plw=0,

where v is the column vector of one component of the coordinates of the target
pOiIltS q;, and I(ij = Ul'(pj), Pz'j = qf)](pl)

4 Thin-Plate Spline Approximation Based on
Regularization Theory

To take into account landmark localization errors one has to weaken the interpo-
lation condition (1). This can be done by combining an approximation criterion
with the functional in (2). In the simplest case of a quadratic approximation
term, this results in the following functional [17]:

Ta(u) =" lai —u(pi)* + A5 (u). (5)

i=1

Such functionals have been used for the reconstruction of surfaces from sparse
depth data. Arad et al. [1] recently used a 2D approximation approach of this
kind to represent and modify facial expressions. The first term (data term) mea-
sures the sum of the quadratic Euclidean distances between the transformed
source landmarks and the target landmarks. The second term measures the
smoothness of the resulting transformation. Hence, the minimization of (5) yields
a transformation u, which i) approximates the distance of the source landmarks
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Fig. 1. Thin-plate spline approximation (input data, A = 0,0.001, and 0.1).

to the target landmarks and ii) is sufficiently smooth. The relative weight be-
tween the approximation behavior and the smoothness of the transformation
is determined by the regularization parameter A > 0. If X is small, we obtain
a solution with good approximation behavior (in the limit of A — 0 we have
an interpolating transformation). If A is large, we obtain a very smooth trans-
formation with little adaption to the local structure of the distortions. In the
limit of A — oo we get a global polynomial of order up to m — 1, which has no
smoothness energy J¢ at all.

The interesting fact is that the solutions to the approximation problem have
always the same form as in the case of interpolation. Also, the computational
scheme is nearly the same. We only have to add A in the diagonal of the matrix K:

(K+MX)w+Pa=v (6)
Plw =0.

Adding X in the diagonal also results in a better conditioned system of linear
equations than in the case of interpolation.

Fig. 1 shows an example of the thin-plate spline approximation scheme in
two dimensions (with m = 2) for different values of A. The small black points
and big grey points mark the positions of the source and target landmarks,
respectively. The top-left part of Fig. 1 shows the regular grid. The top-right
part shows the result for A = 0, which is equivalent to the interpolation scheme.
At some locations the grid is heavily distorted, especially around the two close
landmarks in the bottom-left part of this grid. The two bottom grids visualize

results for A = 0.001 (bottom-left) and A = 0.1 (bottom-right), where the latter
one nearly yields a pure affine transformation.



A generalization of the approximation scheme can be made, if we have in-
formation about the expected accuracy of the landmarks. Then, we can weight
each single data term |q; — u(p;)|? by the inverse variance 1/07. If the variance
is high, i.e. landmark localization is uncertain, then less penalty is given to the
approximation error at this point. The data term now reads

Z": |ai —u(p:)]
i=1 0-22 ’
and we have to solve the following system of equations:

(K—i—/\W_l)w—i—Pa:v (7)
Plw =0,

where W = diag{1/0?,...,1/c2}. Note, that this approach can be applied to
images of arbitrary dimension, i.e. in particular to 2D as well as 3D images.

5 Experimental Results

Within the scenario of CT-MR registration as discussed above we here consider
the important application of correcting patient-induced susceptibility distortions
of MR images. To this end we have acquired two sagittal MR images of a healthy
human volunteer brain with typical susceptibility distortions. In our experiment
we used a high-gradient MR image as “ground truth” (instead of clinically com-
mon CT images) to avoid exposure of the volunteer to radiation. Both turbo-spin
echo images have consecutively been acquired on a modified Philips 1.57° MR,
scanner with a slice thickness of 4mm without repositioning. Therefore, we are
sure that we actually have identical slicing in space. Using a gradient of 1mT/m
and 6mT/m for the first and second image then leads to a shift of ca. 7.5...10mm
and ca. 1.3...1.7mm, respectively (see [14] for details). In our example, we use
the second image as “ground truth” to demontrate that the elastic matching
approach can cope with these distortions and that the use of approximating
thin-plate splines is advantageous.

Within each of the two images we have interactively selected 20 point land-
marks. To simulate outliers, one of the landmarks in the first image (No. 3)
has been shifted about 15 pixels away from its true position for demonstration
purposes (see Fig. 2). Note, however, that interactive localization of landmarks
actually can be prone to relatively large errors. Fig. 3 shows the results of the
interpolating vs. the approximating (A = 0.015) thin-plate spline approach. Each
result represents the transformed first image. In the difference image of the two
results in Fig. 4 we see that the largest differences occur at the shifted landmark
No. 3 which is what we expect. In Fig. 3 on the left it can be seen that the interpo-
lation scheme yields a rather unrealistic deformation since it forces all landmark
pairs, including the pair with the simulated outlier, to exactly match each other.
Using our approximation scheme instead yields a more accurate registration re-
sult (Fig. 3 on the right). The increased accuracy can also be demonstrated by



Fig. 3. Registration results: Interpolation (left) and approximation (right).

computing the distance between the grey-value edges of the transformed images
and those of the second image. In our case, we applied a distance transformation
[12] to Canny edges. The results for the marked rectangular image parts in Fig. 3
can be seen in Fig. 5. Here, the intensities represent the registration error, i.e.,
the brighter the larger is the error. In particular at the marked circular areas,
which indicate the grey-value edges perpendicular to the simulated shift, we see
that the registration accuracy has increased significantly. Note, that in this ex-
periment we only used equal weights for all landmarks. However, incorporation
of quantitative knowledge about the landmark uncertainties promises a further
increase of accuracy.

6 Semi-Automatic Landmark Localization

The problem with point landmarks is their reliable and accurate extraction from
3D images. Therefore, 3D point landmarks have usually been selected manually
(e.g., Evans et al. [6], Hill et al. [8]). Only a few automatic approaches have been
proposed (e.g., Thirion [16]). In this section, we briefly describe our first inves-
tigations into semi-automatic localization of 3D anatomical point landmarks.
Semi-automatic means that either a region-of-interest (ROI) or an approximate



Fig.5. Registration errors: Interpolation (left)

Fig. 4. Difference between the and approximation (right).
two registration results.

position of a specific landmark (or both) is given by the user. Then, an algo-
rithm has to provide a refined position of the landmark. Alternatively, landmark
candidates for a large ROI or even for the whole data set may be provided au-
tomatically from which the final set of landmarks is selected interactively. Such
a semi-automatic approach has the advantage that a user has the possibility to
control the results (“keep-the-user-in-the-loop”).

Within a ROI we apply specific 3D differential operators such as to exploit
the knowledge about a landmark as far as possible, in particular it’s geomet-
ric structure. Typical landmark types in 3D are blobs, line-plane intersections
and curvature extrema. Blobs and line-plane intersections can be determined
by exploiting the Eigenvalues of the Hessian matrix H,. To localize curvature
extrema we exploit the two principal curvatures of the isocontour as is also done
in approaches for detecting 3D ridge lines. In our first experiments we used an
operator which represents the Gaussian curvature, i.e. the product of the two
principal curvatures K = A g, multiplied with the fourth power of the gradient
magnitude |Vg|. Fig. 6 shows a result of this operator for the right frontal horn
in a 3D MR data set. It can be seen that we obtain a strong operator response
at the tip of the frontal horn.

We have also investigated 3D differential operators for providing a set of
landmark candidates. Since we want to apply these operators on a large ROI
or even on the whole data set, it is indispensable to use computationally effi-
cient schemes. To this end we have extended existing 2D differential operators
for detecting points of high intensity variations (‘corner detectors’) to 3D. For a
recent analytic study of such 2D operators see Rohr [13]. These operators have
the advantage that only low order partial derivatives of the image function are
necessary (first or first and second order). Therefore, these operators are compu-
tationally efficient and do not suffer from instabilities of computing high order
partial derivatives. As an example, in Fig. 7 we show the application of the 2D
operator of Forstner [7] vs. a 3D extension of it: detC, /traceC; — maz, where

C,=Vyg (Vg)T and Vg denotes the image gradient in 2D and 3D, respectively.
Note, that in the 2D case many well detected landmarks agree with the inter-
actively selected landmarks in Bookstein [3]. Note also, that the 3D operator
actually takes into account the 3D structure of the landmarks and therefore in a
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Fig. 6. Right frontal horn in a 3D MR data set (left) and result of computing the 3D
Gaussian curvature (right)

Fig.7. Landmark candidates: Application of a 2D ‘corner’ detector (left) vs. a 3D
extension (right) on a 2D and 3D MR image, respectively.

single slice of a 3D image only a few of the 3D point landmarks are visible, 1.e.,
other landmarks according to [3] have been detected in different slices.

7 Summary

We have introduced an approximating thin-plate spline approach based on reg-
ularization theory to elastic registration of medical image data. In the case of
landmark localization errors this scheme generally yields a more accurate and ro-
bust registration result. In particular large localization errors, i.e. outliers, do not
affect the registration result as much as is the case with an interpolation scheme.
In addition, we have reported on investigations into semi-automatic extraction
of anatomical point landmarks from 2D as well as 3D tomographic images of the
human brain.
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