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Abstract

The Integral Equation Model (IEM) predicts the nor-
malized radar cross section (NRCS) of dielectric sur-
faces given surface and radar parameters. To derive the
surface parameters from the NRCS using the IEM, the
model needs to be inverted. We present a fast method
of this model inversion to derive soil surface rough-
ness parameters from synthetic aperture radar (SAR)
remote sensing data. The model inversion is based on
two different collocated SAR images of different bands,
the derivation of the parameters cannot be done using
one band alone. The computation of the model and
the model inversion are very time consuming tasks and
therefore may be impractical for large remote sensing
data. We present an approach that is based on a few
model assumptions to speed up the computation of the
surface parameters. We applied the algorithm to detect
the correlation length of the surface for dry-fallen ar-
eas in the World Cultural Heritage ”Wadden Sea”, a
coastal tidal flat at the German Bight (North Sea). The
results are very promising and may be used for a clas-
sification of the area in future steps.

1. Introduction

The derivation of soil surface roughness parameters
using remote sensing data plays an important role in the
classification of these areas. It is often the first neces-
sary step that has to be performed, before the classifi-
cation can be done using expert’s knowledge about the
surface parameters. In this paper, we will show how
multi-band SAR images (see [5]) can be used for a fast
derivation of the surface roughness parameters.

The radar backscattering of soil surface is measured
by the SAR sensors and depends on different param-
eters: the soil’s dielectric constant, surface roughness
features, etc. Thus, the captured radar backscattering
can be seen as a combination of these parameters, which

makes it difficult to compute a surface parameter from
radar backscatter. However, Gade et al. have shown,
that the Integral Equation Model (see [1]) can be used
to estimate soil surface roughness by means of root
mean square (rms) height and correlation length, di-
rectly from a pair of dual frequency SAR images if a
proper backscatter model is used (see [3]). This con-
clusion holds for tidal flat areas, which are coastal areas
that fall dry once during each tidal cycle.

In 1994, aboard the space shuttle ”Endeavour” was a
multi-frequency (C- and X-band) SAR sensor mounted
(the SIR-C/X-SAR) that simultaneously imaged the
same area using different radar wavelengths. Although
this was a valueable configuration of sensors, it has
never been rebuild. Hence we have to use at least two
single sensor SAR satellites for the derivation of sur-
face parameters. We have chosen images of the ALOS
PALSAR (L-band) and the ENVISAT ASAR (C-band)
sensors for this paper.

The derivation of the surface parameters is achieved
by inverting the IEM. The direct application of the
model and the model inversion are of high computa-
tional complexity. We will introduce the IEM in the
next chapter and show possibilities to increase the speed
of the computation of surface roughness features.

2. The Integral Equation Model

The IEM predicts the NRCS of bare soil as a function
of its dielectric constant and surface roughness. The lat-
ter is generally described by the autocorrelation func-
tion and the standard deviation of the roughness height
(rms height). According to Fung et. al (see [1] [2]) the
single-scattering term of the IEM for vertical (VV) po-
larization, σ0

vv , can be expressed as:
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k is the radar wavenumber that can be divided into the
ground range component kx and the vertical component
kz , and h denotes the rms surface height. The function
Wn denotes the Fourier transform of the n-th power of
the surface autocorrelation function, and θ is the radar
incidence angle. R|| is the Fresnel reflection coefficient
for parallel polarization (i.e., in the plane of incidence),
and Fvv is a field coefficient for vertically polarized
scattering, which described in more detail by Fung et al.
in [1]. Note that the definition for the horizontal (HH)
polarization follows directly from Eq. 1. For this paper
we use the updated version of the Fresnel coefficients
as proposed in [2].

Figure 1. Isolines derived by the IEM
The graphs show the dependencies between the NRCS
(dB) value (plotted isolines), the correlation length, and
the rms height for both used bands.

To determine the surface autocorrelation function,
in-situ measurements using a sledge-mounted sensor
have been carried out by Tanck [6]. The results of these
measuments indicated that the surface autocorrelation
function of tidal flats is very similar to a Gaussian auto-
correlation function, hence we use this autocorrelation
function for the calculation of the rms height and the
correlation length. Fig. 1 shows the resulting isolines
for the L- and C-band respectively.

2.1. Model inversion

The IEM describes the NRCS in dependency to the
rms height and the correlation length. For the task of
deriving surface roughness parameters, Gade et. al pro-
posed to invert the model (see [3]). As each measured
NRCS value represents one isoline in the correlation
length / rms-height space, a direct estimation of both

parameters cannot be done with one SAR image alone
(see Fig. 1, [6]).

To perform the inversion, we use the multi-sensor
(multi-frequency) approach of two collocated SAR im-
ages proposed by Gade et. al. (see [3]). The inversion is
performed in two steps. The first step is the assignment
of each pixel’s NRCS value to a corresponding isoline
of the IEM. The second step is the determination of the
intersection point, which yields to the surface parame-
ters (see [3]).

Figure 2. Inversion of the IEM
The graphs shows the -18dB L-band isoline (solid) to-
gether with the -9dB C-band isoline (dashed). The inter-
section point with the lowest rms height (cross) is used
for the model inversion.

The example of Fig. 2 shows the two isolines (calcu-
lated with the IEM) that correspond to real NRCS val-
ues derived from collocated pixels in the two SAR im-
ages of a selected position on the tidal flats. The model
inversion for this example results leads to a correlation
length of 2.78 cm and a rms height of 0.52 cm.

It should be mentioned that the isolines for C- and
X-band are quite similar because of the similar radar
wavelength compared to those for L-band. Therefore,
Gade et al. suggest that L-band images in combination
with either C- or X-band images are best suited for de-
riving soil surface roughness parameters using the IEM
inversion method (see [3]). Although the X-band is not
used for this study, it can be shown that the intersec-
tion point is near to the marked intersection of Fig. 2
(see [6]). Further, it is beneath the intersection with the
lower rms height. Thus, we have chosen this intersec-
tion point between the L- and C-band if there is more
than one intersection of both isolines.

2.2. Speed enhancement of the model inversion

Building up the model space and running the model
inversion for a mega- of giga-pixel satellite image is a
very time-consuming task. Each pixel has slightly dif-
ferent (angular) model parameters, which means that



the full model space has to be determined once per
pixel. Even if the model spaces could be precalculated,
it would still be time-consuming to find the intersection
of the isolines that is used for the model inversion (see
Fig. 2). To increase the speed of the model inversion we
propose the following computational optimizations:

In satellite radar imagery the incidence angle of the
radar beam changes across the radar image swath, it in-
creases from near-range to far-range. In our calculations
we make use of the incidence angle in the calculation by
the IEM. To investigate the influence of incidence angle
distribution in derivation of the NRCS we compared the
derivation of exact angle with an average value of inci-
dence angle. We found out that the worst case error is
less than 0.3 mm for correlation length and 0.03 mm for
rms height. For our needs the use of an average angle
is sufficient. This allows the same set of model parame-
ters for SAR images and thus to pre calculate the model
space of a pair of images.

Instead of searching for an intersection between the
isolines of the models for each pixel, we create a pri-
ori random access tables. These tables store the rms
height and the correlation length for two given NRCS
values. Note, that each table is only valid for one band
and angle configuration. However, the angles used by
the satellite are fixed to a few configurations for each
satellite. We further have to discretize the domain to al-
low only NRCS values within a certain interval and at a
certain resolution between each value. To meet qualita-
tive requirements of the oceanographers, we found out
that a domain (NRCS) discretization for the range of
[−29.8, 0] using a resolution of 0.2 dB is sufficient. The
average differences in the results are less than 0.5 cm for
correlation length and 0.5 mm for rms height. This re-
sults in table sizes of 150× 150 = 22, 500 entries. The
table creation still is a time consuming operation, but it
leads to re-usable tables on the one hand and to a nearly
constant time complexity for the derivation of correla-
tion length and rms height on the other hand, given two
NRCS values. A brief comparison of the computation
times is given in Tab. 2.

3. Results

For the derivation of the soil surface roughness pa-
rameters, we have selected a pair of images, that were
taken by the ALOS PALSAR and ENVISAT ASAR. To
derive the surface parameters of the dry-fallen areas of
tidal flats, we have to ensure that the images have been
recorded during the same (low) tide conditions. This is
the case for the selected images as they were captured
about half an hour after the local low tide. More infor-
mation about the images can be found in Tab. 1 resp.

Fig. 3 for the region of interest.

Table 1. Satellite Image Characteristics

ALOS ENVISAT
PALSAR ASAR

Date 08/04/12 21:43 08/04/13 10:01
Polarisation H/H V/V
Band L (λ = 235mm) C (λ = 58mm)
Angle 38.7◦ 22.5◦

Resolution 6.25 m/px 12.5 m/px

Figure 3. Location of images and ROI
The large blue region denotes the position of ENVISAT
ASAR image, the red one corresponds to the PALSAR
image. The ROI is shown by the green frame.

For the model inversion, we precalculated the ran-
dom access tables for both sensor angles using the pa-
rameters given in Tab. 1. Before applying the model
inversion using both images, we register the images to
same size and geographic area, and filter both using
a Gamma Maximum A Posteriori (MAP) filter with a
kernel-size of 11×11 pixel (see [4]). This preprocessing
is necessary to suppress the speckle noise that occurs in
SAR images (see [5]). We also mask out areas of water
and land manually, based on the ENVISAT image (see
Fig. 4 topmost panel). Fig. 4 depicts the images of both
sensors for the selected region of interest (ROI).

The model and the model inversion has been imple-
mented in IDL. The times in Tab. 2 have been taken on
an Apple iMac with a Core2Duo 2.83 GHz CPU and
4 GB of RAM. Note that the time of finding an inter-
section point varies due to the properties of the model
space. For the times per megapixel in Tab. 2 we have
used the mean value for this search operation, which is
about 372 milliseconds per intersection.

Fig. 4 shows the results of the model by means of the



Table 2. Time complexity

Processing time [s/MP]
Normal model inversion 14372093
Fixed angle inversion 512093
Creation of access tables 8386
Access of surf. param. 5

derived correlation length. During the model inversion,
some pixel did not lead to an intersection of the isolines
for L- and C-band (see Fig. 2) and thus we could not de-
rive a valid correlation length for these locations. They
are diplayed as white spots in Fig. 4. We did not per-
form an interpolation over these areas, because it is not
yet clear what caused the unreliable NRCS values for
both sensors at the region of interest.

Figure 4. Images and results (ROI)
The upper image depicts the filtered ASAR image,
whereas the second image depicts the filtered PALSAR
image of the selected ROI. Both have been contrast en-
hanced for display purpose.The bottom image shows
the derived correlation length for the ROI. Note that
islands, land, and water have been masked out before
the calculation. Data provided by the European Space
Agency and by the German Aerospace Center.

4. Conclusions

We have presented an efficient approach to derive
soil surface roughness parameters using multi-band
SAR imagery and the integral equation model. For the
derivation, we need to invert the IEM that predicts the
NRCS for given surface roughness parameters.

The model itself is of a high computational complex-
ity, and this complexity even increases when the inver-
sion needs to be computed. To achieve to a lower com-
plexity, we made some model assumptions and used
precalculated random access tables that allow for a fast
derivation of the surface parameters.

We have shown that the assumption of a fixed angle
over the whole scene and the calculation of random-
access tables leads to an increased algorithm speed,
without losing much of its precision. Our proposed
algorithm is about 1700 times faster compared to the
standard implementation of the model and its inversion
(see Tab. 2). This allows for a derivation of soil sur-
face roughness parameters using high resolution SAR
imagery in future.

Note that our implementation in IDL may not be the
fastest one, since IDL does not optimize all user-written
functions during compilation to reach the performance
of other programming languages like C. We will there-
fore explore implementations of the proposed algorithm
in other programming languages in future.
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