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aCognitive Systems Group, University of Hamburg,
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Abstract

Computerized image analysis makes statements about the continous world by look-
ing at a discrete representation. Therefore, it is important to know precisely which
information is preserved during digitization. We analyse this question in the con-
text of shape recognition. Existing results in this area are based on very restricted
models and thus not applicable to real imaging situations. We present generaliza-
tions in several directions: first, we introduce a new shape similarity measure that
approximates human perception better. Second, we prove a geometric sampling the-
orem for arbitrary dimensional spaces. Third, we extend our sampling theorem to
2-dimensional images that are subjected to blurring by a disk point spread func-
tion. Our findings are steps towards a general sampling theory for shapes that shall
ultimately describe the behavior of real optical systems.

Key words: shape preservation, digitization, discretization, sampling theory,
topology, Hausdorff distance, r-regularity

1 Introduction

Computerized image analysis is increasingly used in applications where errors
and mistakes can have critical consequences, like industrial inspection, surveil-
lance, autonomous vehicle control, and medical imaging. Therefore, it becomes
more and more important to understand and formalize the conditions of suc-
cessful algorithm behavior. Errors may have many causes, some of them being
external like viewing conditions and illumination, but others depending on the
system itself. Since one has often no control over the external influences, it is
all the more important to study how certain internal design choices influence
performance limits of image analysis systems.
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One key aspect is the role of sampling: What can be seen with a digital device
looking at a continous world? In this paper we will be concerned with the
relationship of sampling and shape recognition: How should an image anal-
ysis process be designd in order to preserve important shape characteristics
of real objects, and when can this performance be guaranteed? Ultimately,
this question should be answered by a general geometric sampling theorem
analogous to Shannon’s famous sampling theorem describing the preservation
of waveforms.

Naturally, this paper is not the first attempt to answer this question, neither
will it be the last. A detailed description of previous work is given in the
next section. This work is characterized by the fact that definite results could
only be obtained by imposing very restrictive assumptions on the digitization
process. The results are therefore quite far from reality and provide relatively
little guidance for the design of practical applications. It is our goal to extend
the existing work in ways that eventually bridge the gap between theory and
praxis. In particular, we are going to present an improved measure of shape
similarity (section 3), we present the class of sets we are working on (section
4), we define which digitization results have to be seen as correct under a
certain digitization model (section 5), we generalize existing sampling theo-
rems for binary shapes to multiple dimensions and arbitrary grids (section 6),
we prove tight bounds for the 2-dimensional case (section 7), and we analyse
how the sampling theorem has to be modified when the image is subjected to
blurring prior to digitization, since blurring is unavoidable in any real optical
system due to diffraction effects, defocus and finite sensor size (section 8).
These extensions represent significant steps towards a truly general geometric
sampling theorem, although further generalizations are still needed to achieve
the ultimate goal.

2 Prior Work

Since image analysis tries to derive knowledge about the real world by analysing
discrete representations, it is important to understand which information is
preserved during digitization. In particular we are interested in the preserva-
tion of shape characteristics. There exist several approaches which describe
how shapes – which can be understood as binary sets – behave under certain
types of digitization. First results on this problem were independently pre-
sented by Pavlidis [5] and Serra [7] in 1982. Both discovered the fundamental
role of r-regular sets, which we are reviewing in detail in section 4.

Pavlidis [5] showed that 2-dimensional r-regular shapes (cf. definition 3) do
not change their topology under discretization with any square grid having a
minimal sampling point distance less than

√
2r. In this context digitization
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means that a pixel is part of the digital set iff its center point lies in the original
continuous shape (this digitization is often called subset digitization, see [4]).
Similarly, Serra [7] proved, that the homotopy tree of 2D r-regular shapes
does not change under subset digitization with any hexagonal grid where the
minimal sampling point distance is at most r.

Both Pavlidis and Serra only considered the 2D case. In contrast, Ronse and
Tajine [6] showed that in any dimension the Hausdorff discretization of a
set with any sampling grid type converges to the original set if the sampling
distance converges to zero. In addition, they showed for the 2D case and
square grids that the topology of r-regular shapes is also preserved under
Hausdorff discretization if the minimal sampling point distance is at most
r/2, see [10]. Unfortunately Hausdorff discretizations are very inconvenient for
practical applications because they are defined globally and heavily depend
on the alignment of the grid relatively to the set.

Latecki et al. [4,3] extended Pavlidis’ results by replacing subset digitization
with a more general but still locally defined concept called v-digitization. Here
a pixel is part of the digital set, iff the percentage of the pixel area covered by
the original shape is at least v ∈ [0% . . . 100%]. They proved that the topology
of a 2-dimensional r-regular image is preserved if it is sampled with a square
grid with minimal sampling point distance less than r/

√
2.

In 1999, Giraldo et al. [1] proved that any compact set, which has a finite
polyhedron as boundary can be digitized by a square grid of a certain density,
such that the digitization is homotopically equivalent to the original one after
applying a simple, well defined repairing method. However, this is only possible
for polyhedra and they did not say anything about topology preservation.

By comparing the above results one recognizes that apart from the last one
they all arrive at somewhat different conclusions starting from the same con-
cept of r-regular shapes. This suggests that r-regularity is a fundamental prop-
erty whose power has not been fully exploited by the existing approaches. On
the other hand the requirements imposed by the existing theorems are very
special and can never be met by any real imaging device. This refers mainly to
the use of binary sets which are not observable in reality due to the inherent
blurring of real optical systems.

In two previous papers we presented ideas to overcome these problems. In [2]
we combined previously used shape similarity criteria (preservation of topol-
ogy and homotopy trees, bounded Hausdorff distance) and proved that the
sampling theorems of Pavlidis and Serra still hold under these stricter con-
ditions, even if arbitrary grids are used. We also showed how the sampling
density has to be changed for a particular class of blurred shapes. In [9] we
introduced an even stricter similarity criterion and proved that r-regularity is
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not only necessary but also sufficient for correct digitization of binary shapes
under the new criterion. In the present paper we integrate these results for
the first time. In addition, we extend our definitions to arbitrary dimensions
and analyze the possiblility to prove an n-dimensional sampling theorem for
non-blurred shapes.

3 Shape Similarity

Due to the information loss during digitization, a digital shape is almost never
identical to its continuous original. In order to formally describe this informa-
tion loss, a precise definition of shape similarity is needed. Ideally this defi-
nition should resemble human perception as good as possible. As we will see,
previously used similarity criteria do not always fulfill this requirement. There-
fore we will define a new criterion called strong r-similarity that will be the
basis of our proofs. Since shapes can be considered as closed subsets of R

2, we
need a criterion to compare 2-dimensional sets. Pavlidis [5] suggested that the
sets should be topologically equivalent. Two sets A and B are topologically
equivalent if there exists a homeomorphism f : A → B, i.e. a bijective function
with f and f−1 continuous. Unfortunately, topological equivalence imposes no
restrictions on the space where this homeomorphism is defined. This means
that 2D objects can be topologically equivalent even if such a homeomor-
phism exists only for a 3-dimensional embedding. Consequently two 2D sets
can be topologically equivalent whithout having the same inclusion properties
for their components in R

2, as can be seen in fig. 1(a). Of course this problem
may arise for shapes of any dimension. It can be solved by requiring the home-
omorphism to be defined in a space whose dimension equals the dimension of
the shapes. An alternative way to capture the inclusion properties correctly
was proposed by Serra [7], who defined homotopy trees for shape comparison.
A homotopy tree encodes which components of A enclose others in a given
embedding into R

2. Unfortunately identical homotopy trees do not always im-
ply high shape similarity, as fig. 1(b) shows. While topology preservation and
identity of homotopy trees is necessary, geometric shape similarity cannot be
neglected. As suggested by Ronse and Tajine [6], geometric shape similarity
can be measured by the Hausdorff distance

dH(∂A, ∂B) = max
(

max
~x∈∂A

min
~y∈∂B

d(~x, ~y), max
~y∈∂B

min
~x∈∂A

d(~x, ~y)
)

between the shapes’ boundaries ∂A and ∂B of A and B, where d(·, ·) is a
metric of the space (in the sequel we will always use the Euclidean metric).
But a small Hausdorff distance is also not a sufficient similarity criterium,
as fig. 1(c) shows, where an S has changed into a number 6 without the two
characters having large Hausdorff distance.
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(a) (b)

(c) (d)

Figure 1. Comparison of similarity criteria. (a): The shapes are homeomorphic and
thus topologically equivalent. But the homeomorphism can not be embedded in R

2.
(b): the shapes have the same homotopy tree (the infinite background component
is connected to one foreground component, which is connected to two finite back-
ground components), but are not percieved as similar. (c): The Hausdorff distance
of the two shapes is less than the pixel radius of the grid, but the shapes are topo-
logically different. (d): The shapes are topologically equivalent in R

2 and have small
Hausdorff distance, but are still perceived as very different.

Since topological equivalence would have captured this error it is logical to
combine both criteria. We call this weak r-similarity. For generality we define
this concept for arbitrary dimensions as follows:

Definition 1 Two bounded subsets A, B ⊂ R
n are called weakly r-similar if

there exists a homeomorphism f : R
n → R

n such that ~x ∈ A ⇔ f(~x) ∈ B,
and the Hausdorff distance between the set boundaries dH(∂A, ∂B) ≤ r ∈
R+ ∪ {∞}.

Note that we require the homeomorphism to exist in the entire space R
n,

which means that not only the shapes but also their complements have to be
topologically equivalent. This implies identity of homotopy trees whereas the
converse is not true for n ≥ 3, as the example of two tori passing through each
other vs. two separated tori illustrates.

Intuitively the homeomorphism can be understood as a transformation of an
elastic, rubber-like space, which imposes a smooth distortion such that A gets
equal to B. We call this an R

n-homeomorphism.
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o ec cL
Figure 2. Examples for weak similarity: L and c have the same topology, but large
Hausdorff distance dH . The two c’s have a much smaller dH (when overlaid). Be-
tween c and o, dH is still quite small, but they differ by topology. The distinction
between o and e is not so clear: Their topology is equal, and dH still relatively small.

In many cases, weak r-similarity captures human perception quite nicely. Fig.
2 demonstrates this for the shape of some letters in 2D. Other examples are
1(a) and (b), where the shapes are only weakly r-similar for relatively great r.
However, it is not always sufficient. This can already be seen by comparing the
letters “o” and “e” in fig. 2, but fig. 1(d) shows an even more striking exam-
ple: These sets are weakly r-similar for very small r, so they are topologically
equivalent and have the same homotopy trees and a small Hausdorff distance.
Nevertheless the shapes and meanings are percieved as very different. The
failure of weak r-similarity is because of our definition of the geometric dis-
tance: While topology preservation is determined by an R

n-homeomorphism
that maps each point of A to a unique point of B, the Hausdorff distance is
calculated by a completely different mapping of each point of A to the nearest
point of B and vice versa.

In order to improve the similarity measure, we require the same transformation
to be used for both the determination of topological equivalence and geometric
similarity. We call this strong r-similarity:

Definition 2 Two sets A, B ⊂ R
n are called strongly r-similar and we

write A
r≈ B, if there exists a homeomorphism f : R

n → R
n such that

~x ∈ A ⇔ f(~x) ∈ B and ∀~x ∈ ∂A : |~x − f(~x)| ≤ r. Such a restricted home-
omorphism will be called r-homeomorphism in R

n and the sets will be called
r-topologically equivalent. The morphing distance is defined as dM(A, B) :=

inf
(

{∞} ∪ {r|A r≈ B}
)

.

Since the concatenation of an r-homeomorphism with an s-homeomorphism is
obviously at least an (r+s)-homeomorphism, the morphing distance is a metric
(see also [9]). Since dM is an upper bound for the Hausdorff distance, strong r-
similarity implies weak r-similarity. Under strong r-similarity, the topology is
not only preserved in a global, but also in a local manner: When looking at the
embedding of A into R

n within a small open region UA, a corresponding open
region UB with the same topological characteristics exists in the embedding of
B, and the distance between the two regions is not greater than r. The shapes
(a),(b) and (d) in fig. 1 are examples for non-local topology preservation:
Morphing of corresponding shapes onto each other requires a rather big r, and
dH � dM in these cases, thus they are only strongly r-similar for relatively
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(a) (b) (c)

Figure 3. Using sufficiently dense sampling grids. When sampling the shapes (a),
(b) and (c) with grids which are dense enough, their reconstructions are similar in
the sense of human perception and they are also strongly r-similar.

great r. By using a denser sampling grid, the similarity can be improved, such
that r is not greater than the pixel radius. If this is done, shape characteristics
are really preserved in the sense of human perception, as can be seen in fig. 3.

Note that the definition of r-homeomorphisms is similar, but not equal to the
definition of ε-homeomorphisms used in the work of Giraldo et al. [1]. The
ε-homeomorphism is only defined on the two compared sets and not in the
background as well. Thus the important inclusion properties of components
are not captured.

4 r-regular Sets

A shape can be defined as a set A ∈ R
n. A geometric sampling theorem states

which type of shapes retains characteristic properties during digitization. Sur-
prisingly, in 1982 Pavlidis [5] and Serra [7] independently introduced totally
different definitions for basically the same type of sets, which they used in
their theorems. Also Latecki et al. [3,4] and Tajine and Ronse [10] referred
to this shape class. Since this shape class is fundamental, we introduce here
a unified definition of r-regular sets (see fig. 4), which can be proved to be
equivalent to the other definitions for the 2D case (see [8]).

Definition 3 A compact set A ⊂ R
n is called r-regular iff for each boundary

point of A it is possible to find two osculating open balls of radius r, one lying
entirely in A and the other lying entirely in Ac.

If a set is r-regular, each part of its shape has a minimal width (diameter) of
2r. Moreover, for each boundary point there exists one unique tangent hyper-
plane, and the curvature is defined for every tangent direction and bounded by
1
r
. r-regular sets can be characterized as exactly those compact sets, that are

morphologically open and closed with respect to an open r-ball structuring
element.
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2r

Figure 4. A 2D r-regular set.

5 Sampling and Reconstruction

In this section we develop a precise definition of the digitization process. All
definitions are given for arbitrary dimensional spaces, so that subsequent the-
orems can be formulated as general as possible. Since we identify shapes with
subsets A ∈ R

n and sets can be interpreted as binary functions, a set A ⊆ R
n

can be transformed into an analog binary image by means of its characteristic
function χA : R

n → {0, 1}, χA(~x) = 1 iff ~x ∈ A. Now the discretization is
obtained by storing the values of this image only at a countable number of
sampling points. Formally we get:

Definition 4 A countable set S ⊂ R
n of points with dH(Rn, S) ≤ r for some

r ∈ R+ such that for each bounded set A the subset S ∩ A is finite, is called
r-grid. The elements of S are the sampling points, and the pixels are defined
as their associated Euclidean Voronoi regions:

PixelS : S → P(Rn), PixelS(~s) := {~x : ∀~s′ ∈ S \ {~s} : |~x − ~s| ≤ |~x − ~s′|}

Thus pixels are topological n-cells and bounded by (n− 1)-cells, which in turn
are bounded by (n − 2)-cells and so on, eg. in 2D they are 2-cells, their edges
are 1-cells and their corners are 0-cells. The intersection of A ⊆ R

n with
S is called the S-digitization of A, and the restriction of the domain of A’s
characteristic function to S is the associated digital binary image:

DigS(A) := A ∩ S

DigitalImageS(χA) := χA|S : S → {0, 1}

This definition captures arbitrary grids of any dimension. So not only square,
hexagonal, cubic or other regular grids, but also irregular grids are permitted,
provided the pixel shapes can be defined as Voronoi regions with bounded
radius, see fig.5. For simplicity we will use the term pixel also in dimensions
greater than two. Since it makes no sense to compare the topological properties
of an analog shape (region) with a discrete set of points we first have to recon-
struct an analog shape form the digital representation. We do this by assigning
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(a) (b) (c) (d) (e)

Figure 5. Many different grid types can be described when pixels are defined as the
Voronoi regions of suitably located sampling points. In 2D, these include regular
grids like the square (a), hexagonal (b) and trigonal ones (c), and irregular grids
(d) as found in natural image acquisition devices like the human eye. The definition
also captures grids of any dimension, e.g. cubic grids in 3D (e).

the information stored at each sampling point to the entire surrounding pixel:

Definition 5 Given a set A ⊆ R
n and a grid S, the S-reconstruction of

DigS(A) is defined as

Â = RecS(DigS(A)) =
⋃

~s∈(S∩A)

PixelS(~s)

Now we consider a reconstruction as correct if it is strongly r′-similar to the
original shape for some small r′. Since the maximal pixel radius of an r-grid
S is r, it is natural to require r′ = r. This is the strongest useful bound since
if the sampling point of one pixel with maximum radius lies on the shape’s
boundary, the Hausdorff distance between the shape and its reconstruction
can obviously equal r. So the highest degree of similarity that can be achieved
regardless of the alignment of the r-grid is strong r-similarity.

Definition 6 A set A ⊆ R
n is reconstructible by an r-grid S if the S-recon-

struction Â is strongly r-similar to A, i.e. dM(A, Â) ≤ r. A is called weakly
reconstructible by S if Â is weakly r-similar to A.

6 Sampling in Arbitrary Dimensions

In the following we will show that in any dimension r-regular sets are an
important class for shape preserving digitization. In 2D we will show that an
r-regular set is weakly reconstructible by any r′-grid with r′ < r, regardless
of the grid structure and alignment. Nevertheless, it is not possible to prove a
reconstruction to be r-similar to an original set of higher dimension in general.
Thus, digitization in higher dimensions is not as easy as it looks like in 2D.

The following lemmas describe some prerequisites. We only formulate them
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for the foreground A, but their claims and proofs apply to the background Ac

analogously.

Lemma 7 Let A be an r-regular set and Â the reconstruction of A by an
r′-grid S, with 0 < r′ < r. Then two sampling points lying in different compo-
nents of A cannot lie in the same component of Â.

PROOF. The Hausdorff distance of two components of an r-regular set A is
at least 2r, because each boundary point has an osculating r-ball lying entirely
outside each component. Since the S-reconstruction of any component A′ is a
subset of the r′-dilation of A′, the Hausdorff distance between two components
of Â is at least 2r − 2r′ > 0. Thus the reconstruction process cannot merge
two components of A. 2

Lemma 8 Let A′ be a component of an r-regular set A, S be an r′-grid, 0 <
r′ < r′′ < r. Further, let A′

	 = (A′ 	 Br′′)
0 be the open interior of the erosion

of A′ with a closed ball of radius r′′, and Si := {~s ∈ S : Pixel(~s) ∩ A′
	 6= ∅}

the set of all sampling points whose pixels intersect A′
	. Then at least one

sampling point from Si is in A′.

PROOF. Since A is r-regular, every component A′ contains at least one ball
of radius r. The center ~m of such a ball lies in A′

	. Let ~s ∈ S be a sampling
point with ~m ∈ Pixel(~s). Then ~s is also element of Si and the distance between
~s and ~m is at most r′ < r′′. Thus, ~s lies within A′. 2

Lemma 9 Let A, A′, S and Si be defined as in lemma 8. Then any pair of
pixels with sampling points in Si is connected by a chain of adjacent pixels
whose sampling points are also in Si. Pixels are adjacent if they are direct
neighbors, that is their common boundary has dimension n-1 (a hyper-face, ie.
an edge in 2D).

PROOF. Every component A′ of an r-regular set A is r-regular, too. Thus
A′

	 is an open, connected set. Now let ~s1 and ~s2 be sampling points in Si.
The interior of their pixels intersects A′

	, and there exist two points ~s1
′, ~s2

′

lying in (Pixel(~s1))
0 ∩A′

	 and (Pixel(~s2))
0 ∩A′

	 respectively. ~s1
′ and ~s2

′ can be
connected by a path in A′

	 which, without loss of generality, only intersects the
pixel boundaries in the interior of their bounding (n − 1)-cells. The sampling
points of all pixels intersecting this path are in Si as well. The order in which
the path enters those pixels defines a chain of adjacent pixels. 2

Lemma 10 Let A, A′, S and Si be defined as in lemma 8. Then each sampling
point lying in A′ is either a member of Si or is connected to a member of Si

by a chain of adjacent pixels whose sampling points all lie in A′.
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PROOF. Let ~c be any sampling point in A′. Then there exists a ball of
radius r in A′ such that ~c lies in the ball. Let ~m ∈ A′

	 be the center of the
ball. The halfline starting at ~c and going through ~m crosses the boundary of
the convex Pixel(~c) at exactly one point ~c ′. If d(~c, ~m) ≤ d(~c,~c ′), the point ~m
is part of Pixel(~c) and thus ~c ∈ Si. If d(~c, ~m) > d(~c,~c ′), let g be the (n − 1)-
dimensional hyper-plane defined by the (n − 1)-cell of Pixel(~c) whose closure
contains ~c ′. If there are several such hyper-planes, one is chosen arbitrarily.
Due to the definition of Voronoi regions the point ~c ′′ constructed by mirroring
~c on g is a sampling point in S, and Pixel(~c ′′) is adjacent to Pixel(~c). Since
c := d(~c ′,~c) = d(~c ′,~c ′′), the point ~c ′′ always lies on the hyper-sphere of radius
c with center ~c ′. Since ~c,~c ′ and ~m are collinear, ~c has the largest distance to
~m among all points on this hyper-sphere, and so d(~m,~c ′′) < d(~m,~c). Thus,
the sampling point ~c ′′ lies in A′, and is closer to ~m than ~c. We can repeat this
construction iteratively to obtain a sequence of adjacent pixels whose sampling
points successively get closer to ~m. Since there are only finitely many sampling
points in A′, one such pixel will eventually intersect A′

	. 2

Theorem 11 (sampling theorem for n-dimensional binary images)
Let r ∈ R+ and A ⊂ R

n an r-regular set. Further let Â be the reconstruction of
A with an arbitrary r′-grid S in R

n, 0 < r′ < r. Then A and Â have identical
homotopy trees and the Hausdorff distance between their boundaries is at most
r′.

PROOF. Due to lemma 8 there is a mapping of the foreground components
of A to the foreground components of Â. Lemma 7 states that this mapping
is injective, and from lemmas 9 and 10 follows surjectivity. The same holds
for the background components of A and Â. Due to lemma 10, both the
foreground and background components of Â are connected via direct pixel
neighborhood. This implies a one-to-one mapping between the boundaries of
A and Â, and thus identity of the homotopy trees.

It remains to be shown that for any dimension the Hausdorff distance between
the boundaries of A and Â is bounded by r′. Suppose to the contrary that ∂Â
contains a point ~s whose distance from ∂A exceeds r′. Due to the definition of
an r′-grid, the sampling points of all pixels containing ~s are located within a
hyper-sphere with center ~s and radius r′. Under the supposition, the inside ball
of this hyper-sphere would either be completely inside or outside A, and the
pixels were all either in Â or Âc. Thus, ~s could not be on ∂Â′ – contradiction.
Therefore, the Hausdorff distance between ∂A and ∂Â is at most r′. 2

This geometric sampling theorem does not only apply to regular, but also to
irregular grids of any dimension, see fig. 5. Moreover, if the conclusion holds for
a particular grid, it also holds for any translated and rotated copy of that grid.
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However, the theorem does not say anything about topological equivalence
between the original set and its reconstruction. The following theorem shows
that the topology is preserved in 2D:

Theorem 12 (sampling theorem for 2-dimensional binary images) A
2-dimensional r-regular shape A ⊂ R

2 is weakly reconstructible with any r′-
grid S in R

2, 0 < r′ < r.

PROOF. From theorem 11 we know that there is a one-to-one mapping
between the boundaries of A and Â. Due to lemma 10, both the foreground
and background components of Â are connected via direct pixel neighborhood.
In 2D this implies that the components of Â are jordan curves. Since this
is also the case for the boundary components of the original set A, an R2-
homeomorphism can be constructed between these boundaries, and A and Â
are R2-topologically equivalent. Together with the statement of theorem 11 it
follows that Â is a weak reconstruction of A. 2

An even stronger result for the 2D case will be demonstrated in the next
section. However, this theorem cannot be proved for higher dimensional spaces.
To the contrary, it can be shown by constructing a counter example, that
there exist shapes whose reconstruction is not topologically aquivalent to the
original for some grids. We give the theorem for 3D, but its formulation for
any dimension is straight-forward.

Theorem 13 There exist 3D r-regular sets where one can find, for any r ′ < r,
an r′-grid S such that the S-reconstruction is not topologically equivalent to
the original.

PROOF. Let A ⊂ R
3 be two semi-spheres with radius r that are connected

by a cylinder of the same radius. This shape is obviously r-regular. Consider
a tangential plane P of the cylinder and a square PS with radius r′ lying in P
and oriented so that one diagonal coincides with the line where P touches the
cylinder, and the other is perpendicular to this direction, i.e. lies in the plane
where the cylinder is curved. Translate PS towards the center of the cylinder
by an arbirary small ε. Then two opposite corners of the square are in A,
while the other two are in Ac. Suppose the corners of the square are sampling
points of a regular 3D square grid of suitable size and position (see fig. 6 left).
Then the reconstruction Â with respect to this grid contains pixels that are
only indirectly connected to each other via a common edge, but not directly
via a common face (6 right). Consequently, the surface of Â is not a manifold,
while the surface of A is. Therefore, the two surfaces cannot be topologically
equivalent. 2
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Figure 6. Construction of an r-regular counterexample: Given an r-regular cylinder,
four sampling points on a square with radius r ′ < r can be placed so that two
diagonally opposite corners (black) are inside A and the two others (white) outside
(left). The surface of the resulting reconstruction is not a manifold (right).

Obviously this example can be generalized to any dimension greater than
three by adding more dimensions along which the curvature is zero. Thus
r-regularity is not a sufficient criterion for shape preserving digitization in
three or more dimensions in a strict topological sense when the reconstruction
method according to definition 5 is used. Neither strong nor weak r-similarity
can be guaranteed. It might thus seem that r-regularity is not a sufficient cri-
terium for shape preservation in higher dimensions. However, we can hardly
imagine a stronger criterion that still comprises a useful set of practically rel-
evant shapes – r-regularity is already a very strong constraint. Therefore we
believe that one should rather use alternative reconstruction methods (per-
haps similar to the marching cubes algorithm) which guarantee that the re-
constructed surfaces are manifolds. This problem must be further investigated.

7 Improved Sampling Theorems for 2D

The 2D sampling theorem we derived in the previous section is a generalization
of the known theorems of Pavlidis [5] and Serra [7], because the 2D square
and hexagonal grids on the one hand and topology preservation and identity
of homotopy trees on the other hand are special cases of our definitions. So
the results of Serra and Pavlidis are direct corollaries of theorem 12:

Corollary 14 Let S1 := h1 ·Z2 be the square grid with grid size (minimal sam-
pling point distance) h1. Then every 2-dimensional r-regular set with r > h1√

2
is

weakly reconstructible with S1. Let S2 be the hexagonal grid with grid size h2.
Then every 2-dimensional r-regular set with r > h2√

3
is weakly reconstructible

with S2.

In case of Serra’s theorem our proof even provides a better bound for the
required sample distance (r vs. r/

√
3). But in 2D we can prove an even more

powerful theorem by showing that (i) even strong r-similarity can be guaran-
teed, and (ii) r-regularity is not only a sufficient but also a necessary condition
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(a)

r’

(b)

r’

(c)

r" r’

(d)

r’

r"

Figure 7. Examples where the topology of the reconstruction by an r-grid (balls
and lines) differs from the topology of the original set (gray area) because it is not
r-regular.

for a set to be reconstructible.

We first deal with the second property, which means that if A is not r-regular
for some r, there exists an r′-grid S (r′ < r) such that the S-reconstruction
is not weakly r-similar to A. We conjecture, that this also holds for higher
dimensions, but we could not yet prove the general case.

Theorem 15 Let A ∈ R
2 be a set that is not r-regular. Then there exists an

r′-grid S with 0 < r′ < r such that A is not reconstructible by S.

PROOF. We explicitly construct such a grid. There are two cases: Case 1:
If A is not r′′-regular for any r′′ > 0, then it contains at least one corner
or junction. In both cases it is possible to place sampling points so that the
reconstruction of a connected set becomes disconnected, and the topology is
not preserved (fig. 7 a and b). Case 2: Let A be r′′-regular with 0 < r′′ < r′ < r.
Then there is a maximal inside or outside circle of radius r′′ with center ~p0

that touches ∂A in at least two points. Draw a circle with radius r′ around
~p0. Case 2a: If the r′′-circle coincides with a component of ∂A, a component
of A or Ac is completely inside the r′-circle, and we can place sampling points
on this circle such that the enclosed component is lost in the reconstruction.
Case 2b: Otherwise, an r′ can be chosen so that part of the r′-circle is in A,
part in Ac. If these parts form more than two connected components, we can
place a sampling point in each component, and the reconstruction contains
a junction whereas the original shape does not. Case 2c: If there are exactly
two components, we can move the r′-circle a little so that it will either no
longer intersect with ∂A, which brings us back to case 2a, or the number of
components will increase, which brings us to case 2b. In any case, the topology
of A is not preserved (fig. 7 c and d). 2

In the 2D case it is also possible to tighten sampling theorem 11 to strong
r-similarity (recall that reconstructibility implies strong r-similarity, see defi-
nition 6).

14



Theorem 16 (strong sampling theorem for binary 2D images) Let r ∈
R+ and A ∈ R

2 an r-regular set. Then A is reconstructible with any r′-grid S,
0 < r′ < r.

PROOF. From theorem 11 we already know that the reconstruction is R
2-

topologically equivalent to A, and the Hausdorff distance between the bound-
aries is at most r′. To tighten the theorem for strong r′-similarity it remains
to be shown that there even exists an r′-homeomorphism.

Due to r-regularity of A, no pixel can touch two components of ∂A. Therefore,
we can treat each component ∂A′ of ∂A and its corresponding component
∂Â′ separately. The proof principle is to split ∂A′ and ∂Â′ into sequences of
segments {Ci} and {Ĉi}, and show that, for all i, Ĉi can be mapped onto
Ci with an r′-homeomorphism. The order of the segments in the sequences is
determined by the orientation of the plane, and corresponding segments must
have the same index. Then the existence of an r′-homeomorphism between
each pair of segments implies the existence of the r′-homeomorphism for the
entire boundary. We define initial split points ~̂ci of ∂Â′ as follows (see fig. 8a):

Case 1: A split point is defined where ∂Â′ crosses or touches ∂A′. Case 1a:
If this is a single point, it automatically defines a corresponding split point
of ∂A′. Case 1b: If extended parts of the boundaries coincide, the first and
last common points are chosen as split points.

Case 2: A pixel corner which is on ∂Â′ but not on ∂A′ becomes a split point
if the corner point lies in A (Ac) and belongs to at least two pixels that
are in Âc (Â). Case 2a: If there are exactly two such neighboring pixels, a
corresponding split point is defined where ∂A′ crosses the common boundary
of these pixels. Case 2b: Otherwise, the split point is treated specially.

In the course of the proof, the initial partition will be refined. The treatment
of case 1b is straigthforward: Here, two segments Ci and Ĉi coincide, so we
can define the r′-homeomorphism as the identity mapping.

Next, consider case 2b (fig. 8b). Let the special split point ~̂ci ∈ A (Ac) be a
corner of pixels Pi1, ..., Pin ∈ Âc (Â). The orientation of the plane induces an
order of these pixels. The pixels Pi2 to Pin−1

intersect ∂Â′ only at the single

point ~̂ci. We must avoid that an extended part of ∂A′ gets mapped onto the
single point ~̂ci. Thus, we change the initial partitioning: Replace ~̂ci with two
new split points ~̂ci

′ and ~̂ci
′′, lying on ∂Â′ to either side of ~̂ci at a distance ε. De-

fine as their corresponding split points the points ~ci
′ and ~ci

′′ where ∂A′ crosses
the commen border of Pi1 , Pi2 and Pin−1

, Pin respectively. Due to r-regularity,

|~ci
′~̂ci| < r′ and |~ci

′′~̂ci| < r′, and the same is true for all points between ~ci
′ and

~ci
′′. Therefore, ε can always be chosen so that every point between ~ci

′ and ~ci
′′

can be mapped onto every point between ~̂ci
′ and ~̂ci

′′ with a displacement of
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Figure 8. (a) Different cases for the definition of split points; (b) Partition refinement
and mapping for case 2b.

at most r′. This implies the existence of an r′-homeomorphism between these
segments. After these modifications, the segments not yet treated have the
following important properties: Each Ci is enclosed within one pixel Pi, and
the corresponding segment Ĉi is a subset of Pi’s boundary. To prove the the-
orem for these pairs, we use the property of Reuleaux triangles with diameter
r′ that no two points in such a triangle are farther apart than r′ (fig. 9a). Due
to r-regularity, ∂A′ can cross the border of any r′-Reuleaux triangle at most
two times. We refine the segments so that each pair is contained in a single
triangle, which implies the existence of an r′-homeomorphism. Consider the
pair Ci, Ĉi and let the sampling point of pixel Pi be ~si. If this point is not
on ∂A′ (fig. 9b), Ci splits Pi into two parts, one containing Ĉi and the other
containing ~si. We now place r′-Reuleaux triangles as follows: a corner of every
triangle is located at ~si, every triangle intersects Ci and Ĉi, and neighboring
triangles are oriented at 60◦ of each other, so that no three triangles have a
common overlap region. Since the pixel radius is at most r′, this set of trian-
gles completely covers both Ci and Ĉi, and each consecutive pair of triangles
shares at least one point of either segment. Thus, we can define additional split
points among the shared points, so that corresponding pairs of the new seg-
ments lie entirely within one triangle. The existence of an r′-homeomorphism
for the refined segments follows.

If the sampling point ~si of Pi is on ∂A′ (fig. 9c), this Reuleaux construction
does not generally work. In this case, we first place two r′-Reuleaux triangles
such that both have ~si as a corner point, one contains the start points ~cs, ~̂cs of
Ci and Ĉi respectively, the other the end points ~ce, ~̂ce, and they overlap Ĉi as
much as possible. If they cover Ĉi completely, the Reuleaux construction still
works with ~si as split point. Otherwise Ĉi is partly outside of the triangles,
and the normal of ∂A′ crosses Ĉi in this outside region. We choose a point ~si

′

on the opposite normal with distance ε from ~si and project each point ~c of
Ĉi not covered by either triangle onto the point where the line ~c~si

′ crosses Ci.
It can be seen that this mapping is an r′-homeomorphism: Draw circles with
radius ε and r′ + ε around ~si

′. Ci and Ĉi lie between these circles, so that each
point is moved by at most r′. The extreme points of this construction define
new split points, and the remaining parts of Ci and Ĉi can be mapped within
the two triangles. Thus, there is an r′-homeomorphism in this case as well. 2
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Figure 9. (a) Any two points in a Reuleaux triangle of size r ′ have a distance of
at most r′; (b) Covering of corresponding segments with Reuleaux triangles; (c)
Construction for sampling points lying on ∂A′.

In this section we proved two refinements of our sampling theorem, but the
proofs rely on special properties of the 2-dimensional space. our results show
the fundamentel role of r-regularity for shape preserving digitization:

Corollary 17 Let r ∈ R+ and A ⊂ R
2 Then A is r-regular if and only if A

is reconstructible with any r′-grid S in R
2 with 0 < r′ < r.

From the last section we know that this cannot be directly generalized to
higher dimensions. So the question remains open, how the class of sets, being
reconstructible with any r′-grid with r′ < r, looks like in higher dimensions.

8 Sampling of Blurred 2D Images

The subset digitization, which we used in the previous section, has the great
disadvantage that it can not be realized in practice. In real imaging devices
the analog image is always subjected to blurring before being digitized. The
blurring has various causes. First, the light is diffracted in the lens. Second,
there is defocus blur for objects that are not exactly in focus. Third, real sensor
elements are not 0-dimensional but rather have finite area. The net effect of
these factors can be modeled by a convolution of the analog image with a point
spread function (PSF). Thus, instead of a binary image, a grayscale image
is observed. In order to recover a binary reconstruction one can consider a
particular level set Ll = {~x ∈ R

2|f̂(~x) ≥ l} of the blurred image f̂ , i.e. apply
a threshold. Since thresholding and digitization commute, we can perform the
steps in a mathematically more convenient order by doing thresholding first
and then digitizing the resulting level set by standard subset digitization, as
can be seen in fig. 10. This order facilitates the following proofs, because we
only have to analyse the properties of the level sets of an r-regular image
and apply the already proved sampling theorem to them. So we begin with
an analysis of the relationship between the original set and a level set of its
blurred version, and then between the level set and its S-reconstruction. In
order to get definitive results, we restrict ourselves to a particular type of PSF,
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Figure 10. Model of digitization by a real camera (top row). Since binarization
commutes with both sampling and reconstruction there are several mathematically
equivalent ways from a blurred image to its discrete reconstruction.

namely flat disks of radius p. Although not very realistic, these PSFs have the
advantage that the result of the convolution can be calculated by measuring
the area of sets. In the sequel, A shall be a 2-dimensional r-regular set and kp

a disk-PSF with radius p < r. If Kp(~c) denotes the PSF’s support region after
translation to the point ~c, the result of the convolution at ~c is given by:

f̂(~c) = (kp ? χA)(~c) =
‖Kp(~c) ∩ A‖
‖Kp(~c)‖

where ? denotes convolution and ‖.‖ is the area. Therefore, it is possible to
derive properties of level sets by purely geometrical means. Obviously, all
interesting effects occur in a 2p-wide strip Ap = ∂A⊕Kp around the boundary
∂A, because out of this strip the kernel does not overlap ∂A, and the gray
values are either 0 or 1 there (⊕ denotes morphological dilation). Level sets
have the following property:

Lemma 18 Let ~s be a point on ∂A, and let ~c1 and ~c2 be the centers of the
inside and outside osculating circles of radius r. Moreover, let ~c3 and ~c4 be the
two points on the normal ~c1~c2 with distance p from ~s. Then the boundary of
every level set has exactly one point in common with ~c3~c4.

PROOF. Consider a point ~c in Kp(~c3) and translate the line segment ~c3~c4

by ~c − ~c3 (see fig. 11 left). Because of the restricted curvature of ∂A, the
translated line segment intersects ∂A at exactly one point. Thus, as t ∈ [0, 1]
increases, the area of ‖Kp(~c3 + t · (~c4 − ~c3)) ∩ A‖ is strictly decreasing. This
area is proportional to the result of the convolution, so the same holds for the
gray values. Since the p-ball centered in ~c3 is an inside osculating ball of A, the
gray value at ~c3 is f(0) = 1. Likewise, f(1) = 0. This implies the lemma. 2

The curvature of the level set contours is bounded by the following lemma:
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Figure 11. Left: If a p-ball is shifted orthogonally to the boundary ∂A from an
inner osculating to an outer osculating position, its intersection area with A strictly
decreases. Right: The boundary of the circle b0 centered at point ~c0 (light gray)
intersects the boundary of the set A (bold line) at the two points ~s1 and ~s2. Since
A is r-regular, its boundary can only lie within the area marked with dark gray.

Lemma 19 Let ~c0 ∈ Ap be a point such that (A ? Kp)(~c0) = l, (0 < l < 1).
Thus, ~c0 is part of level set Ll. Then there exists a circle bout of radius ro ≥
r′ = r − p that touches ~c0 but is otherwise completely outside of Ll. Likewise,
there is a circle bin with radius ri ≥ r′ that is completely within Ll.

PROOF. Consider the set b0 = Kp(~c0) centered at ~c0. Let its boundary
∂Kp(~c0) intersect the boundary ∂A at the points ~s1 and ~s2 (see fig. 11 right).
Let g0 be the bisector of the line ~s1~s2. By construction, ~c0 is on g0. Define ~c1

and ~c2 as the points on g0 whose distance from ~s1 and ~s2 is r, and draw the
circles b1 and b2 with radius r around them. Now, the boundary of A cannot lie
inside either b1 \ b2 or b2 \ b1, because otherwise A could not be r-regular. The
areas where ∂A may run are marked dark gray in fig. 11 right. Since p < r,
there can be no further intersections between ∂Kp(~c0) and ∂A besides ~s1 and
~s2. On g0, mark the points ~c3 between ~c0 and ~c1, and ~c3

′ between ~c0 and ~c2,
such that |~c1~c3| = |~c2~c3

′| and min(|~c0~c3|, |~c0~c3
′|) = r′ = r−p. Due to the triangle

inequality, and since p < r, such a configuration always exists. We prove the
lemma for the circle bout around ~c3, bin around ~c3

′ is treated analogously.

Let b3 = bout be the circle around ~c3 with radius r′, and b′3 the circle around
~c3 that touches ~s1 and ~s2 (fig. 12 left). Consider a point ~c4 on ∂b3 and draw
the circle b4 with radius p around ~c4. This circle corresponds to the footprint
of the PSF centered at ~c4. Now we would like to compare the result of the
convolution kp?χA at ~c0 and ~c4. The convolution results are determined by the
amount of overlap between A and b0 = Kp(~c0) and b4 = Kp(~c4) respectively.
To compare b0 ∩ A and b4 ∩ A, we split the two circles into subsets according
to fig. 12 center (only b0, b4 and b′3 are shown in this figure). Circle b0 consists
of the subsets f1, f2, f3, f4, whereas b4 consists of f1, f2, f

′
3, f

′
4. The subsets f1

and f2 are shared by both circles, while due to symmetry f3, f
′
3 and f4, f

′
4
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are mirror images of each other. In terms of the subsets, we can express the
convolution results as follows:

(kp ? χA)(~c0) =
‖f1 ∩ A‖ + ‖f2 ∩ A‖ + ‖f3 ∩ A‖ + ‖f4 ∩ A‖

‖Kp‖

(kp ? χA)(~c4) =
‖f1 ∩ A‖ + ‖f2 ∩ A‖ + ‖f ′

3 ∩ A‖ + ‖f ′
4 ∩ A‖

‖Kp‖

By straightforward algebraic manipulation we get:

‖Kp‖ ((kp ? χA)(~c0) − (kp ? χA)(~c4)) = (1)

‖f3 ∩ A‖ − ‖f ′
3 ∩ A‖ + ‖f4 ∩ A‖ − ‖f ′

4 ∩ A‖

Since the radius of b′3 is smaller than r, and its center ~c3 is between ~c0 and ~c1,
the boundary ∂b′3 intersects ∂A only at s1 and s2. It follows that subset f3 is
completely inside of A, whereas f ′

4 is completely outside of A. Hence, we have
‖f3 ∩ A‖ = ‖f3‖ = ‖f ′

3‖ and ‖f ′
4 ∩ A‖ = 0. Inserting this into (1), we get

‖Kp‖ ((kp ? χA)(~c0) − (kp ? χA)(~c4)) = ‖f ′
3‖ − ‖f ′

3 ∩ A‖ + ‖f4 ∩ A‖ > 0 (2)

Thus, the gray level at ~c4 is smaller than l. When ~c4 is moved further away
from ~c0, the subset f2 will eventually disappear from the configuration (fig. 12
right). If ~c3 is outside of b0, f1 will finally disappear as well. It can easily be
checked that (2) remains valid in either case. Due to the definition of ~c3, no
other configurations are possible. Therefore, the gray values on the boundary
∂bout are below l everywhere except at ~c0.

It remains to prove the same for the interior of bout. Suppose the gray level
at point ~c ∈ b0

out were l′ ≥ l. By what we have already shown, the associated
level line ∂L′

l cannot cross the boundary ∂bout (except at the single point c0 if
l′ = l). So it must form a closed curve within bout. However, this curve would
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cross some normal of ∂A twice, in contradiction to lemma 18. This implies the
claim for outside circles. The proof for inside circles proceeds analogously. 2

We conclude that the shape of the level sets Ll is quite restricted:

Theorem 20 Let A be an r-regular set, and Ll any level set of kp ?χA, where
kp is a flat disk-like point spread function with radius p < r. Then Ll is r′-
regular (with r′ = r − p) and strongly p-similar to A.

PROOF. The proof of r′-regularity follows directly from the definition of r-
regularity and lemma 19. The required p-homeomorphism can be constructed
as follows: Because of the restricted curvature of ∂A, the normals of ∂A cannot
intersect within the p-strip Ap around ∂A (cf. [3,4]). Therefore, due to 18, every
point ~s on ∂A can be translated along its normal towards a unique point on
the given level line ∂Ll and vice versa. The distance between s and its image
is ≤ p. This mapping can be extended to the entire R

2-plane in the usual way,
so that we get a p-homeomorphism with the desired properties. 2

This finally allows us to show what happens during the digitization of a set A
that was subjected to blurring with a PSF:

Theorem 21 (sampling theorem for blurred binary 2D images)
Let A be an r-regular set, Ll any level set of kp ? χA, where kp is a flat disk-
like point spread function with radius p < r, and S a grid with maximum pixel
radius r′′ < r − p. The S-reconstruction L̂l of Ll is strongly (p + r′′)-similar
to A.

PROOF. By theorem 20, Ll is r′-regular and there exists a p-homeomorphism
between A and Ll. By theorem 16, the S-reconstruction of an r′-regular set
with an r′′-grid (r′′ < r′) is strongly r′′-similar to the original set. In other
words Ll and L̂l are r′′-homeomorphic. Consequently, there is at least a (p+r′′)-
homeomorphism between A and L̂l. 2

Corollary 22 Since r′′ + p < r, any S-reconstruction of Ll is strongly r-
similar to A, regardless of how the grid is rotated and translated relative to A
and how the threshold is chosen.
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9 Conclusions

In this paper we proved a powerful geometric sampling theorem. Put simply, it
means the following: When an r-regular set in an arbitrary dimensional space
is digitized, the number and the inclusion properties of connected components
of the set and its complement are preserved, and the digital components are
directly connected. Parts that were originally connected do not get separated,
and the Hausdorff distance between the original and reconstructed boundaries
is at most half the pixel diameter. As these claims hold for any regular or
irregular r′-grid in any dimension, they also hold for translated and rotated
versions of some given grid. Thus, reconstruction is robust under Euclidean
transformations of the grid or the shape. In 2D, an even stronger version
of this theorem holds: Here, r-regularity is not only a sufficient, but also a
necessary condition. Moreover, topology is preserved and boundary points are
guaranteed to move at most half the pixel diameter, which ensures even better
shape preservation.

The extension of our theorem towards blurred images also leeds to an intu-
itively very appealing result: When we digitize an ideal 2D binary image with
any r′′-grid, we can properly reconstruct a shape if it is r′-regular with r′ > r′′.
But when the image is first subjected to blurring with a PSF of radius p, the
set must be r-regular with r > r′′ + p. In other words, the radius of the PSF
must be added to the radius of the grid pixels to determine the regularity
requirements for the original shape. It should also be noted that r > r′′ + p is
a tight bound, which for instance would be reached if A consisted of a circle
of radius r, and the threshold was 1 – in this case, any smaller circle could
get lost in the reconstruction. However, for a single, pre-selected threshold a
better bound can be derived.

The 2D sampling theorem 21 is closely related to the findings of Latecki et al.
[3,4] about v-digitization (and thus also square subset and intersection digi-
tization). In their approach, the grid must be square with sampling distance
h, and the PSF is an axis aligned flat square with the same size as the pixels.
Then, the pixel and PSF radius are both r′′ = p = h/

√
2, and the original

shape must be r-regular with r > r′′ + p =
√

2h. This is exactly the same
formula as in our case. We conjecture that our results can be generalized to a
much wider class of radially symmetric PSFs, but we can’t prove this yet.

Since strong r-similarity is also a local property, we can still apply our results
if a 2D set is not r-regular in its entirety. We call a segment of a set’s boundary
locally r-regular if definition 3 holds at every point of the segment. Theorem
11 then applies analogously to this part of the set because the boundary
segment could be completed into some r-regular set where the theorem holds
everywhere, and in particular in a local neighborhood of the segment.
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Our results should be extended in several ways: First, the generalization to
arbitrary dimensional spaces should be completed by proving or disproving
the conjectures put forward in the paper. In particular, it would be inter-
esting to know which sets can be reconstructed under preservation of strong
r-similarity. Second, the results on blurred images should not only be extended
towards higher dimensions, but also to more realistic point spread functions
in order to be applicable to real cameras. It would also be useful to investigate
what happens if the original shape was not uniformely colored but shaded, as
would be the case for projections of real 3D scenes. Third, since r-regularity
of shapes cannot always be guaranteed in practice (e.g. in the neighborhood
of a junction) it is necessary to understand how the reconstruction may differ
from the original and how this may be recognized and/or repaired.
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