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Abstract

The well-known marching cubes algorithm is modified to
apply to the face-centered cubic (fcc) grid. Thus, the local
configurations that are considered when extracting the local
surface patches are not cubic anymore. This paper presents
three different partitionings of the fcc grid to be used for
the local configurations. The three candidates are evalu-
ated theoretically and experimentally and compared with
the original marching cubes algorithm. It is proved that the
reconstructed surface is topologically equivalent to the sur-
face of the original object when the surface of the original
object that is digitized is smooth and a sufficiently dense fcc
grid is used.

1 Introduction

The Marching Cubes algorithm introduced in [5] is a
well-known algorithm for surface extraction. The basic idea
on the cubic grid is to consider2 × 2 × 2 configurations of
grid points. Each of the local configurations results in a set
of (planar) surface patches. The union of the surface patches
is a representation of the surface of the object.

Algorithms based on the marching cubes algorithm
(marching-algorithms) have been developed also for other
grids than the cubic grid, for example the body-centered
cubic (bcc) grid [1, 9] and the face-centered cubic (fcc)
grid [8]. The packing density for the cubic, fcc, and
bcc grid is0.524, 0.741, and 0.680, respectively. Since
the fcc and bcc grids are reciprocal (an fcc grid in spa-
tial domain corresponds to a bcc grid in frequency do-
main), only (in higher precision)0.524/0.741 = 0.7071
and0.524/0.680 = 0.7698 of the number of samples in the
cubic grid are needed for the bcc and fcc grids respectively
to fulfill the Shannon sampling theorem. See also [4]. Since
less samples are needed, using these grids in image analysis
and processing is potentially more efficient. Since inter-

polating between different grids destroys information, itis
preferable that the image is acquired, processed, and visu-
alized using the same grid. The goal here is not to compete
with the cubic grid, but to develop an image visualization
method for the fcc grid as a step towards making it possi-
ble to do image processing directly on non-standard grids
without any resampling to the cubic grid.

The surface generated by the original marching cubes-
algorithm is not topologically consistent – some local con-
figurations result in holes in the surface. Many approaches
to avoid the holes have been presented. One efficient way
to do so is to divide each cube resulting from the2 × 2 × 2
configurations into five tetrahedra [3]. (A tetrahedra decom-
position on the bcc grid is presented in [2, 9].) The low
number of configurations with tetrahedra does not include
any critical cases, and the surface generated by marching
tetrahedra does not contain any holes.

In this paper, three marching-algorithms (using three dif-
ferent sets of local configurations) on the fcc grid are pre-
sented. By assuming that the sampling grid is dense enough
and that the boundary of the object is smooth some previ-
ous results from [7] guarantee that the surface generated by
the marching-algorithms is topologically equivalent to the
boundary of the original object.

2 Preliminaries

A set A ⊂ R
3 is r-regular if, for each boundary point

x ∈ ∂A, there exist two tangent balls of radiusr to ∂A at
x s.t. one lies entirely inA and the other lies entirely in
the complementAc of A. Let S be a countable setS ⊂
R

3 andr′ the Hausdorff distance betweenR
3 andS, r′ =

dH

(

R
3, S

)

. In other words,r′ is the maximal radius of a
ball in R

3 whose interior does not intersect a point inS. If
r′ < ∞, we denote such a setS an r′-grid. We use the
following definition of an fccr′-grid:

{t + r′ · R · (x, y, z) :

x, y, z ∈ Z andx + y + z ≡ 0 (mod 2)} ,



wheret is a translation vector andR is a rotation matrix.
The voxels (Voronoi regions) of fcc grids are rhombic do-
decahedra, see Figure 1 and 2. For a gridS and an object
A, S ∩ A is the set of object grid points andS ∩ Ac is the
set of background grid points.

A bijective functionf : A → B is ahomeomorphismif
bothf and its inverse are continuous. The setsA andB are
homeomorphicif such a function exists. A homeomorphism
f : R

3 → R
3 is anr-homeomorphismof A to B if f(A) =

B and the Euclidean distanced(x, f(x)) ≤ r for all x ∈
R

3.
The following result is derived in [7]: Given anr-regular

objectA and an fccr′-grid with
√

2r′ < r, the voxel repre-
sentation ofA is 2r′-homeomorphic toA. Two voxels shar-
ing only a vertex (see the dark grey voxels in Figure 1) is
called a critical configuration. Because of the critical con-
figuration in Figure 1, there is not enough information to
decide whether the voxels represent one object or two (or
more) objects. When

√
2r′ < r, no critical configurations

will result from the digitization.
Critical configurations are obviously problematic also

when extracting surfaces from digitized objects. If a sur-
face representation should be topologically equivalent to
the original object, no critical configurations are allowed.
The ambiguity for the fcc grid is considered for the fcc
marching-algorithm in [8]. The solution there is to con-
sistently divide the critical configurations into two parts,
since this gives the least number of triangles in the result-
ing surface. In Section 4, it is shown that the marching-
algorithms presented in this paper produce surfaces that are
2r′-homeomorphic to the original object if

√
2r′ < r.

Figure 1. The dark grey voxels constitute a
critical configuration.

3 Alternative Partitionings

When extracting surfaces with a marching-algorithm, lo-
cal configurations of grid points are considered. From these
configurations, it is decided which surface patch should be
used to locally separate the background grid points from
the object grid points. For the original marching cubes al-
gorithm, the Delaunay mesh is used for the local configu-
rations. This kind of dual is considered for configurations
on the fcc grid in Section 3.1. This partitioning, consist-
ing of tetrahedra and octahedra configurations, is used also

in the marching-algorithm for the fcc grid in [8], see Fig-
ure 2(a) and (b). The Delaunay mesh of the bcc grid is con-
sidered for a marching-algorithm on the bcc grid in [1]. In
Section 3.2, the octahedra in the Delaunay mesh are splitted
into tetrahedra resulting in a partitioning with only tetra-
hedra configurations, see Figure 2(c) and (b). In the third
partitioning presented in Section 3.3, a shifted fcc grid is
used for the configurations resulting in rhombic dodecahe-
dra configurations, see Figure 2(d).

(a) (b) (c) (d)

Figure 2. The configurations used in this pa-
per. In this illustration, a voxel is used to rep-
resent one of the grid points in the configu-
rations.

In the figures in this paper, black and white grid points
correspond to object and background grid points, respec-
tively. Observe that the complementary cases are not shown
explicitly, but obtained by switching object grid points to
background grid points and vice versa. The figures show
all the possible configurations up to rotational symmetry,
reflection symmetry, and complementarity.

3.1 Delaunay Mesh Partitioning

In this section, the Delaunay mesh is considered for the
marching-algorithm. The Delaunay mesh of an fcc grid
consists of octahedra and tetrahedra and the possible con-
figurations are shown in Figure 3 and 4. This partitioning
and the configurations in Figure 3 and 4 are also considered
in [8].

(a) (b) (c) (d) (e) (f)

Figure 3. The octahedra cases in the Delau-
nay mesh.

3.2 Tetrahedra Partitioning

When using only tetrahedra configurations, the sur-
face resulting from the marching-algorithm is topologically



(a) (b) (c)

Figure 4. The tetrahedra cases in the Delau-
nay mesh cases and the tetrahedra partition-
ing.

sound. This is easy to verify due to the low number of pos-
sible configurations. Tetrahedra configurations have been
examined for the cubic grid and the body-centered cubic
grid, see [3] and [2, 9] respectively. One problem on the
cubic grid is that in order to get a connected surface, neigh-
bouring cubic configurations must be split into tetrahedra in
different ways, see [3].

By splitting each octahedron in the Delaunay mesh into
four tetrahedra, a marching-algorithm with only tetrahedra
configurations is obtained. The splitting can be done in dif-
ferent ways leading to algorithms that extract different sur-
faces. Thus, different splittings lead to surfaces that arege-
ometrically different. If case (d1) in Figure 6 is employed,
the topology of the surface obtained by tetrahedra config-
urations is different from the surface obtained by octahe-
dra configurations, see Figure 12 for an example. Here, the
splitting shown in Figure 5 is used. The tetrahedra obtained
are not regular (opposed to the tetrahedra in the Delaunay
mesh). The local configurations are similar to the configura-
tions in Figure 4. The different cases from this splitting are
shown in Figure 6, where each configuration represents the
four tetrahedra resulting from a octahedron are shown. Ob-
serve that, due to the splitting, different surface patchesare
extracted depending on the orientation of the configuration.

(a) (b)

Figure 5. One octahedron divided into four
tetrahedra.

3.3 Rhombic Dodecahedra Partitioning

A third partitioning is obtained by representing each set
of six grid points forming octahedra in the Delaunay mesh

(a) (b1) (b2) (c1) (c2)

(d1) (d2) (e1) (e2) (f)

Figure 6. The octahedra cases when splitted
into tetrahedra.

by rhombic dodecahedra. In this way, no tetrahedron cases
are needed since the rhombic dodecahedra are space-filling.
The different cases are shown in Figure 7.

Observe that, extra rules must be applied to configura-
tion (e) in Figure 7 in order to avoid non-manifold surfaces.
Both vertexp3 andp6 correspond to object grid points. The
non-manifold cases in Figure 8 are avoided if the angle be-
tween the vectorR(1, 1, 1) (R is the rotation matrix used in
the definition of the fcc grid) and the normal of the rhom-
bus with two object grid points whose interior intersects the
surface is as small as possible. In Figure 7(e), either (the
interior of) the rhombus includingp3 andp6 or the rhombus
includingp5 andp6 can be choosen to intersect the surface.
(Or, by complementarity, the rhombus includingp1 andp2

or the rhombus includingp1 andp4.)
In Figure 13(e2), an alternative surface is shown for case

in Figure 7(e). This surface can, however, not be used for
r-regular objects with

√
2r′ > r. This is due to the fact that

configurations similar to the ones in Figure 8 can not be
avoided, so there would be cases leading to non-manifold
surfaces. As we will see in Section 4, the surface patches in
Figure 13(e2) can be used if

√
2r′ < r.

(a) (b) (c) (d) (e) (f)

Figure 7. The rhombic dodecahedra cases.

4 Topology Preservation

Theorem 1 The Marching-algorithms presented here are
all topology preserving reconstruction methods and the re-
sults of the algorithms are2r′-homeomorphic to the origi-
nal object ifA is r-regular and the sampling grid is an fcc
r′-grid with

√
2r′ < r.



(a) (b)

Figure 8. These configurations lead to non-
manifold surfaces. This is avoided by intro-
ducing an extra condition.

Proof: In [7], it is proved that the reconstruction of an
r-regular object on an fccr′-grid with

√
2r′ < r using

voxel representation is2r′-homeomorphic to the original
object. The surface obtained from the voxel representations
of the configurations in Figure 3, 4, 6, and 7 are shown
in Figure 9, 10, and 11. First of all, for anr-regular ob-
ject in an fccr′-grid with

√
2r′ < r, the cases (d) can

not occur [7]. It is easy to verify that for all the remain-
ing cases, the surface patches in Figure 3, 4, 6, and 7 sep-
arate the grid points into object/background grid points in
the same way as the surface patches in the correspond-
ing cases in Figure 9, 10, and 11. Also, the local surface
patches in the marching-algorithms presented here are such
that the resulting surface is not self-intersectingand con-
tains no holes between the configurations. Finally, all sur-
face patches except (d) in Figure 3, 4, 6, and 7 are homeo-
morphic to the surface patches in the corresponding cases
in Figure 9, 10, and 11. Thus, following the proof idea
in [7], the surfaces obtained from the marching-algorithms
presented here are2r′-homeomorphic to the original object
if the surface obtained by the voxel representation is. This
is the case when

√
2r′ < r, so the theorem holds.�

(a) (b) (c) (d) (e) (f)

Figure 9. Surface reconstruction with voxels
for the octahedra in the Delaunay and tetra-
hedra partitionings

The difference in topology of the reconstruction for an
object that is notr-regular with

√
2r′ < r is shown in Fig-

ure 12, where the surface of the object with a critical con-
figuration in Figure 1 is generated using the three different
marching-algorithms. For the tetrahedra partitioning, the

(a) (b) (c)

Figure 10. Surface reconstruction with voxels
for the tetrahedra in the Delaunay and tetra-
hedra partitionings

(a) (b) (c) (d) (e) (f)

Figure 11. Surface reconstruction with voxels
for the rhombic dodecahedra partitioning

surface of a single connected object is generated. For the
other two algorithms, the surface of two connected objects
are extracted from the algorithm.

(a) (b) (c)

Figure 12. Surface reconstruction of the ob-
ject in Figure 1 using (from left to right) De-
launay partitioning, tetrahedra partitioning,
and rhombic dodecahedra partitioning.

Without extra conditions, the pairs of configurations in
Figure 8 would lead to self-intersecting surfaces (sharing
an edge) resulting in a surface that is not a 2D-manifold.
The transparent balls in Figure 13(a) and (b) have radii√

2r′. The figures show that the surface of the ball inter-
sects with both background and object grid points and since
the object is assumed to ber-regular with

√
2r′ < r, there

can not be an object that has the black grid points in the
interior without also having any of the white grid points
in its interior. Therefore, these configurations can not oc-
cur when

√
2r′ < r and the extra condition introduced

to avoid non-manifold surfaces is not needed. Also, since
the configuration can not occur in pair as is shown in Fig-
ure 8 and 13(a) and (b) when

√
2r′ < r, the surface patches

(e2) shown in Figure 13 can be used instead of (e) in Fig-
ure 7.



(a) (b) (e2)

Figure 13. (a) and (b): These configura-
tions lead to non-manifold surfaces. This
is avoided by introducing an extra condition.
(e2): An alternative configuration that can be
used instead of (e) in Figure 7 when

√
2r′ < r.

5 Expected Number of Triangles

In this section, following [1], an estimate of the number
of triangles needed to represent the surface of an object is
applied to the three partitionings. A finite subset of a grid is
called animage. The number of grid points in an image on a
cubic grid is denotedN . The results will be compared to the
marching cubes algorithm on the cubic grid. Therefore, we
include in the calculations the fact that only0.7698 samples
are needed on the fcc grid to fulfill the Shannon sampling
theorem compared to the cubic grid. The number of cells
Ncells (i.e. polyhedra in the partitioning scheme) that inter-
sect the object surface is approximated by the formula used
in [1]:

Ncells = O
(

N
2

3

)

. (1)

The formula

Ntri = Ncells · Ntri/cell (2)

will be used to estimate the total number of triangles.

5.1 Delaunay Partitioning

In the Delaunay partitioning, each grid point is the ver-
tex of 8 tetrahedra and6 octahedra. Each octahedron has
6 grid points as vertices and each tetrahedron has4 grid
points as vertices. The average number of cells per grid
point is 1

6 · 6 = 1 octahedron plus14 · 8 = 2 tetrahedra. The
total number of cells are(1 + 2) · 0.7698N (observe that
N is the number of grid points in a cubic grid). By using

(1), Ncells = ((1 + 2) · 0.7698N)
2

3 ≈ 1.7472N
2

3 of these
intersect the surface.

The average number of triangles per octahedron is
12·2+24·4+6·4+12·6+8·4

62 = 4 and the average number of tri-
angles per tetrahedron is8·1+6·2

14 ≈ 1.43. The expected
number of octahedra and tetrahedra per grid point is1 and

2, respectively. Therefore, the expected number of trian-
gles per cell isNtri/cell = 2·1.43+1·4

3 ≈ 2.2857. By (2),
the expected number of triangles is nowNtri = Ncells ·
Ntri/cell = 1.7472N

2

3 · 2.2857 ≈ 3.9935N
2

3 .

5.2 Tetrahedra Partitioning

By the octahedra configurations in Figure 6, the average
number of triangles per octahedron is now5.1613 which
results inNtri ≈ 4.6698N

2

3 .

5.3 Rhombic Dodecahedra Partitioning

Following the calculations above, Ntri ≈
(1 · 0.7698N)

2

3 · 4 ≈ 3.3598N
2

3 .

6 Experimental Results

For an image (a finite subset of the grid points) on the fcc
grid withNfcc = 16384 grid points, the number of triangles
needed to represent the surface of a ball and a torus is com-
puted. Balls and tori of20 different radii and major radii
(the minor radius is kept fixed for the tori), respectively,
are considered. The average number of triangles needed to
represent the balls and the tori are calculated for the three
marching-algorithms. The numbers are shown in Table 1.

The resulting surfaces from the three algorithms when
applied to the digitization of a potplant is shown in Fig-
ure 14.

7 Discussion and Conclusions

For the topology-preserving marching cubes algorithm
presented in [6], the expected number of triangles isNtri =
2.85N

2

3 . This should be compared with the algorithms on
the fcc grid presented here:3.99N

2

3 , 4.67N
2

3 , and3.36N
2

3

for Delaunay, tetrahedra, and rhombic dodecahedra parti-
tiong, respectively. Thus, when considering the Shannon
sampling theorem, the algorithms we have presented for the
fcc grid are less efficient compared to the marching cubes
algorithm on the cubic grid. The conclusion from the esti-
mation of the number of triangles needed for a marching-
algorithm on the bcc grid in [1] is that also the bcc grid
is, in this sense, less efficient compared to the cubic grid.
Since the bcc grid needs only0.680/0.741 ≈ 0.92 times
the number of samples needed for the fcc grid [4] to fulfill
the (Shannon) sampling theorem, the results for the bcc grid
presented in [1] are slightly better than the results for thefcc
grid.

If the topological sampling theorems for the fcc grid and
the cubic grid instead are considered, anr-regular object
implies that an fccr′-grid with

√
2r′ < r ([7]) and a cubic



Table 1. Average number of triangles for balls and tori of dif ferent radii and major radii, respectively.
Delaunay Tetrahedra Rhombic Dodecahedra

Expected 2.2857 · (3Nfcc)
2/3 ≈ 3067 2.6728 · (3Nfcc)

2/3 ≈ 3586 4 · (1Nfcc)
2/3 ≈ 2580

Ball 3207 3725 1944
Torus 3638 4089 2209

(a) (b)

(c) (d)

Figure 14. Triangulation of a (rotated) pot-
plant. The voxel representation (4431 voxels)
(a), triangulation using the Delaunay parti-
tioning (12756 triangles) (b), tetrahedra parti-
tioning (16164 triangles) (c), and rhombic do-
decahedra partitioning (7372 triangles) (d).

r′′-grid with 2r′′ < r ([6]) are needed to preserve topology.
With 2r′′ = r =

√
2r′ (i.e. using the limit of the allowed

sparsity of the grids), a voxel in the cubic grid of unit vol-
ume hasr′′ =

√
3

2 and the volume of an fcc voxel withr′

such that2r′′ =
√

2r′ has volume2 · (2/3)(2/3) ≈ 3.67.
Thus,3.67 times less sampling points can be used for the
fcc grid compared to the cubic grid to guarantee topology
preservation. Using the formulas (1) and (2) to compare
with a cubic grid withr′′ =

√
3/2, we get the expected

number of triangles to be2.85N
2

3 for the marching cubes
and2.00N

2

3 , 2.33N
2

3 , and1.68N
2

3 for the Delaunay, tetra-
hedra, and rhombic dodecahedra partitioning, respectively.

From the values in Table 1, it is clear that the expected
number of triangles for an image is a very rough estima-
tion. It works as a tool here to analyze and compare the dif-
ferent marching-algorithms and shows that the algorithms
presented here perform quite well compared to the original
marching cubes-algorithm. The experiments verify that the

marching-algorithm using rhombic dodecahedra partition-
ing gives the least number of triangles among the algorithms
presented here.

We have presented a number of marching-algorithms de-
signed for the fcc grid, all with the property of preserving
the topology of the original object. This is the first paper de-
scribing topology-preserving marching-algorithms for the
fcc grid. The major advantage with the fcc grid compared
to the cubic grid in this context is its efficiency in topol-
ogy preserving digitization. From this point of view, the
marching-algorithms presented here outperform the tradi-
tional marching cubes algorithm on the cubic grid.
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