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Abstract. The expressiveness of a lot of image analysis algorithms de-
pends on the question whether shape information is preserved during
digitization. Most existing approaches to answer this are restricted to
binary images and only consider nearest neighbor reconstruction. This
paper generalizes this to grayscale images and to several reconstruction
methods. It is shown that a certain class of images can be sampled with
regular and even irregular grids and reconstructed with different inter-
polation methods without any change in the topology of the level sets of
interest.

1 Introduction

Much of the information in an analog image may get lost under digitization. An
image analysis algorithm can only be successful, if the needed information is pre-
served during the digitization process. Since a lot of image analysis algorithms
are based on level sets, isosurface contours, and their shapes, it is important to
know how to guarantee that the shapes of level sets are preserved. Up to now the
problem of shape preserving digitization has mostly been dealt with for binary
images.

It is well known that so-called r-regular binary images (see difinition 1) can
be digitized with square or hexagonal grids of a certain density without changing
the shape in a topological sense [2,11,12]. Recently Köthe and the author were
able to show that this is true for any grid of a certain density and that this still
holds if the image is blurred by a disc shaped point spread function [7,13]. In case
of square grids, this is also proved for square shaped point spread functions [8,9].
But all this work is not only restricted to binary images but also to nearest neigh-
bor reconstruction in combination with thresholding. The only exception is the
work of Florêncio and Schafer [2], which allows other morphological reconstruc-
tion methods, too, but then only guarantees a bounded Hausdorff error instead
of topological equivalence. In general, reconstruction means extending the do-
main of a discrete image function from the set of sampling points to the whole
plane IR2. In another paper [3] Florêncio and Schafer show that even certain
grayscale images can be sampled and reconstructed with a bounded Hausdorff
error, when using a regular grid and some morphological reconstruction method.



All the mentioned approaches use several different ways to compare an image
with its reconstructed digital counterpart. The strongest mentioned similarity
criterion is strong r-similarity [13], which subsumes the others and which is used
in this paper. The prior results are generalized to grayscale images and to a
broad class of important reconstruction methods.

2 Regular Images and 2D Monotony

In this section some basic concepts are defined, which are necessary for the
following work. Namely a definition of r-regular graylevel images and a gener-
alization of monotony to 2D is given. Additionally some connections between
these two ideas are shown, which are used in the proofs of the following sections.

At first some basic notations are given: The Complement of a set A will be
noted as Ac. The boundary ∂A is the set of all common accumulation points
of A and Ac. The interior A0 of A is defined as A \ ∂A and the closure A is
the union of A and ∂A. A set A is open, if A = A0 and it is closed if A = A.
Br(c) := {x ∈ IR|(x − c)2 ≤ r2} denotes the closed disc and B0

r(c) := (Br(c))
0

denotes the open disc of radius r and center c. The ε-dilation of a set A is defined
as the set of all points having a distance of at most ε to some point in A. Lt(f)
shall be the level set with threshold value t of an image function f : IR2 → IR:
Lt(f) := {x ∈ IR2|f(x) ≥ t}. A set A ⊂ IR2 is called simple 2D (simple 1D)
if it is homeomorphic to the unit disc B1(0) (to the unit interval). Obviously
compact subsets of the plane are simple 2D iff their boundary is a Jordan curve.

Definition 1. A compact set A ⊂ IR2 is called r-regular if for each boundary
point of A it is possible to find two osculating open discs of radius r, one lying
entirely in A and the other lying entirely in Ac. A grayscale image function
f : IR2 → IR is r-regular, if each level set is r-regular.

Note, that an r-regular grayscale image does not contain isolated extrema
or saddle points, but plateaus. Each local extremum is a plateau with r-regular
shape. The property that extrema become plateaus is similar to the concept of
one-dimensional local monotonic functions, as defined in [1]. These functions,
which are monotonic in any interval of some restricted size, do not change under
median filtering. Additionally they are invariant under morphological opening
and closing, which is also true for r-regular binary images as already stated by
Serra [12]. This suggests to ask for the relationship between the concepts of
monotony and r-regularity. Therefore a suitable generalization of monotony to
2D is needed.

Our approach is to understand local monotony as a topological criterion of
the neighborhood: When applying an arbitrary threshold function to a 1D locally
monotonic function, the resulting binary set can have at most one component
in each interval of some restricted size. This can easily be generalized to higher
dimensions:



Definition 2. Let A ⊂ IR2 be a simple 2D set. A closed set B ⊂ IR2 is called
monotonic in A, if both B ∩ A and Bc ∩ A are simple 2D, empty or one-point-
sets. B is called constant in A if B ∩ ∂A = ∅. An image function f : IR2 → IR
is called monotonic (constant) in A, if Lt(f) is monotonic (constant) in A for
each threshold value t ∈ IR.

This definition of monotony is a generalization of monotony on paths, since
a function is monotonic on some path if the level sets and their complements
are simple 1D, empty or one-point-sets. If you have an image function being
monotonic in a simple 2D set A, there exists from each point in A a monotonic
decreasing path to any minimal boundary point of A and a monotonic increasing
path to any maximal boundary point. Figure 1 illustrates, what monotony in
2D means: If an image is monotonic in some area, then this part of the image is
homeomorphic to an image which is (in the classical sense) monotonic on each
straight line though it.

Definition 3. Let f : IR2 → IR be an image function and let A ⊂ IR2 be a
simple 2D set. Further let Av = A + v be the result of the translation of A by a
vector v ∈ IR2. Then f is called locally monotonic w.r.t. A, if f is monotonic in
Av for any v.

Lemma 1. An image function f is locally monotonic w.r.t. a simple 2D set A

iff each level set Lt(f) with t ∈ IR is locally monotonic w.r.t. A.

Proof. The lemma follows directly from the definition. ut

The next lemmas show the connection between local monotony and r-regu-
larity. Since 2D monotony is a fundamental property of several reconstruction
methods (see section 3), the lemmas explain why r-regular images have been
used for nearly all shape preserving sampling theorems:

Lemma 2. Let A be a disc with radius smaller than some r ∈ IR or let A be
an intersection of a finite number of such discs. Then every r-regular image f

is locally monotonic w.r.t. A.

Proof. For each threshold value t ∈ IR, Lt(f) is an r-regular set. Due to r-
regularity, no three boundary points of Lt(f) lie on a common circle of some
radius smaller than r. Since no three boundary points of A lie on a common
circle with a radius of at least r, A and Lt(f) can have at most two boundary
points in common. If Lt(f)∩A or (Lt(f))c∩A is empty, Lt(f) is monotonic in A.
Otherwise one or two of such boundary points exist, because no component of an
r-regular image can lie completely in A. If there is only one such boundary point,
Lt(f) ∩ A or (Lt(f))c ∩ A has to be a one-point-set, which implies monotony.
Finally if there are two such boundary points, the boundary part ∂Lt(f)∩A cuts
A into two simple 2D parts Lt(f)∩A and (Lt(f))c∩A, which implies monotony.
Obviously this is also true for any translated version of A and thus f is locally
monotonic w.r.t. A. ut



(a) (b)

(c) (d)

Fig. 1. The image in (a) is monotonic on each straight line through it. Thus obviously it
can be called monotonic in 2D. (b) shows an image, which is homeomorphic to (a), and
thus monotonic. There is no local maximum or minimum in the shown area, except of
exactly one maximum and one minimum at the boundary. (c) shows a local maximum
and thus is not monotonic in the shown area. The same is true for image (d), since
there are two minimal regions.

Thus you can take for example any disc shaped area of some r-regular image
and it will be monotonic, if the disc has some radius smaller than r. Or you
can take a finite intersection of such areas, e.g. Reuleaux triangles (see [13] for
a definition).

Lemma 3. Let A be an r-regular set and B, C ⊂ IR2 be two simple 2D sets such
that

– B is a subset of some r′-disc and C is a subset of some r′′-disc with r′, r′′ < r,
– A is monotonic in both B and C,
– ∂B crosses ∂C in exactly two points p1, p2,
– ∂A crosses ∂B in exactly two points b1, b2 both different from p1 and p2, and
– ∂A crosses ∂C in exactly two points c1, c2 both different from p1 and p2.

Then A is monotonic either in B \ C or in C \ B. Furthermore A is monotonic
in either ∂B ∩ C or ∂C ∩ B (see Fig. 2).
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Fig. 2. There are only 5 possibilities, how ∂A can go through B and C, such that their
boundaries are each only crossed twice but not in p1, and p2.

Proof. Figure 2 shows the different possibilities of ∂A going through B and C.

Both ∂A∩B and ∂A∩C consist of exactly one component, since they cannot
be empty and since A is monotonic in B and C. Thus ∂A ∩ (B ∪ C) consists of
two components if ∂A ∩ (B ∩ C) is empty, and of one component otherwise. If
∂A∩ (B ∩C) is empty, A∩B ∩C is empty or equal to B ∩C (see Fig. 2c) then
A is monotonic in both B \ C and C \ B and A is even constant in both ∂B ∩C

and ∂C ∩ B.

Otherwise ∂A ∩ (B ∪ C) must be connected. If the intersection of A and
B \ C is empty or equal to B \ C (see Fig. 2e) or if the intersection of A and
C \ B is empty or equal to C \ B (see Fig. 2d), A is monotonic in B \ C (then
A is constant and thus monotonic in ∂C ∩B) or in C \ B (then A is constant in
∂B ∩ C), respectively.

Else ∂A∩ (B∪C) must go through B \ C, C \ B and B∩C without meeting
p1 or p2. There are only two remaining possibilities: First, ∂A enters B \ C at
some point b1 on ∂B \ C, next enters B ∩ C at some point c1 on ∂B ∩ C0 and
leaves it at some point b2 on ∂C ∩B0, before finally leaving C \ B through some
point c2 on ∂C\B (see Fig. 2a). Second, ∂A does not intersect ∂(B∪C). Starting
in B \C, it goes through (B ∩C)0 into C \B and on another path back through
(B∩C)0 into B \C to the starting point (see Fig. 2b). In both cases both B \ C

and C \ B are cut by ∂A into two simple 2D parts, which implies monotony.



In the first case ∂A intersects both ∂B∩C and ∂C∩B in only one point and
thus A is monotonic on these paths. The second case is in contradiction to the
r-regularity of A, since B ∪C is subset of the union of two discs of radii smaller
than r and no such union can cover an r-regular set. ut

Lemma 4. Let A, B be simple 2D sets, such that A is monotonic in B and
let S = (s0, s1, . . . , sn = s0) be a clockwise ordered cyclic list of points ly-
ing on ∂B, such that there exist no four points sa, sb, sc, sd with a < b <

c < d such that sa, sc ∈ A and sb, sd ∈ Ac or vice versa. Further let P =
{p0,1, p1,2, . . . , pn−1,n},pi,j ⊂ B, be a set of non-intersecting (except of their
endpoints) simple paths in B between neighboring points of S, such that A is
monotonic in each path (the existence of such paths is shown in the proof of
Theorem 1). Then the area enclosed by the paths is simple 2D and A is mono-
tonic in it.

Proof. The paths define a closed curve. Since they do not intersect (except of
their endpoints), this curve is a jordan curve. The closed set C, which is circum-
scribed by this curve, is a simple 2D set and a subset of B. Each path pi cuts
∂A ∩ B in at most two parts, where only one part can intersect C. It follows
by induction that ∂A∩C consists of at most one component, hitting ∂C in two
points. This component separates C into two simple 2D sets (bounded by jordan
curves) A ∩ C and Ac ∩ C. Thus A is monotonic in C. ut

3 Sampling and Reconstruction

In order to compare analog with digital images, a definition of the processes of
sampling and reconstruction is needed. The most obvious approach for sampling
is to restrict the domain of the image function to a set of sampling points. This
set is called a sampling grid. In most approaches only special grids like square
or hexagonal ones are taken into account [2,3,4,5,8,9,11,12]. A more general
approach only needs that a grid is a countable subset of IR2, with the sampling
points being not too sparse or too dense anywhere [6,7,13]. There the pixel shapes
are introduced as Voronoi regions.

Definition 4. A countable set S ⊂ IR2 of sampling points, where the Euclidean
distance from each point x ∈ IR2 to the next sampling point is at most r ∈ IR, is
called an r-grid if for each bounded set A ∈ IR2 the subset S ∩ A is finite. The
Voronoi region of a sampling point is the set of all points lying at least as near to
this point than to any other sampling point. A maximal set of sampling points si,
whose Voronoi regions have a common corner point p, is called Delaunay tuple
and its convex hull is the Delaunay cell. Obviously, the sampling points si lie on
a common circle with center p (see Fig. 3c). p is called the center point of the
Delaunay cell. An r-grid is named degenerated if at least one of the associated
Delaunay cells (not necessarily triangles) does not contain its center point. A
Delaunay tuple is called well composed regarding to an image function f , if the
clockwise ordered cyclic list of sampling points s1, s2, . . . sn−1, sn = s0 has only
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Fig. 3. (a): Definition of linear reconstruction (definition 5). (b): construction of mono-
tonic covering of a Delaunay cell (Theorem 1).

one local maximum and one local minimum (plateaus are allowed) in f , or in
other words that there exist no four points sa, sb, sc, sd with a < b < c < d such
that
f(sa) > f(sb), f(sb) < f(sc), f(sc) > f(sd) and f(sd) < f(sa), or
f(sa) < f(sb), f(sb) > f(sc), f(sc) < f(sd) and f(sd) > f(sa).

Note, that for any well composed set in the sense of Latecki [9], each De-
launay tuple is well composed. The definition even matches the definition of
extended well composed sets by Wang and Bhattacharya [14].

Since reconstruction is a local process where the value of a point is influenced
by the surrounding sampling points, several reconstruction methods are defined
piecewise. One obvious idea is to define the reconstruction for each Delaunay cell
of the sampling grid separately. Then the basic idea is that an image, which is
locally monotonic, should have a locally monotonic reconstruction. Therefore a
class of such reconstruction functions is defined, which includes generalizations
of bilinear and nearest neighbor reconstruction to arbitrary grids.

Definition 5. Let Img be the class of all grayscale image functions f : IR2 → IR
and let S ⊂ IR2 be an r-grid for some r. A function recS : Img → Img is
called a reconstruction function if ∀f ∈ Img, ∀s ∈ S : (recS(f))(s) = f(s) and
∀f, g ∈ Img : f |S = g|S ⇒ recS(f) = recS(g). A reconstruction function is called
Delaunay-monotonic if for each well composed Delaunay tupel the reconstruction
is monotonic in the corresponding Delaunay cell, and – restricted to this cell –
each nonempty level set of the reconstruction and its complement contains at
least one sampling point, respectively.



Now let S be a non-degenerated grid and f be an image function.

The linear reconstruction function recS is defined as follows. Let A be a De-
launay cell of the grid and p be its center point (see Fig. 3a). Then the Delaunay
cell can be divided by the median lines from p to the boundary edges of the De-
launay cell into quadrangles. Now the reconstruction function is defined by a
bilinear interpolation in each of the quadrangles, where the values for the four
vertices are the following: At the sampling points si, recS(f) is equal to f ; at
p, recS(f) is the mean of the values of f at the sampling points (p has equal
distance to all of these sampling points); at the median points mi,j , recS(f) is
the mean value of the two corresponding sampling points si, sj .

The nearest neighbor reconstruction function recS is defined by giving each
point the value of the nearest of the sampling points which correspond to the
actual Delaunay cell. If there is no unique nearest sampling point, the one with
the highest value is taken.

In a Delaunay-monotonic reconstruction, the image is monotonic in each
Delaunay cell, where this is possible. Of course it cannot be monotonic in a
Delaunay cell where the clockwise ordered cyclic list of sampling points has not
only one local maximum and one local minimum in the image function.

In case of square grids, these definitions are equivalent to the standard bilin-
ear interpolation and the nearest neighbor interpolation. Any linear or nearest
neighbor reconstruction function is Delaunay-monotonic, since no overshooting
can occur. Note that even more complex reconstruction methods like biquadratic
interpolation only need slight modifications (cutting off the overshootings) in or-
der to be Delaunay-monotonic. In case of the nearest neighbor reconstruction,
the value of each sampling point is simply set to the whole Voronoi region, which
is equal to the reconstructions used in [2,3,7,8,9,11,12,13]. Even the marching
squares algorithm, a two-dimensional simplification of the well-known marching
cubes algorithm [10], defines a Delaunay-monotonic reconstruction function.

4 Shape Preserving Sampling Theorems

In this section at first two minor sampling theorems are proved. The first the-
orem is only for binary images, where no sampling point lies on the boundary
of any foreground component. The second theorem extends this to any binary
image. After that the third and main result finally generalizes these theorems to
grayscale images.

In the following, the well-defined similarity criterion strong r-similarity (see
[13]) is used to compare shapes before and after digitization. Two shapes A, B ⊂
IR2 being strongly r-similar means that there exists a homeomorphic deformation
f of the plane IR2, with f(A) = B and where the movement of each point is



bounded by r: ∀x ∈ A : |x − f(x)| ≤ r. Such a restricted homeomorphism is
called r-homeomorphism. This criterion is stricter than both the preservation
of topology used by Pavlidis and Latecki et al. [8,9,11] and the isomorphy of
homotopy trees used by Serra [12]. It additionally sets a bound for the Hausdorff-
distance of the original and the reconstructed set and of their boundaries. Strong
r-similarity is originally a criterion for binary images like shapes. If we have a
grayscale image, we can investigate the shapes given by the level sets of the
image. So two grayscale images are called strongly r-similar if this is true for all
of their level sets.

Theorem 1. Let A be an r-regular set and S be a non-degenerated r′-grid with
r′ < r, such that no sampling point x ∈ S lies on ∂A. Further let recS be
a Delaunay-monotonic reconstruction function. Then there exists a 2r′-homeo-
morphism from A to the reconstruction Lv(recS(A)) for each threshold value
v ∈ (0, 1).

Proof. In the following such a homeomorphism is defined by partitioning the
original image and the reconstruction into homeomorphic parts corresponding
to the Delaunay cells.

Let p be the center point of some Delaunay cell of the grid. Then there exists
a disc with radius of at most r′ and center in p, such that each element of the
Delaunay tuple lies on its boundary. The set X of all so defined discs (one for
each corner point) covers the whole plane and A is monotonic in each disc.

Now we replace each disc B by the intersection B′ of new discs of slightly
bigger radius r′′ < r, which cover all the sampling points lying on ∂B and which
each have exactly two neighboring sampling points on their boundary (see Fig.
3b). Doing this with an appropriate radius r′′ we can guarantee that ∂A∩B′ is
no one-point-set. The so constructed set X ′ still covers the plane, while A being
monotonic in each element of X ′ according to Lemma 2.

Due to the construction of X ′, the boundaries of each two elements of X ′

intersect in two or zero points. Now let B1, B2 be two elements of X ′, such that
their boundaries intersect in two points p1 and p2. Since the interior of each
element of X ′ does not contain any sampling point, the path ∂B1 ∩ B2, going
from p1 to p2 does not hit any sampling point except of the possible sampling
points p1 and p2. If p1 and p2 are both sampling points, we can choose one such
path P between them due to Lemma 3, with A being monotonic in P . By doing
this for every pair of neighboring sampling points we can map each edge of the
Delaunay graph to such a path. Each of these paths is covered by both discs of
X , which intersect with the endpoints of the path. Now we modify this set of
paths Y , such that no two paths intersect in non-sampling points:

If two paths intersect in a common subpath, which is not an isolated point,
we can displace one path in this area by a small distance, such that the two



Fig. 4. The reconstructed image function is monotonic in each Delaunay cell (colored
regions in the left figure). One can find corresponding regions in the original image,
where the image function is monotonic, too (colored regions in the right figure).

new paths intersect only in the endpoints of the formerly common subpath and
in common intersection points with ∂A. This is possible without changing the
monotony of A on the paths since ∂A intersects the paths in at most one isolated
point. The resulting paths can be guaranteed to be covered by the correspond-
ing elements of X , due to the construction of X ′. Thus the resulting paths only
intersect in isolated points. Now let P1 and P2 be two paths, crossing each other
in two points p1 and p2. Then by swapping the parts of the paths between p1 and
p2 we get two paths, which intersect in p1 and p2, but do not cross each other
in these points. If two paths cross each other in only one point there are two
cases: First, if they intersect also in an endpoint we can use the same swapping
technique. Second, if they intersect in no other point, one of the endpoints of
one path must be enclosed by the circular set of paths covered by one of the
corresponding discs of X , which is impossible since no sampling point lies in the
interior of such a disc.

Since the swapped path parts are covered by the same discs of X , the cover-
ing properties do not change under this swap operation. By induction we get a
set of paths Y ′ where no two paths cross each other. The paths can only intersect
at some single points without crossing. At these points we can displace one path
by a small distance such that the paths do not intersect anymore.

All these path modifications do not change the monotony of A on them. Thus
the resulting set of paths defines an embedding of the Delaunay graph into the
plane, such that each region can be covered by an r′-disc. Figure 4 shows an ex-
ample of neighboring Delaunay cells and their corresponding embeddings in the
reconstructed image. With Lemma 4 the Delaunay cells and their corresponding
regions due to the above construction are each homeomorphic. Since two such
corresponding regions can be covered by a common r′-disc, each homeomorphism
is a 2r′-homeomorphism. Obviously we can choose homeomorphisms which are
identical on the constructed paths, which implies strong r′-similarity of A and
Lv(recS(A)) for each theshold value v ∈ (0, 1). ut



This means that if a shape is r-regular, it can be sampled with any sampling
grid of a certain density and any Delaunay-monotonic reconstruction method,
such that the resulting reconstruction has exactly the same topological properties
and only a bounded Hausdorff distance to the original shape. The only restriction
is that the sampling points are not allowed to lie on the shape boundary. The
next theorem shows that this restriction is not really existent.

Theorem 2. Let A be an r-regular set and S be a non-degenerated r′-grid with
r′ < r. Further let rec be a Delaunay-monotonic reconstruction function. Then
there exists for any ε > IR a (2r′ +ε)-homeomorphism from A to the reconstruc-
tion Lv(recS(A)) for each threshold value v ∈ (0, 1).

Proof. Let d be the minimal distance between A and any sampling point not
lying in A – this is uniquely defined since there is only a finite number of sampling
points having a distance of at most r due to the compactness of A. Now let
ε be any number with 0 < ε < min(d, r − r′). Then the ε-dilation A′ of A

is ε-homeomorphic to A and has exactly the same reconstruction, since the
values at the sampling points did not change. Due to Theorem 1 the (r − ε)-
regular set A′ is (2r′)-homeomorphic to the reconstruction and in case of the
nearest neighbor reconstruction even r′-homeomorphic to it. The concatenation
of the two homeomorphisms defines a (2r′ + ε)-homeomorphism from A to the
reconstruction Lv(recS(A)). ut

In case of nearest neighbor reconstruction the similarity bound is even stronger.
In [13] Köthe and the author showed that then even strong r′-similarity instead
of strong (2r′)-similarity is given.

Now the final step to grayscale images is straightforward, since each level set
of an r-regular grayscale image is r-regular, too.

Corollary 1. Let f be an r-regular image function and S be a non-degenerated
r′-grid with r′ < r. Further let rec be a Delaunay-monotonic reconstruction
function. Then the reconstruction is strongly (2r)-similar to f for any theshold
value, which is not equal to the image value at some sampling point.

If the threshold value is equal to the image value at some sampling point,
the corresponding level set of the reconstructed image function is not necessarily
simple 2D, but can contain one dimensional parts and thus the topology changes.
But one can show that this does not happen, if the original image is 2r-regular,
because then each plateau is reconstructed topologically correctly.

5 Conclusions

It was proved that any grayscale image, which has only r-regular level sets, can
be sampled by arbitrary sampling grids of sufficient density and reconstructed
by a non-overshooting interpolation method, and still remains strongly r′-similar
(for some bounded r′) for any threshold value, which is not an image value at



some sampling point. This implies that most level sets do not change topology
under digitization and thus you can say the topology of the image is preserved.
Each maximum or minimum plateau of the original image can be found in the
digitization having the same height.
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