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Abstract. Estimation of a digital curve’s curvature at any given point
is needed for many tasks in computer vision, be it differential invariants
or curvature scale space. However, curvature estimation is known to be
very susceptible to noise on the contour. We shall show how noise on the
contour affects the relative accuracy of the curvature computation. One
interesting result is that, contrary to intuition, the accurate calculation of
the curvature for low-curvature regions is in fact impossible for common
image-sizes, while reasonable results may under favourable conditions be
obtained for higher-curvature regions.

1 Introduction

In the early years of computer vision, the need to calculate a digital curve’s
curvature used to arise quite frequently. However, this did turn out to be a
rather harder task than one originally appreciated (see [1] which compares several
different approaches), and today the knowledge about the difficulty of the task
has become so ingrained in the computer vision community that curvature is
hardly ever used outside the scale space community, where much of the work is
reduced to locating the zero crossings of curvature [2].

We believe, however, that only little attention has so far been given to the
question why the calculation of curvature is hard. Worring’s approach [1] is
only relevant for edgels on a pixel-grid; Kovalevsky [3] recently extended this
to edgels with sub-pixel accuracy, using his own edge-finder. However, both au-
thors basically follow the assumption that curvature for low-curvature regions
can be calculated more accurately than for high-curvature regions, since for the
former smoothing will be less invasive than for the latter, and as a consequence
concentrate on high-curvature regions with a radius of curvature below 40 pxl.

This paper strives to demonstrate that for real images the curvature of low-
curvature regions is in fact just as difficult to compute. This is due to the limited
size of outlines in real images, and we shall see that neither very low nor very
high curvature can be estimated reliably under real life conditions.

This paper is organised as follows: Section 2 gives the analytic derivation of
the expected relative error for a very simple case, this serves mainly to give a
feeling for the mathematics involved. Section 3 gives results for a more involved,
but also more realistic, case, but without the analytic derivation. Based on these,
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Fig. 1. Simple model for the calculation of curvature

Sec. 4 gives numeric examples of what can be expected from locally operating
approaches for the calculation of the curvature, Sec. 5 discusses some additional
aspects of curvature calculation, and Sec. 6 summarises our findings.

2 Analytic Derivation of a Simple Case

We will first analyse a very simple case. Given 3 points {a, b, c} on a circle, we
can calculate the circle’s midpoint as the intersection of the two perpendicular
bisectors of the 2 lines connecting point a with b and b with c; the circle’s radius
is then straightforwardly given as the distance from the circle’s midpoint to any
of the three points on the circle. Figure 1 gives an overview of the construction.

The main source of error using this setup is the uncertainty in the position
of the three points. For a digital contour given as edgel-chains, only the edgels’
uncertainty perpendicular to the curve is of interest, while the exact location of
the edgels along the curve is of no significance.

In order to simplify the example, we will assume that the position of the
middle edgel varies with standard deviation σ along the vertical-direction, and
that the two other edgels vary with standard deviation σ orthogonal to the line-
segments ab and bc (so that d is constant – this only introduces a small error,
which will later be ignored anyway). In addition, we will introduce a further
simplification by assuming symmetry between the two sides of the construction
(this introduces a much bigger error, but gives us a lower bound for the error
and a much simpler model). The above simplifications allow us to replace the
individual uncertainties in the positions of the edgels by a single uncertainty of
the height h of the triangle connecting the three edgels, it is

σh = σ

√
1 + sin2(α) . (1)
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In doing so we are projecting the edgels’ uncertainty onto the vertical axis.
Using similarity triangles, we can calculate the radius R as

R =
d2

2h
. (2)

So how does the uncertainty in h propagate to R? Using simple linear error
propagation we can approximate the standard deviation of the radius σR by
multiplying the covariance-matrix of all independent variables – in this case this
is simply the scalar σ2

h – on both sides with the Jacobian of the dependent
variables with respect to all independent variables – in this case this is simply
the derivative of R with respect to h,

∂R

∂h
= − d2

2h2 . (3)

We therefore get the approximation

σR ≈
√

d2

2h2 · σ2
h · d2

2h2 = σh
d2

2h2 , (4)

for the standard deviation of the radius.
We are, however, interested in the relative accuracy of the radius as a function

of the arc-length s between the outer edgels. From Fig. 1 we see that

α =
π

2
− β

4
(5)

β =
s

R
(6)

h = d cos(α) (7)

and substituting (1) as well as (5), (6), and (7) in (4) leads to

σR =
σ

2

√
1 + sin2(α)

cos2(α)
=

σ

2

√
1 + cos2

(
s

4R

)
sin2 (

s
4R

) . (8)

In order for a result R to be usable we would require its relative error to
remain sufficiently small, i. e.

σR

R
= ρ � 1 . (9)

Note that, as we only analyse the relative error ρ, it does of course not make
any difference whether we calculate the radius R or the curvature κ = 1/R.

We will now calculate the minimum arc-length s necessary to satisfy (9),
and from there, assuming a known average distance from edgel to edgel (set to
1 pxl in the following for simplicity), the number of edgels necessary to achieve
a desired relative accuracy ρ = σR/R. As

0 ≤ cos2
( s

4R

)
≤ 1 (10)

we get from (8)
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4R arcsin
(√

σ

2Rρ

)
≤ s ≤ 4R arcsin

(√
σ√
2Rρ

)
(11)

and for σ � Rρ = σR, which is almost always the case

4√
2

√
σ

ρ
R ≤ s ≤ 4

21/4

√
σ

ρ
R . (12)

Note that the left and right side of (12) differ only by a factor of 21/4 ≈ 1.19; in
both cases the minimum required arc-length s for a required relative accuracy
ρ = σR/R is proportional to the same term and approximately

s ≈ 3
(

σ

ρ
R

)0.5

. (13)

The entire model is of course an oversimplification: we only use 3 out of
N edgels, the end-edgels’ covariance should be taken in radial direction (i. e.
orthogonal to the contour), we assume that the distributions of the two end-
edgels are not independent of each other (which they are). We also assume that
curvature is constant over the entire section of the curve under consideration
(which most likely it isn’t). However, we do feel that the above model is well
suited to give an initial idea of the behaviour of curvature calculation.

In the next section we will analyse a more realistic approach which does
away with all of the above simplifications except that of constant curvature, in
particular using all edgels along s.

3 Using N Edgels

When looking for a description of a curve-segment, instead of calculating this
description directly from the edgels it is not uncommon to fit an algebraic curve
to the edgels and use the parameters of the curve with the smallest error of fit
to calculate the description. These curves are often polynomials in x and y, and
in our particular application, where we are trying to find the radius of curvature
of a given curve, it is a natural choice to fit part of a circle to the edgels1.

Different methods exist to calculate the error of fit between a curve and N
edgels. Probably the most intuitive method is to minimise the sum of ortho-
graphic, squared distances, which for a circle with midpoint (x0, y0) and radius
R would be

C =
1
N

N∑
i=1

(√
(xi − x0)

2 + (yi − y0)
2 − R

)2

. (14)

However, in general no closed form solution exists for (14), and it has therefore
become customary to use the so called algebraic distance

C =
1
N

N∑
i=1

(
(xi − x0)

2 + (yi − y0)
2 − R2

)2
, (15)

1 This is especially the case as we assume a curve with constant curvature – in general
more complicated models will yield better results, although one should be wary of
too complex models [4].
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for which a closed form solution exists [5]. It is worth noting that minimising
either (14) or (15) in their above form will introduce an additional bias into the
solution, which we will ignore in the following.

We now once again want to calculate the uncertainty of the radius calculated
by minimising (14) or (15) and from there the number of edgels N (or the length
s) of the segment to which we need to fit the circle in order to achieve a given
relative error ρ = σR/R. The uncertainty σR could, in theory, be calculated in
direct analogy with the last section as the matrix-product of the edgels’ covari-
ance matrix, multiplied on both sides with the Jacobian of R with respect to all
edgels, JR. However, since no explicit solution for R exists, at least not for (14),
we need a way to calculate the Jacobian without explicit knowledge about R as
a function of the edgels e = (x1, . . . , xN , y1, . . . , yN )T . The tool to do so is the
implicit function theorem, it is

JR = −
(

∂2C

∂R2

)−1 (
∂2C

∂R∂e

)T
∣∣∣∣∣
Rmin

(16)

provided that the Hessian ∂2C
∂R2 is indeed invertible at the point of the solution

Rmin. If we further assume that all edgels (xi, yi)T share the same covariance
σI2, where I2 is the 2×2 identity matrix – this is a reasonable model for variance
σ perpendicular to the curve – we can calculate the variance of R as

JR σI2N JT
R = σ

(
∂2C

∂R2

)−1(
∂2C

∂R∂e

)T (
∂2C

∂R∂e

) (
∂2C

∂R2

)−1T
∣∣∣∣∣∣
Rmin

. (17)

Evaluating (17) analytically, a purely mechanical process, leads to rather lengthy
(although for (15) still quite manageable) equations outside the scope of this
paper. A numerical evaluation is, however, perfectly possible, and we can then fit
a function to the numerical results; using the squared orthographic distance (14)
the output of these calculations is well approximated by a function

N ≈ 2
(

σ

ρ
R

)0.4

, (18)

while for the algebraic distance (15) a good approximation is

N ≈ 3.7
(

σ

ρ
R

)0.4

. (19)

This is very similar in structure to (13), but with an exponent of 0.4 rather than
0.5. We will see in the next section what this means for practical applications.

4 Numeric Examples

In Sec. 2 and 3 we have calculated the minimum number of edgels required
to compute a radius of curvature R with given relative accuracy ρ = σR/R,
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Fig. 2. Number of edgels N(R, ρ, σ = 0.3 pxl) needed to calculate the radius of curva-
ture R with a relative error of less than ρ = 33 % (dashed line) or ρ = 3 % (solid line).
Inside the grayed out regions R can not even be determined with this accuracy if we
assume a maximum arc β = π/4 (π/2) and a maximum number of edgels N = 20 (50,
100)

compare (13), (18), and (19). It is now instructive to see what actual values
for s or N are required when dealing with real images. For this it is important
to know with what subpixel-precision we can expect to locate edges in real
images. As cited in [6] a basic implementation of the Canny algorithm [7] will
typically produce edgels with a standard derivation perpendicular to the edge
from somewhere about σ ≈ 0.1 pxl to σ ≈ 0.3 pxl depending on the actual CCD
(3-chip RGB versus BW versus Bayer RGB) and lens used as well as the contrast
between regions. As most affordable colour cameras use only one CCD with a
Bayer-filter and often rather cheap lenses, σ = 0.3 pxl is usually all we can
hope for. Together with NTSC or, at best, PAL sized images as they are still
predominant in computer vision, we are therefore hampered both by low image
quality and small images.

Figure 2 shows how many edgels N(R) are needed to compute the curvature
(radius) with a relative accuracy of both ρ = σR/R = 3 % (solid line) and
ρ = 33 % (dashed line), using (18). It is worth remembering that the latter
corresponds to a worst-case error of about 3ρ ≈ 100 %, which means that not
even the sign of curvature can be calculated reliably! But even accepting such an
error we see from Fig. 2 that for a radius of approx. R = 400 pxl we already need
to fit a circle to N = 20 edgels, by many authors considered the maximum region
size which is still sensible to use [3]. The much more realistic (though still big)
relative error of ρ = 3 % would, for a radius of about R = 400 pxl already require
a fit to N > 50 edgels, and even with N ≈ 100 edgels could we only calculate
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radii up to R ≈ 2000 pxl. Similar limits exist for high-curvature regions, in order
to calculate a radius of R = 8 pxl with a relative error of ρ = 3 % we need N ≈ 12
edgels, that’s nearly one quarter of the full circle.

So why is this need for N > 20 (or even N > 100) a problem? After all, a
PAL sized image comes with 768 pxl × 576 pxl, so 100 pxl isn’t really that big.
Or is it? In order to understand the problem it is important to realise that
so far we have calculated the curvature of something we knew to be a circle,
i. e. a contour with constant curvature. In real-life, however, we will usually
encounter curves with non-constant curvature, and it is important to realise that
for such a contour, what we really calculate is not the curvature at the particular
point under consideration, but some sort of average curvature. Assuming noise-
free data, and as long as the real curvature in the interval under consideration
is a monotonic function of the arc-length, we can at least guarantee that the
curvature thus calculated would be correct for some point inside the interval –
although almost certainly not for the point under consideration. This is called
localisation uncertainty in [3]. However, as soon as the curvature over arc-length
ceases to be a monotonic function (i. e. contains extrema), arbitrary results are
possible even in the case of noise-free data.

From the above it is immediately clear that the region of N edgels from which
curvature is calculated should not cross extrema of curvature (whose position we
only know after the fact); to keep the localisation error small it is also desirable
to keep N small enough so that curvature inside the interval doesn’t vary too
much. And the fact that the entire object, usually containing several extrema of
curvature, has to fit into a PAL-sized (768 pxl × 576 pxl) image, severely limits
the maximum usable number of edgels, [3] cites values around 4 pxl–20 pxl. This
is the factor we are most interested in. By contrast, most authors so far have
been interested in high-curvature regions [1,3], where visible arc-length is the
criterion; as a rule of thumb most authors would limit the arc under consideration
to somewhere between β ≤ π/4 and β ≤ π/2.

In Fig. 2 regions with an arc β > π/4 and β > π/2 as well as N > 20,
N > 50, and N > 100 have been grayed-out; only the remaining region (with
white background) is suitable for curvature calculation, which clearly limits both
the maximum, but also the minimum curvature which can be calculated with a
given relative error ρ.

Figure 3 shows an exemplary calculation of curvature for a contour with
σ ≈ 0.3 and N ∈ {20, 50, 100}. We see that with N = 20 we get reasonable
(although still quite noisy) results for 20 pxl < R < 80 pxl. For smaller radii
the calculated results are biased (due to extrema of curvature within the fitting-
window) and for bigger radii results are so noisy as to be useless. Using more
edgels clearly removes some of that noise, but at the same time introduces a
bias into the result which can easily reach 100 % of the true result or more (note
that the scale is logarithmic). Choosing a different scale for different regions on
the contour is an obvious way to improve the results, but note Fig. 3 (bottom
left), where for radii of around R = 20 pxl and N = 50 we already observe a
noticeable bias, while curvature estimates are still quite noisy.
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Fig. 3. Gradient calculated for a contour with σ ≈ 0.3 (top left) and N = 20 (top
right), N = 50 (bottom left), and N = 100 (bottom right)

5 Discussion

In this paper we presented an estimation of the minimum number of edgels
required in order to calculate the curvature (-radius) with a given relative error
ρ = σR/R. In our calculations we assumed the most simple case possible, that
of a contour with constant curvature (essentially part of a circle) and except
for the standard deviation of the edgel-positions ignored all additional error-
sources (such as the systematic error inherent in (14) and (15)). Even under
those optimal conditions did we find that curvature for low curvature regions is
essentially impossible to calculate accurately – for real-life, non-constant curve
segments the error will increase, due to location inaccuracy for contour segments
with non-monotonic curvature (which introduces another systematic error) and
the possible presence of curvature extrema within the segment, in which case
arbitrary (and arbitrarily wrong) results are possible.

We can of course increase the location accuracy (i. e. the likelihood that the
curvature estimated belongs to a point near the one for which we estimated
it) by fitting a sufficiently complicated model to the curve; even just fitting a
general conic cross-section rather than a circle would improve localisation. It
should however be clear that the curves in Fig. 2 already constitute a best-case
estimate – curvature calculated from real, non-circular data will always be less
correct unless an exact model of the curve is known.
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So is there no hope at all? An intuitive reaction would be to try and some-
how “smooth” the contour – however, there is no better smoothing algorithm
available than to try and fit a circle to data which we know to be circular. Any
other smoothing algorithm can, with the same number of edgels N , only produce
inferior results to such a fit. As long as we are calculating curvature based solely
on edgel position, we can not get better than (13), (18), and (19)2. This means
that in order to increase the accuracy of our calculations, we can either decrease
σ, or increase the resolution of the image, thus increasing the number of edgels
N on any given curve-segment, which would increase the maximum radius of
curvature.

Decreasing σ, i. e. increasing the accuracy with which edgels can be located,
unfortunately only offers limited room for improvements. Canny’s algorithm is
already quite good at this, and even algorithms which were specifically tuned
to improved location accuracy[8] promise little better than σ = 0.1 pxl. This
basically leaves higher resolution as the only way out, and thankfully modern
digital cameras offer just that. Using a 6 Mega-pixel camera (i. e. increasing the
resolution by a factor of approx. 3.7) means that only about 3.7−0.6 ≈ 45 % of
the same curve still needs to be visible when compared to PAL, as the number
of edgels on any given piece of curve increases, while at the same time their
variance decreases.

Finally, I would like to comment on the use of discreet edgels (but with
arbitrary coordinates) throughout this paper (rather than pretending that we
are dealing with a continuous contour). The reason for this is of course that with
real images discreet edgels are all we know how to compute. Using something
like the Canny algorithm [7] these edgels are, however, approximately uniformly
distributed along the contour (this is different from [3]), and since we are fitting
a circle rather than calculating curvature directly from the edgel positions any
irregularities would not have much of an effect. However, if you like to pretend
that you are dealing with a continuous contour the same arguments still apply;
in this case the location of the entire contour is uncertain, you can visualise the
contour’s error-distribution as that of a 1D-Gaussian distribution swept along
the curve in such a way that it is orthogonal to the curve in each point. The
radii of the set of circles fully contained within the 1-σ-band around the contour
are approximately bounded by a 1-σR region around the median value of R, and
the same goes for the k-σ-band. This way it might actually be easier to visualise
what is happening.

6 Conclusion

In this paper, we have shown that using locally operating methods the curvature
of both high-curvature as well as low-curvature regions can not be calculated
reliably from standard PAL-sized images even under optimal conditions and
2 Strictly speaking, this is only true for sufficiently small values of ρ, since we used

linear error propagation throughout this paper. For larger values only qualitative
statements are possible.
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extending the meaning of “locally operating” to rather large regions; only for
a possibly quite small range of medium-small curvatures is it at all possible to
calculate a meaningful result. Increasing the resolution of the image by a factor u
(linearly) will increase the maximum radius of curvature which can be calculated
reliably (by u0.6), but this does not eliminate the underlying problem.

As did [1,3], this paper only considered local algorithms for the calculation of
curvature. It is possible that more global methods (gray-level- or gradient-based,
spline-fit, or scale-space based methods, where the biased curvature-estimates in
Fig. 3 are somehow propagated back to their true values) could provide addi-
tional accuracy. However, this has not been analysed.
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