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1 Introduction

Image segmentation is the task of dividing an image into meaningful parts corresponding to

objects or part of objects. It is generally seen as an important step towards the high level

interpretation of visual content. Over the last years so called energy function based approaches

became very popular as they lead to segmentations ful�lling a global optimality criteria. Such

methods are often formulated within a graph based framework. That means, a graph structure

is directly created from the pixel elements of an image with edge weights encoding the pairwise

similarity of neighboring pixels. Graph cuts can then be used to optimize certain classes of binary

energy functions. Especially, normalized versions of the minimum cut problem � which we call

normalized cuts � have been proposed. The usefulness of them in context of the segmentation

problem has been reported in the literature many times.

However, using graphs being derived from image pixels has two signi�cant drawbacks:

1 The number of vertices in the graph equals the number of pixels and is therefore often too

high for a fast solution.

2 the pairwise similarities encoded in the edge weights can only be very simple as only the color

information at two points in the image is available.

The basic idea of this diploma thesis is therefore to use an initial segmentation step which provides

a �rst aggregation of the image elements into many small sized regions from which the graph is

then build. This preprocessing step signi�cantly reduces the number of element to process and

makes the incorporation of more sophisticated similarity measures possible. Normalized cuts can

then be used to form the �nal segmentation.

We use two established segmentation methods for the initial segmentation step which are the

exact watershed transform developed by Meine and Koethe [2005] and the mean shift method

introduced to the �eld by Comaniciu andMeer [2002]. For the similarity measure we use three

di�erent versions; two measures which can be directly derived from the regions of the initial

segmentation and one complex measure which is based on the earth mover distance.

The usage of normalized cuts in the described setting is the main interest of this work. For

this, we have identi�ed �ve di�erent types from the literature. Especially, we want to investigate:

How does the usage of normalized cuts improves the quality of the initial segmentation?

What are the inherent di�erences of the �nal segmentations if di�erent cuts are used?

Is it possible to identify a normalized cut type which is superior to the other ones?

1



1.1. MATHEMATICAL NOTATION CHAPTER 1. INTRODUCTION

In order to investigate how the selection of initial segmentation method, similarity measure, and

normalized cut impacts on the �nal segmentation quality we perform an exhaustive evaluation

of all possible combinations.

The rest of this thesis is organized as follows:

Chapter 2 starts with the de�nition of the image function which is used here as the mathe-

matical model for representing image data. A more elaborate discussion of the segmentation

problem and the graph based approach using graph cuts follows. Moreover, we describe the

exact watershed transform and the mean shift method for the initial segmentation step.

Chapter 3 �rst introduces the mathematical concepts needed for graph cuts. We give a more

general overview of graph cuts related approaches in computer vision and discuss how they

can be used for image segmentation. The di�erent kinds of edge weights used for the graph

structure are introduced as well. After this, we focus on the class of normalized cuts giving an

overview of recent work and a detailed discussion of �ve di�erent cut types.

The evaluation scheme is presented in chapter 4. We start with a brief introduction and

continue with a detailed discussion of the Normalized Probabilistic Rand Index which is used

here for assessing the segmentation quality. The chapter ends with a presentation of our

evaluation results.

In chapter 5 we give a summary of the thesis and our results along with some ideas which

could be the object of future work.

1.1 Mathematical Notation

We would like to brie�y address the mathematical notation used throughout this thesis. For

matrices and vectors we always use a letter in bold face and for the components the same letter

with non bold face and the corresponding index, e.g. v = (v1, . . . , vn)T. We use the symbol

�,� in order to state that equality holds per de�nition. The following table gives an overview of

notations which either occur frequently during our work or are not further speci�ed somewhere

else as the reader is expected to be familiar with them.

Numbers and Sets

R set of real numbers

R+ set of positive real numbers including 0

Rn space of n-dimensional real vectors

n the set {1, . . . ,n} of natural numbers
Ac complement of the subset A, Ac , A \ V with A ⊆ V
|A| number of elements of A

|a| absolute value of a ∈ R

2



CHAPTER 1. INTRODUCTION 1.1. MATHEMATICAL NOTATION

(
n
k

)
binomial coe�cient,

(
n
k

)
, n!

(n−k)!k!

Vectors and Matrices

vT transpose of x

‖v‖ Euclidean norm of the vector v

1 vector of all ones, 1 , (1, . . . , 1)T

f ? g convolution of two real valued functions f and g

∇f(x) gradient of f : Rn → Rn at x, i.e. ∇f(x) = (∂fx1
, . . . , ∂fxn

)T

diag(v) diagonal matrix with vector v on its main diagonal

Graphs

G always a simple graph, see de�nition 5 on page 11

V (G) the vertex set of the graph G, see de�nition 5 on page 11

E(G) the edge set of the graph G, see de�nition 5 on page 11

E(A,B) set of edges which have one vertex in A and one vertex in B, where

A and B are vertex sets of the same graph, see de�nition 12 on page

29

γ(v) the value of a vertex weight function at the vertex v, see de�nition 10

on page 11

γ(A) vertex weight function on a set of vertices, see page 30

ω(e) the value of a edge weight function at the edge e, see de�nition 10

on page 11

ω(A,B) edge weight function on a set of edges, see page 30

Miscellaneous

i image function, see de�nition 1 on page 5

R maps a vertex (edges) of a region adjacency graph to its vertices

(union of edges) of the corresponding partition of the plane, see

de�nition 11 on page 13

3
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2 Image Segmentation

In this chapter we would like to describe the image segmentation problem in more detail and

how it is attacked in this thesis.

We start with the de�nition of the image function along with some related concepts. In the

following section we actually discuss the image segmentation problem and after this we come

to the graph based segmentation scheme. Finally, we discuss two state of the art segmentation

methods which are used here for the initial segmentation step: the exact watershed transform

and the mean shift algorithm.

2.1 The Image Function

The image function is a simple mathematical model for a digital image gained through some

kind of image acquisition process:

De�nition 1 (image function). An image (function) is a function

f : w × h→ D with (x, y) 7→ f [x, y] ∈ D

where w ∈ N is the width and h ∈ N is height of f . In order to indicate the a�liation of the

co-domain D to f we also write D(f). An element of D is also called (image) value and we use

both notations f [x, y] and f [p] to denote the image value at a certain point.

For a co-domain D = 2563 the symbol i is used for the image function and all values x ∈ D
are meant to be in the RGB color space. The symbol iLuv represents an image function with

function values converted from i into the CIE LUV color space. It is especially designed to

be perceptually uniform with respect of color di�erences, that is, for two image values x,y the

Euclidean distance ‖x− y‖ corresponds to perceived di�erence of a human observer. The

conversion can be done in two steps, �rst transforming an image value x ∈ D(i) into the CIE

XYZ space by

(X,Y ,Z)T = Mx

with

M ,

 0.41 0.36 0.18
0.21 0.72 0.07
0.02 0.12 0.95
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2.2. THE SEGMENTATION PROBLEM CHAPTER 2. IMAGE SEGMENTATION

and afterwards computing the corresponding image value (L∗,u∗, v∗)T in CIE LUV color space

by

L∗ ,

{
116 3
√
Y − 16 if 0.008856 < Y

903.3 · Y else

u∗ , 13L∗(u′ − u′n)

v∗ , 13L∗(v′ − v′n)

with

u′ ,
4X

X + 15Y + 3Z
, v′ ,

9Y
X + 15Y + 3Z

u′n ,
4Xn

Xn + 15Yn + 3Zn
, v′n ,

9Yn
Xn + 15Yn + 3Zn

[Ford and Roberts 1998].

An image function can be extended such that it has image values for the plane R2 by using

B-spline interpolation. More precisely, for an arbitrary position (x, y) ∈ R2 the corresponding

image value is de�ned through:

in(x, y) ,
∑

p∈w×h
c(p)βn(i− x)βn(j − y)

using the recursively de�ned B-spline basis function of order n:

βn ,
1
n

[
βn−1

(
n+ 1

2
+ x

)(
x+

1
2

)
+ βn−1

(
n+ 1

2
− x
)(

x− 1
2

)]
(2.1)

β0 ,

0 if x < 0

1 else
(2.2)

The coe�cients c(p) can be e�ectively computed by recursive linear �lters (more details can be

found in [Unser et al. 1993a,b]). In �gure 2.1 examples for spline interpolation with di�erent

orders can be seen. For n = 0 we also drop the index n. Note that we write i[·] for the regular
image function and i(·) for the extended version.

Implementation Notes The Vigra image library by Köthe [2000] contains functions for sev-

eral color conversions and data types which implement B-spline interpolation for images as well.

2.2 The Segmentation Problem

Image segmentation is generally seen as an important part of image analysis and computer vision.

Every standard computer vision textbook contains at least on chapter about image segmentation,

6



CHAPTER 2. IMAGE SEGMENTATION 2.2. THE SEGMENTATION PROBLEM

(a) (b) (c)

Figure 2.1: Examples for spline interpolation of a scalar valued image function, all images are taken
from [Meine 2008];(a): height of a ball indicates value of the image function at that position;(b): n = 0
yields nearest common neighbor interpolation;(c):n = 5 yields a very smooth interpolation

e.g. see [Ballard and Brown 1982; Forsyth and Ponce 2002; Gonzalez andWoods 2006;

Shapiro and Stockman 2001; Sonka et al. 2007] for some references. It has been examined

and studied by many researchers for almost the last four decades. Following Zhang [2006] there

were almost one thousand publications on di�erent segmentation algorithms up to 1994 with

constantly high number of publications over the last decade and with even increasing number of

publications over the last few years.

Although there has been such a lot of research on this, it remains unsolved for the general

case. The reason for this is that image segmentation is indeed no well-posed problem but rather

an intuitive and somewhat vague idea of a certain step in the process of image analysis. This sit-

uation is closely related to the lack of a general methodology for extracting semantic information

from digital images.

The term "image segmentation" is somewhat ambiguous as it actually has two common mean-

ings, the �rst is referred here as low-level segmentation and the second as high-level segmentation.

In the following we discuss what is understood under this terms and how they relate to each

other before our approach to the image segmentation problem is presented.

We use a small working example for a more intuitive and descriptive discussion. On �gure 2.2a

an image from the Berkeley Image Database (see section 4.1) is given. Considering the pic-

ture, it is easy for a human observer to tell that the prominent objects shown are two �owers.

E�ortlessly, he could actually assign each region in an image to the object it belongs to. A

possible outcome of such a manual assignment is shown in �gure 2.2b. The automation of this

task of "distinguishing meaning full parts of an image" is the concern of image segmentation:

De�nition 2 (high-level image segmentation). Image Segmentation is the division of an

image into objects and parts thereof.

It should be said that this de�nition does not lead to a well posed problem as it is not always

clear what actually constitutes an object or its parts. For our example, in �gure 2.2c another

manual segmentation is shown which also identi�es leafs of the background but does not contain

7



2.2. THE SEGMENTATION PROBLEM CHAPTER 2. IMAGE SEGMENTATION

(a) (b) (c)

Figure 2.2: (a): an image from the Berkeley Image Database;(b): a manual segmentation; (c):
another manual segmentation

segments for the leafs of the �owers as in �gure 2.2b.

For a vision system capable of "detecting �owers" it would be required to actually have knowl-

edge about them, e.g. the parts they are composed of, shape and texture of those parts, the

environment they occur and so on. Such high-level knowledge is essential for the solution of

complex vision problems and, at the time being, must be appropriately modeled an incorporated

for each speci�c segmentation task.

Nevertheless, it is still reasonable to put e�ort into the development of general purpose image

segmentation methods which do not utilize any domain speci�c high-level knowledge. So called

low-level algorithms only exploit statistical regularities in rather simple features derived from

the image data. Common examples for those features are brightness, color, and texture. As our

world is visually not chaotic, it is reasonable to assume that regions being uniform with respect

to simple image features have a common cause, e.g. result from the same object or the same

part of an object. So, it is commonly believed in the computer vision community that image

analysis tasks can bene�t in general from using such principles of organization irrespective of

a concrete problem domain. The following de�nition of low-level segmentation is adapted from

Ballard and Brown [1982] from which we think that it consolidates the relevant aspects of

what is generally understood under this term:

De�nition 3 (low-level image segmentation). ( Image) Segmentation is the grouping of

image elements of a certain image into regions (segments) which are homogeneous with respect

to one or more characteristics (or features) which can be assigned to each region.

Going back to our �ower example, �gure 2.3 shows two results from low-level segmentation

algorithms. Figure 2.3a shows a segmentation performed by a recent algorithm from Meine and

Koethe [2005] (more details in section 2.4). As one can see, the image is divided into many small

segments enclosing areas which are very homogeneous with respect to color. On �gure 2.3b this

over-segmentation has been further improved using another low-level segmentation algorithm

(more details follow in section 2.3). As one can see, they perform already quite good together

in the sense of giving a �rst guess how a reasonable segmentation of the image could look like.

In summary, we would like to emphasize two aspects how low-level segmentation algorithms can

8



CHAPTER 2. IMAGE SEGMENTATION 2.2. THE SEGMENTATION PROBLEM

(a) (b)

Figure 2.3: Two results of low-level image segmentation algorithms (a): oversegmentation with exact
watershed transform (b): the foreground cut of section 3.6 further improves this segmentation.

be useful for solving the high-level segmentation problem:

A low-level segmentation algorithm can provide a �rst change of representation, that is, chang-

ing from image pixels as atomic image tokens to more complex ones. This way, following process

steps can bene�t from a �rst aggregation of information and the reduced number of elements

to process.

It is possible to get already quite close to the desired segmentation result even if no high-level

knowledge is used.

In this work we put our attention on the last point, that is, we would like to investigate how

good a certain class of low-level segmentation algorithms performs on the high-level segmentation

problem; more details are presented in section 2.3. However, it should be clear that due to the

ill-posed nature of the high-level segmentation problem statements such as �algorithm A is better

then algorithm B� are not easy to make. We ignore this problem for the moment and come back

to it in chapter 4 where the evaluation framework used is discussed.

2.2.1 Partition of the Plane

In the last section we use phrases like �division of the image� or �grouping of image elements� for

describing the segmentation task. We would like to be more speci�c what the exact meaning of

such formulations is actually supposed to be within this thesis.

A classical model for representing segmentation results is the label image which is an image

function mapping every pixel position to a label indicating the segment the pixel belongs to.

For the representation of segmentations with sub-pixel accurate segment boundaries a more

sophisticated model is needed. A partition of the plane R2 for the extended image function is

suitable for this. The following de�nition is taken from [Meine 2008, chapter 3, p. 29]1:

1Actually, an equivalent de�nition was already given in Köthe [2002] and proposed as a model for image

9



2.3. GRAPH BASED SEGMENTATION CHAPTER 2. IMAGE SEGMENTATION

De�nition 4 (partition of the plane). A partition of the plane is a tuple P , (V ,E,F )
where

V ⊂ R2 is a �nite set of non-neighbored points called vertices,

E ⊂ 2R2
is a �nite set of disconnected, pairwise disjoint, non-self-intersecting, open curves

called edges such that each e ∈ E is homeomorphic to the open interval (0, 1) and has its

endpoints (limits) in V , and

F ⊂ 2R2
is the set of connected components of R2 \ (V ∪⋃e∈E e) called faces.

The edges are here always polygonal arcs. A partition of the plane therefore divides R2 into

several regions called faces. Note that there has to be at least one in�nite face in each such

partition. In the following, each partition of the plane has exactly one such face �enclosing� the

image, cf. �gure 2.4b.

Further note that we can always derive a partition of the plane from an label-image if we

insert polygonal arcs into the plane where pixels having di�erent labels in the nearest neighbor

interpolation of the label image abut. An example for this can be seen in �gure 2.4. The faces

of the partition of the plane then correspond to the 4-connected regions of the label image.

(a) (b)

Figure 2.4: (a): nearest neighbor interpolation of a label image; blue points indicate pixel positions of
the original label-image (b): partition of the plane P for the label image; red lines are edges of P ; green
points indicated vertices of P ; the hatched pattern indicates the in�nite face

2.3 Graph Based Segmentation

In this section we actually describe the segmentation approach used within this work. For this,

some basic concepts from graph theory are needed. Therefore, we start with a series of de�nitions

from this �eld.

segmentation

10



CHAPTER 2. IMAGE SEGMENTATION 2.3. GRAPH BASED SEGMENTATION

2.3.1 Basic Terminology

De�nition 5 (simple graph). A simple graph is a pair of sets written G := (V (G),E(G))
where V (G) is a �nite set of vertices, also called nodes, and E(G) is a set of edges of the form

{u, v} with u, v ∈ V (G) and u 6= v. For an edge e = {u, v} ∈ E(G) the vertex u is said to be

incident to v as well as e is said to be incident to u. The sets V (G) and E(G) are also written

V and E if the graph they belong to is clear from the context. If the set of vertices is given in

the form V (G) = {v1, . . . , vn} an edge {vi, vj} of G is also written eij or eji.

De�nition 6 (complete graph). A graph G = (V ,E) is called complete i� E = V ×V holds.

De�nition 7 (subgraph). For a graph G a graph T is a subgraph of G i� V (T ) ⊆ V (G) and

therefore E(T ) ⊆ E(G). The subgraph T is also said to be induced by the set V (G).

De�nition 8 (connectivity of a graph). A graph G is connected i� for every pair of

vertices u,u′ ∈ V (G) there is a sequence v1, . . . , vn of vertices of G such that u = v1, u = vn,

and {vi, vi+1} ∈ E(G) for all 0 ≤ i ≤ n− 1.

De�nition 9 (connected component). A subgraph T of a simple graph G is a connected

component of G i� T is connected and adding an arbitrary vertex v ∈ V (G) with v 6∈ V (T )
destroys the connectivity of T .

De�nition 10 (weighted graph). A graph G is a weighted graph with edge weight function

ω if ω is a function with

ω : E(G)→ R+.

Similarly, G is a weighted graph with vertex weight function γ if γ is a function with

γ : V (G)→ R+.

All subgraphs of G are then meant to be weighted graphs in the same sense.

Note that both the edge and vertex weights are always positive real numbers.

2.3.2 Energy Functions and Graph Cuts

Over the last few years so called energy minimization approaches to the segmentation problem

became popular. The idea is to de�ne a function assigning an energy value to every possible

segmentation of an image. More precisely, if the segmentation problem is de�ned as assigning

a label ` ∈ k to each image element of a given image with size w × h, we can represent each

possible segmentation as a vector xw·h with xi ∈ k. The quality of a segmentation x is then

assessed through an energy function

E : kw·h → R.2

11
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A good segmentation then is mapped to a small energy value and the process of segmentation

is modeled as a search for an optimizing argument for the energy function E. The advantage of

this method is that the resulting segmentation is optimal in a global sense. So, it is possible to

form segment boundaries where local techniques normally would fail.

For the success of such an approach the energy function must be de�ned properly, i.e. small

energies correspond to good segmentations, and there has to be an e�ective algorithm for op-

timizing it. Unfortunately, these two aspects are often competing such that a sophisticated

designed function often ends in a computationally intractable optimization problem. Therefore,

many energy minimization techniques used in vision are formulated within a graph based frame-

work where the image elements are represented through vertices with weighted edges connecting

neighboring elements. The advantage of these methods is that for weighted graphs certain bi-

nary optimization problems can be e�ectively solved with �graph cuts�. The energy value then

corresponds to the similarity of two resulting components of the bi-partition and is expressed as

function of the weights of the edges connecting them. As image segmentation is a non binary

problem, if more than two segments are desired, the graph cut methods have to be extended

somehow. It has been proposed to use graph cuts as hierarchical clustering tool by recursively

splitting a weighted graph and the resulting subgraphs until a stopping criterion is met (more

details follow in section 2.3.4). The usefulness of this recursive bi-partitioning has been reported

many times in the literature (see section 3.2.1.1 for references).

In this work we use graph cuts together with recursive bi-partitioning as the key component

for our segmentation scheme. However, the selection of a speci�c graph cut type is di�cult

as they have been many suggestions in the literature. Graph cuts especially useful for image

segmentation are those which can be seen as normalized versions of the minimum cut. The

main ambition of this thesis is to investigate how the various exponents of these normalized

cuts perform in our segmentation scheme. A detailed description of the various graph cuts used

follows in chapter 3.

2.3.3 The Super-Pixel Approach

As we interested in using graph cuts for image segmentation the image data has to be converted

somehow into a weighted graph. Many graph based methods in vision use a graph being directly

derived from the pixel grid, see �gure 2.5. We call graphs of this kind pixel grid graphs; they en-

code the common neighborhood relations of the image elements and edge weights often represent

some kind of a�nity between them. The problem of using a pixel grid is twofolds:

1 The number of vertices in such pixel graphs is very high as it equals the number of pixels in the

image. For all images used here this number is greater than 120.000. While we above claimed

that graph cuts can be e�ectively computed, the computation time for problem instances of

that size is still too high for many applications.

2Note that only pixel accurate segmentations can be represented with this method if the components of x are
associated with pixel positions.

12
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(a) (b)

Figure 2.5: A 5 × 5 image (a) and the corresponding pixel grid graph (b) representing the 4- or 8-
neighborhood.

2 The edge weights in this graphs can only be very simple functions of the pixel intensities or

colors. This makes the usage of advanced similarity measures derived from color histograms,

texture, geometry, and such impossible.

The main idea of this work is therefore to employ a preceding segmentation step and then

to further improve this initial segmentation with aid of graph cuts. Hence, the graph used is

not derived from the pixels of an image and their topology but from the segments of an inital

segmentation step. This results in a region adjacency graph which can be derived from the

partition of the plane (see section 2.2.1):

De�nition 11 (region adjacency graph). A region adjacency graph (RAG) of a partition

of the plane P , (VP ,EP ,FP ) is a graph G , (V ,E) with:

The set of vertices V has exactly one vertex for every face in FP except for the in�nite face.

The set of edges E has exactly one edge for every pair of vertices of G whose faces share at

least one edge in P .

The function

R : V ∪ E → R ∪ 2R2

maps every vertex of G to its face in P and every edge {u, v} of G to
⋃
e∈N(u,v) e with N(u, v) ,

{e ∈ EP | e is a common edge of R(u) and R(v)}.

This is in the spirit of the super-pixel approach of Ren and Malik [2003]. They propose

to use an oversegmentation in order to get a �rst change of representation from pixels as the

basic image elements to super-pixels. The use of super-pixels greatly reduces the number of

elements to process but maintains most of structure in the image data and thus appropriately

addresses drawback 1 of pixel grid graphs. Addressing drawback 2 , as super-pixels are segments

we can derive more expressive edge weights exploiting the statistics of the enclosed pixels. As

13
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an additional advantage, the �nal segmentation can bene�t from special characteristics of the

initial segmentation step. For example, the exact watershed transform produces super-pixels

with sub-pixel accurate boundaries.

Implementation Notes Recently, Meine and Köthe [2006] introduced the GeoMap Frame-

work which is an universal approach for representing segmentation results. Here, we use a

partition of the plane together with a region adjacency graph in order to model the geometry

and topology of them. The GeoMap is far more expressive then this: For example, it can also

appropriately handle non closed segment boundaries. We have decided not to use the GeoMap

in order to keep the mathematical model as simple as possible. However, we do use the GeoMap

datatype for the implementation of most of the segmentation related algorithms. It makes both

the computation of faces and their boundary statistics very easy. Actually, we also use the Ge-

oMap datatype for deriving region adjacency graphs. A detailed introduction to the GeoMap

framework can also be found in [Meine 2008].

2.3.4 Basic Segmentation Scheme

In the last sections we introduced the basic ideas for the segmentation scheme used in this

work. In summary, we perform an initial segmentation of the image which contains as much

potential segment boundaries as possible. This results in a partition of the plane from which

a region adjacency graph can be derived. For the region adjacency graph, edge weights are

computed encoding the pairwise similarity of neighboring faces. The RAG is recursively split

using normalized cuts until a stopping criterion is met. In more algorithmic form, the basic

segmentation scheme used throughout in this work reads:

Algorithm 2.3.1: basic segmentation scheme

1 create an initial segmentation represented by the partition of the plane P

2 create a region adjacency graph G from P

3 compute the edge weights of G by inspection of the underlying image data of faces of P

4 by minimization of an energy function create a bi-partition of the vertex set of G yielding

two subgraphs T1 and T2 and an energy value λ

5 recursively repeat
4
on T1 and T2 until λ ≥ stop where stop is a beforehand selected stop

parameter

6 derive a new partition of the plane from the subgraphs which do not meet the stop criterion

We give some �nal notes on these steps which also give an overview of how the rest of this thesis

is organized:

1 We use the exact watershed transform of Meine and Koethe [2005] for oversegmentation
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(see section 2.4). It is especially suited for this as it maintains much of the potential segment

boundaries and has the additional advantage of producing sub-pixel accurate segment bound-

aries. In order to get an idea of how exchanging this step can in�uence the segmentation results

we also use the mean shift method of Comaniciu and Meer [2002]. It is only pixel accurate

and produces very inhomogeneous segments with respect to size and shape, see section 2.5.

2 A nice property of the region adjacency graphs encountered here is that they are sparse, i.e.

the number of edges in such a graph is much smaller than the number of possible edges which is

n2 with n being the number of vertexes. For example, the region adjacency graphs derived from

the watershed-transform of the Berkeley Image Database have only ≈ 0.0025% of the possible

edges. The sparsity can then be exploited for algorithms presented in chapter 3.

3 For the edge weights we investigate three di�erent similarity measures which are introduced

in section 3.3.

4 We investigate �ve di�erent graph cut types which are discussed in the next chapter.

5 The parameter stop has to be selected beforehand. As the energy value λ is interpreted as

the quality of the partition of G into T1 and T2, higher values for stop permit lower quality par-

titions. This recursive bi-partitioning together with a stop parameter has been used for several

normalized cuts, see section 3.2.1.1.

2.4 Watershed Transformation

The watershed transform has its origins in the �eld of mathematical morphology and was �rst

proposed by Beucher and Lantuejoul [1979]. It is a common tool for region based image

segmentation with an intuitive and vivid motivation.

The basic idea of the watershed transform is to use a topographic interpretation for a scalar

valued function f . Within this interpretation f maps certain positions in a terrain to its level

of evaluation. It is therefore common to use geographic terms for a detailed discussion of the

watershed transform's concepts.

Imagine rain �ooding the landscape described by f . Rain drops falling onto the terrain follow

a certain path along the surface of the terrain under the in�uence of gravity. This �owline starts

where the corresponding water drop hits the landscape and ends in the lowest point of a nearby

valley. Under this assumption, each valley can be seen as a catchment basin corresponding to a

local minimum and a surrounding in�uence zone for which every �owline ends in this minimum.

The division lines between catchment basins are called watersheds and form a tessellation of

the terrain. For image segmentation, we can use a boundary indicator (function) that expresses

strong evidence for a boundary at a certain image position in terms of a high scalar value.

In an alternative view, �ooding is done by piercing holes into the surfaces at local minima.

Immersion of the landscape into a lake would cause the catchment basins to gradually �ll up.

Watersheds now correspond to dams build during the �ooding process to prevent water of neigh-
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boring basins to converge.

In order to be usable for image segmentation, an e�cient algorithm for detection of watersheds

or catchment basins is needed. Depending on a certain algorithm and its underlying mathemat-

ical model of watersheds, various segmentation results are possible. Indeed, there are many

algorithms available, see e.g. [Roerdink and Meijster 2000] for an overview. Here, we only

use a recent algorithm developed by Meine and Koethe [2005].

2.4.1 The Exact Watershed Transformation

The exact watershed transformation is capable of identifying watersheds with sub-pixel accuracy.

This is possible if one switches from the discrete domain, i.e. from the pixel grid, to the continuous

domain by using a spline interpolated version of the boundary indicator. This approach has

several advantages [Meine 2008, Chapter 4, p. 88]:

The geometry of the watersheds is much better compared to their discrete counterparts.

Discrete Watersheds often produce wrong or miss boundaries as the minimum and watershed

detection is limited by the precision of the pixel grid.

Steger [1999] was the �rst one who used the idea of exact watersheds in connection with

Maxwell's de�nition of watersheds (see below) to develop a computational tractable algorithm

for digital terrain models. Meine and Koethe [2005] further improved the method of Steger

and made it applicable for image segmentation. A more exhaustive discussion of the exact

watersheds method can be found in [Meine 2008, Chapter 4, p. 88 et seqq] on which the following

text is mainly based.

If some restrictions on f are imposed, watersheds can be build from critical points of f using

Maxwell's de�nition which says that watersheds are �owlines connecting saddles with maxima.

This de�nition does not exactly match the informal description of watersheds given above, but

can be used as a starting point.

Let f be an at least twice di�erential real valued function with all critical points isolated, i.e.

f is a Morse function. This restrictions ensure that all critical points are non-degenerate, i.e.

there are no plateaus and monkey saddles. Moreover, for every non critical point p ∈ D(f) there
is a unique �owline

x : [0,∞)→ D(f)

which obeys the �rst order di�erential equation

∂x

∂t
= −∇f(x(t)) (2.3)

with inital condition x(t) = p. Each �owline converges to one critical point c, i.e.

lim
t→∞x(t) = c and ∇f(c) = 0,
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which is either a minimum or a saddle of f . Since every catchment basin consists of a minimum

m and all points whose �owline ends in m, a watershed must consist of �owlines starting near

a maximum and ending in a saddle. For each saddle there are exactly two of those �owlines

which �enter� it in two opposite directions. So, we determine all interesting �owlines by taking

an in�nitesimal small step in one of this directions and follow equation (2.3) upwards until a

maximum is reached, see �gure 2.6.

Figure 2.6: A terrain with critical points (maxima (blue), minima(red), and saddles(green)) and �owline
tracing (taken from [Meine 2008])

However, some of these �owlines may not correspond to watersheds as depicted

in the �gure on the right: The con�guration of critical points shown can be inter-

preted as an �isolated mountain�. The �owline shown connects a maximum (triangle

pointing upward) with a saddle (circle), but drops falling on opposite sites of this

�owline would �ow to the same minimum (triangle pointing downward) and thus the �owline

cannot be a watershed and must be eliminated somehow afterwards (this example is taken from

[Steger 1999]).

Finally, all valid �owlines, and maxima can be connected into a graph in which each pair of

�owlines originating in the same saddle corresponds to an edge and the associated maxima are

the vertices. The catchment basins enclosed by the �owlines then form a division of the image

plane with sub-pixel accurate boundaries.

Putting all together, there are three steps to perform for segmentation:

Find all critical points of f ,

for each saddle point compute both �owlines that end in a maximum, and

determine all regions enclosed by �owlines and the associated boundaries.

The well known method byNewton andRaphson is suitable for both e�ectively and precisely

detecting critical points if applied to each pixel with possibly several starting points (see [Meine

2008, Chapter 4, p. 90 et seqq] for more details).

For the computation of �owlines all critical points must be classi�ed to be either a minimum,

a maximum, or a saddle. Since f is aMorse function, this can be e�ectively done by examining

the eigenvalues e1, e2 of the Hessian H of the boundary indicator f at a critical point p: For
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both e1, e2 being positive p is maximum, for both e1, e2 being negative p is a minimum, and

otherwise p is a saddle. Then, for the integration of equation (2.3) a Runga-Kutta method

with adaptive step size can be used. This yields a polygonal arc (p1, . . . ,pn) where

p1 is a saddle,

p2 = p1 ± τe1 is the starting point for the Runga-Kutta method with e1 being the unit

length eigenvector of the positive eigenvalue of H at p1 and τ being the inital step size (here

we use 0.1),

p3, . . . ,pn−1 are points detected by the Runga-Kutta procedure, and

pn is the closest maximum with |pn−1 − pn| < τ .

For the �nal result �arti�cial� vertices and �owlines are added: For a �owline which runs near

the boundary of the image (measured with some kind of threshold) a new vertex is added on

the boundary and the �owline is connected to it. Moreover, all boundary vertices in turn are

connected with arti�cial �owlines which run on the boundary. This results in a partition of the

plane in the sense of de�nition 4.

2.4.1.1 Boundary Indicator

For the application of the watershed algorithm to images a suitable boundary indicator function

has to be chosen. Here, we use the magnitude of the common Gaussian gradient extended for

an image function i with n color channels:

ggmi,σ(p) ,
√
‖(∇xGσ ? i)(p)‖2 + ‖(∇yGσ ? i)(p)‖2

with

Gσ(p) ,
1

2σ2
exp

(
‖p‖2
2σ2

)

and

(∇Gσ ? i)(p) , ((∇Gσ ? i1)(p), . . . , (∇Gσ ? in)(p))T

An example of the Gaussian gradient magnitude for two images of the Berkeley Image

Database can be seen in �gure 2.7.

2.4.1.2 Discussion

An example of a watershed segmentation described so far is depicted in �gure 2.8. Note that

the watershed transform produces sub-pixel accurate boundaries and possesses strong over-
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Figure 2.7: The values of ggmi,σ for two images of the Berkeley Image Database with σ = 2

segmentation.

Another feature of watersheds can be seen in �gure 2.8e: All �owlines shown converge tan-

gentially to the same maximum (yellow). While this is a typical property of watersheds and

not problematic in theory, there are some serious implications: In practice, �owlines can run

in parallel into a maximum because of precision issues of the numerical methods used. Recall,

we are interested in the regions enclosed by the �owlines, their neighbourhood relations, and

similarity measures which can be derived from the enclosed regions and their boundaries. The

tangential convergence property of �owlines can impact on these quite considerably:

1 In order to actually derive the regions enclosed by the �owlines and in order to derive the

adjacency relations of these regions it is necessary to sort all �owlines ending in a common

point with increasing arc length (with an arbitrary starting edge). As it can be seen in

�gure 2.8e this is a nontrivial task .

2 While the adjacency structure of the faces is consistent, it can have undesired properties as it

can be seen by visual inspection of �gure 2.8d: Region r1 is both adjacent to r2 and r3, but

r2 is not adjacent to r3 due to the parallel part of two �owlines f1 and f2.

3 Most of �owline f1 in �gure 2.8d does not belong to the common boundary of region r1 and

r2 from a geometrical point of view. As a consequence, similarity measures based on the

common boundary of two regions can become completely unreliable.

In order to overcome 1 Meine proposed a sophisticated method for tracing a bundle of parallel

running �owlines until they diverge from each other and successively determining the order in

which they enter a maximum (see [Meine 2008, p. 94 et seqq] for details). For 2 and 3 one can

merge parts of �owlines running in parallel and inserted new vertices at the points where they

run apart (again, see [Meine 2008] for details).

Another problematic feature of the watershed segmentation is the occurrence of so called

streamers between �real� edges running in parallel: They consist of two �owlines each starting

from a saddle in the valley between two edges, running uphill on the ridge of the surrounding
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c

(a) (b)

e

d

(c)

r2

r1 r3

f1

f2

(d)

(e)

Figure 2.8: (a): an image from the Berkeley Image Database; (b): watershed segmentation with
gaussian gradient magnitude as boundary indicator (σ = 3.0); (c): enlarged detail of (a) with maxima
as graph vertices (d): enlarged detail of (c) which shows a problematic �owline con�gurations (f1 and f2
which end in the marked maximum) (e): enlarged detail of (c) which shows a maximum (yellow) with
�owlines converging tangentially to it; green points mark positions where the �owlines are break up and
new arti�cial maxima are inserted
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edge, and �nally converging to a maximum. Examples of those streamers can be seen in �g-

ure 2.9b. Note that they indeed do not correspond to low contrast edges and thus unnecessarily

oversegment the image.

(a) (b)

Figure 2.9: (a): an image from the Berkeley Image Database;
(b): part of the corresponding watershed segmentation with gaussian gradient magnitude as boundary
indicator (σ = 2.0). Red line indicate �owlines, dotted edges are streamers which can successfully be
removed using the structure tensor (σ′ = 1.5σ)

Meine [2008] discusses several possibilities to overcome these artifacts. Among the most ef-

fective methods is the usage of the structure tensor which allows �ltering of responsible saddle

points even before the �owlines are traced 3. This method exploits the fact that the streamer's

�owlines �rst run orthogonally towards the nearby edge and that the gradient around the cor-

responding saddle is thus dominated by the real edges. More formally, let p be the location of

a saddle in the boundary indicator f and g , ∇f be the gradient at that position. Then the

gradient orthogonal to the direction of the �owlines can be computed with

δsog ,
√
nT · Sσ′ · n (2.4)

where Sσ′ , (ggT)?Gσ′ is the structure tensor at p and n is an unit length vector perpendicular

to the vector pointing in the direction of the �owlines which can be determined from the Hessian

at point p. The parameter σ′ scales the Gaussian in the structure tensor and thus determines

the �in�uence zone� of it. As the boundary indicator f is computed from the original image

by convolution with an Gaussian kernel with scale σ (see section 2.4.1.1) σ′ should be slightly

larger than σ [Meine 2008, p. 105 et seqq]. It is even better to discard the strength of the

gradient in that direction and solely stick to the directional information instead. This can be

done by normalizing δsog by the �rst eigenvalue of Sσ′ (the index σ
′ is dropped in the following

3Actually, using the structure tensor for this was originally suggested by Ullrich Köthe. We cite the text
of Meine [2008] in this context here as for the time of writing only this text was available to the author.
Additionally, the further discussion is also based on Meine [2008] which contains an elaboration of this idea
along with comparisons to other �ltering methods.
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for better reading):

δsdm ,
δ2sog
λ1,S

where λ1,S can in this case be easily computed [Meine 2008, p. 94 et seqq]:

λ1,S = S11 + S22 + 1
2

√
(S11 − S22)2 + 4 · S2

12

As one can see from �gure 2.9b this criterion is suitable for suppressing the occurrence of the

streamers even before the actual �owlines are traced which means both an increase in performance

and in segmentation quality. We therefore apply this to every watershed segmentation (with

σ′ = 1.5σ for equation (2.4)).

Finally, we give two examples for watershed segmentations in �gure 2.10.

2.5 Mean Shift

The mean shift procedure is a non parametric clustering method for feature spaces with an

Euclidean metric. Originally introduced by Fukunaga and Hostetler [1975], it was long

forgotten until rediscovered and brought back into the �eld by Cheng [1995] and applied to the

problem of image segmentation by Comaniciu and Meer [2002, and references therein]. Unlike

many classical clustering techniques, mean shift clustering can be applied to arbitrary structured

feature spaces without stating any assumptions about the type of the underlying distribution or

the number of clusters present.

One can think of the vectors of a feature space as samples of a probability density function

(PDF). Then, dense regions correspond to maxima of the PDF, the modes, which are among

the points where the gradient of the PDF vanishes. The mean shift procedure employs a kernel

to �nd all modes and their basins of attraction, that is, it maps each feature vector to a mode.

This mapping represents the �nal clustering outcome of the procedure and is e�ectively done

in the manner of a deepest ascent method with adaptive step size. Hence, its parameters only

determine the type and size of the kernel.

More formally, for a set S , {x1, . . . ,xn} of samples with xi ∈ Rd (with Euclidean metric)

the well-known multivariate kernel density estimator with bandwidth σ for a PDF f is

f̃K(x) ,
1
nσd

n∑
i=1

K

(
x− xi
σ

)
.

For the mean shift procedure we are only interested in radially symmetric kernels of the form

K(x) , c · k(‖x‖2)

where k is the kernels pro�le and c is in the following always a constant such that the expression
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Figure 2.10: Two examples for the exact watershed transform with σ = 2.0.
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at hand integrates to one. Now, we would like to reveal the structure of f by an estimation of

its gradient

∇f̃K(x) =
c

nσd

n∑
i=1

∇kσ,i(x) (2.5)

=
2c

nσd+2

n∑
i=1

(x− xi)k′σ,i(x) (2.6)

where kσ,i(x) , k
(∥∥x−xi

σ

∥∥2
)
. With g , −k′ and using some simple arithmetic, one gets the

following equations

∇f̃K(x) =
2c

nσd+2

n∑
i=1

(xi − x)gσ,i(x) (2.7)

=
2c

nσd+2

[
n∑
i=1

gσ,i(x)

] [∑n
i=1 xigσ,i(x)∑n
i=1 gσ,i(x)

− x
]

︸ ︷︷ ︸
m(x)

. (2.8)

The term m(x) denotes the mean shift away from x (under the kernel G). Note that the �rst

term in equation (2.8) is proportional to f̃G(x), so we �nally arrive at

m(x) = 1
2h

2σ
∇f̃K(x)
f̃G(x)

. (2.9)

Because of equation (2.9), the mean shift at a certain position points in the direction of the

estimated gradient and is normalized by an estimation of f at that position. The normalization

ensures a large magnitude of the mean shift in sparse regions and a small magnitude in dense

regions, i.e. near modes of the density function. Hence, in order to �nd the mode near a given

sample x one can use the simple iterative scheme

y(i+1) = m(y(i)) (2.10)

with y(0) = x which corresponds to a deepest ascent technique with adaptive step size.

2.5.1 Mean Shift and Image Segmentation

For color image segmentation the mean shift method can be applied to the joint feature space

derived from an image function, i.e. each vector has the form x = (xs,xf ) with iLuv(xs) = xf

and xs ∈ w × h with w being the width and h being the height of the image function. We also

write xi in order to denote the corresponding vector of the i-th pixel given an arbitrary but �xed

enumeration of the pixels. The CIE LUV color space (see section 2.1) is used instead of the RGB

color space to take account for that the Euclidean distance is used for the kernels.

Both the Epanechnikov and normal kernel was shown to be suitable for image segmentation
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[Comaniciu and Meer 2002]. Here, we use the normal kernel

KN (x) ,
c

σ2
sσ

3
f

kN

(∥∥∥∥xsσs
∥∥∥∥2
)
kN

(∥∥∥∥xfσf
∥∥∥∥2
)

with pro�le

kN (x) , exp
(−1

2x
)

.

Note that the normal kernel is decomposed in a spatial and in a feature part in order to account

for proper normalization. Moreover, for a fast implementation the kernel should have �nite

support, so the spatial part is truncated for ‖xs‖ > 3σs.

Figure 2.11: Part of the bird image; red points indicate starting points of the mean shift �ltering, red
polygon lines describe mean shift steps, and blue points are convergence points

We run the iteration scheme represented by equation (2.10) for each pixel as a starting point.

Convergence is then assured for the normal kernel within in�nite number of steps (see [Co-

maniciu and Meer 2002] for more details); for a �nite number of steps an upper bound on

the magnitude of the mean shift is su�cient or equivalently by setting an upper bound on the

di�erence of consecutive iteration steps, i.e.
∥∥y(i) − y(i+1)

∥∥ < τ for some small τ , e.g. 10−5.

The resulting mode of the procedure for each pixel is written zi. This is also called discontinuity

preserving �ltering. An illustration of the iteration steps taken for some pixels can be seen in

�gure 2.11; the �ltering of a whole image is depicted in �gure 2.12.

For the �nal segmentation outcome, two pixels are assigned to the same segment if they are

in the same equivalence class of the relation formed by the transitive closure of

xi ∼ xj i� ‖zs,j − zs,i‖ < σs ∧ ‖zf ,j − zf ,i‖ < σf .

For an e�ective implementation of this fast access to the neighboring modes of a given pixel
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must be possible. This can be achieved with a kd-tree data structure [Bentley 1975]. The �nal

outcome of the technique is a partition of the plane with pixel accurate segment boundaries, see

�gure 2.13 for examples.

�g. 2.11

Figure 2.12: Two images after discontinuity preserving �ltering with σs = 8 and σf = 10
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Figure 2.13: Two mean shift segmentations with σs = 8 and σf = 10
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3 Graph Cuts

The last chapter introduced our image segmentation framework which in its heart relies on

minimization of an energy function assessing the segmentation quality. In this chapter we want

to shed some light on the nature of that functions. To be speci�c, all energy functions in the

focus of this thesis are tightly connected with the term �graph cuts� and we now turn to a more

exhaustive discussion of this concept.

The remainder of this chapter is organized as follows: A formal de�nition of graph cuts is given

�rst along with some useful terminology. An overview of di�erent graph cut based applications

in the �eld of computer vision follows. Then, we present some similarity measures used here for

the weighted graphs. As already noted in the last chapter, only the class of so called normalized

cuts is in the focus of this work. A detailed discussion of each normalized cut used here and an

algorithm to compute it is presented at the end of this chapter.

3.1 Basic Terminology

We start with a series of de�nitions which are used thoroughly for the rest of this chapter. Central

to these de�nitions is the concept of graph cuts:

De�nition 12 (cut). Let G be a connected graph. For two sets A,B ⊆ E(G) the term E(A,B)
denotes the set of all edges of G which have one vertex in A and the other vertex in B, i.e.

E(A,B) , {{u, v} ∈ E(G) |u ∈ A ∧ v ∈ B} .

A set of edges C ⊂ E(G) is a (graph) cut i�

∃A ⊆ V (G) : E(A,Ac) = C.

We emphasize this connection by the formulation A induces a cut on G. A cut is nontrivial

i� both A and Ac are nonempty and connected i� both the subgraphs induced by A and Ac are

connected. The sets A and Ac are also called the components of the cut.

So removing all edges in a cut from a graph G �cuts� G into two disconnected parts and therefore

imposes a bi-partition on the graph, i.e. a partition of the vertices of G into the sets A and Ac.

De�nition 13 (terminal cut). A cut E(A,Ac) is a (s, t)-cut i� for two selected terminals

s, t ∈ V (G) � also called source and sink � s ∈ A and t ∈ Ac holds. A (s, t)-cut is also called
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( two) terminal cut. The set A \ {s} is the source set and all edges incident to the source are

called source edges, the terms sink set and sink edges are de�ned analogously. A terminal cut

is trivial i� the source set only contains the source or if the sink set only contains the sink.

t

s

A
Ac

Figure 3.1: A small example for graph cuts: The cut shown (dotted line) cuts several edges of the graph
yielding a partition into the sets A and Ac. This is also a valid terminal cut if the terminals are s and t.

De�nition 14 (crossing cuts). Two cuts E(A1,Ac
1) and E(A2,Ac

2) cross i� all of the following

sets

A1 ∩A2,A1 ∩Ac
2,A2 ∩Ac

1 and Ac
1 ∩Ac

2

are nonempty.

Figuratively speaking, two cuts cross if two lines running through all edges of one cut intersect or

formulated the other way round, two cuts do not cross if one component of one cut is completely

contained in one component of the other cut.

De�nition 15 (cut value). If G is a weighted graph with edge weight function ω, the term

ω(A,Ac) ,
∑

e∈E(A,Ac)

ω(e)

denotes the costs or cut value of the cut induced by A.

Note, that we use the symbol �ω� both for a function de�ned on edges and as a function de�ned

on a set of edges and that we also write ω(A,Ac) instead of ω(E(A,Ac)). The same applies for

�γ� which we use for a function on vertices and as a function on a set of vertices:

γ(A) ,
∑
v∈A

γ(v).

This is used very often in the remainder of this chapter but should be unproblematic since the

meaning is always clear from the context.

3.2 Graph Cuts in Computer Vision

A classical problem of extremal graph theory is to �nd a cut with minimal costs:
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De�nition 16 (minimum cut). For a graph G a cut C = (S,Sc) is a minimum cut if its costs

are minimal, i.e.

ω(S,Sc) = min
A⊂V (G)

ω(A,Ac).

The problem of determining a minimum cut for a given graph G is then the minimum cut problem

and the minimum terminal cut problem is the problem of determining a minimum cut which is

also a terminal cut for two beforehand selected terminals.

Note that for a given graph there can be several cuts which ful�ll this property. We occasionally

use formulations of the kind "the bi-partition gained from application of a cut� by which we refer

to the two components solving the minimum cut problem (or a normalized cut problem) for a

speci�c graph.

For the �eld of computer vision both optimization problems, the minimum cut problem and the

minimum terminal cut problem, have become quite popular for a wide range of applications. The

minimum terminal cut problem is tightly connected to a certain class of energy functions which

are very useful for many computer vision applications. It is dual to the well-known maximum

�ow problem [Ford and Fulkerson 1962]. This connection enables us to use one of several

algorithms for the maximum �ow problem which are of polynomial runtime with small constant

factors. An overview of many minimum terminal cut algorithms along with a performance

evaluation with focus on computer vision can be found in [Boykov and Kolmogorov 2004].

The more general minimum cut problem, i.e. without terminals, can be used as a starting point

for several graph based hierarchical clustering tools which are here subsumed under the term

normalized cuts1.

In the following, we give an overview of how the minimum (terminal) cut problem is related

to applications in the �eld of computer vision. This investigation is headed against the question

how these approaches can be used for image segmentation which is the main interest of this work.

3.2.1 Recent Work

The �rst application of minimum terminal cuts as combinatorial optimization tool in vision was

presented in [Greig et al. 1989] for binary image restoration. Being unnoticed by the community

by a long time a similar approach based on this work was reported in [Boykov et al. 1997] and

used for the stereo correspondence problem. In the following years the usefulness of this approach

was realized. This led to the development of several similar techniques which can be applied to

other �elds of vision such as motion, image synthesis, multi-camera scene reconstruction and semi

automatic/interactive image segmentation (for an overview with references see e.g. [Boykov

2005; Boykov and Funka-Lea 2006; Kolmogorov and Zabin 2004]). As far as computer

vision is concerned, the term �graph cut� is therefore often associated to this kind of applications.

1the term �normalized cut� is often associated with the well known work of Shi and Malik [2000]; we use this
term also in a more general meaning for all cuts which can be seen as normalized versions of the minimum
cut.
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The essence of these methods lies in the minimization of an energy function of the form

E(x) =
∑
i

Ei(xi) +
∑
i<j

Ei,j(xi,xj) (3.1)

with x = (x1, . . . ,xn) and xi ∈ k. While many authors used their own graph constructions along

with some theory to show the correctness of their results, a general framework is presented in

[Kolmogorov and Zabin 2004]. It shows under which conditions minimizing arguments for

energy functions of the form (3.1) can be found with minimum terminal cuts in appropriate

constructed graphs. A general construction scheme for these graphs is given as well. Note, that

energy functions of the form (3.1) correspond to optimization problems with possibly k di�erent

assignments to the components of the input variable x. A main contribution of the work of

Kolmogorov and Zabin is how these more general problems can be attacked with the aid of

minimum terminal cuts. However, solutions to these problems can not guaranteed to be optimal

except for the binary case.

As image segmentation is of main interest here, we brie�y want to investigate how these energy

functions can be used for it. Most of the work published within this context relates to interactive

image segmentation where image data is divided into �back-� and �foreground� items based on

inter-pixel a�nities and some kind of user input. Examples of those segmentation techniques

are presented in [Boykov and Jolly 2001; Boykov and Kolmogorov 2003; Boykov and

Funka-Lea 2006; Li et al. 2004]. All of them use the following energy function

E(x) =
∑
i

[(1− xi)pF (i) + xi · pB(i)]︸ ︷︷ ︸
Ei(xi)

+
∑
i<j

ω(i, j)(xi − xj)2︸ ︷︷ ︸
Ei,j(xi,xj)

(3.2)

with xi ∈ {0, 1}. The function ω encodes the a�nity between nodes as a function of the corre-

sponding pixel intensities and distances (or as a function of features of super-pixels ([Li et al.

2004]), voxels [Boykov and Funka-Lea 2006] or other entities). The functions pB and pF rep-

resent the possibility that a pixel belongs to the background or foreground. These possibilities

can be estimated if samples of both distributions are known which in turn requires some complex

preprocessing or manual input. Functions of this form can be minimized via minimum termi-

nal cuts in graph constructions depicted in �gure 3.2 (for n = 3). This approach is especially

quali�ed for semi-automatic image segmentation since some image elements can be manually

speci�ed to be in the fore- or background. These pixels are often called seeds as the functions

pB and pF can then be computed from them. A minimum terminal cut in the associated graphs

then corresponds to an argument for (3.2) which minimizes the a�nities between pixels on the

boundary of the fore- and background and maximizes the probabilities that the pixels within the

two segments were classi�ed correctly. However, this approach is not investigated further here as

for non interactive segmentation the seeds have to be computed automatically. Nevertheless, we

can use a similar approach for the foreground cut which only requires the selection of one seed
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for the background (see section 3.6 for more details).

s

t

v1 v2 v3

ω12 ω23

∞
pF (v2)

∞
pB(v2)

ω13

Figure 3.2: An example of the graph construction for three pixels for a binary segmentation problem.
The cut yields the bipartition {{v1, v2} , {v3}} and has cut value pB(1) + w13 + w23. Note that the seeds
are {v1} for the foreground and {v3} for the background and therefore have edge weights of in�nity in the
graph.

An unsupervised segmentation procedure based on energy functions similar to (3.1) was pub-

lished in [Ishikawa and Geiger 1998]. Their work is an example of how minimum terminal cuts

can be used in graphs not being a �simple� extension of a pixel grid graph such as in �gure 3.2.

Instead, they use a fairly complex graph construction in order to solve a non binary segmentation

problem directly with minimum terminal cuts. The selection of seeds is not done manually but

is based on junction detectors which identify points in the resulting segmentation.

A rather distinct approach was demonstrated in [Veksler 2000]. He uses a simple extension of

a pixel grid graph's dual with edge weight function ω to �nd the smallest λ ∈ [mineω(e),maxeω(e)]
and a series (S1,Sc

1), . . . , (Sm,Sc
m) of noncrossing cuts with

ω(Si,Sc
i ) ≤ ` · λ and k ≤ |Si| ≤ |V | − k ∀i ∈ m (3.3)

where ` is the number of pixels on the border of an image and k a free parameter avoiding

trivial solutions of the optimization problem and small segments. The desired cuts can be found

with binary search on λ and O(|V |) invocations to a minimum terminal cut algorithm for each

di�erent λ. In fact, Veksler problem formulation can be seen as instance of the parametric

terminal cut problem which we use in section 3.6 for the foreground cut problem and therefore
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could be solved more e�ectively without binary search.

3.2.1.1 Normalized Cuts for Image Segmentation

We now turn to the above-mentioned normalized cuts which can be seen as the second main

class of graph cut based methods in computer vision. They are especially suited for unsupervised

image segmentation since no sophisticated preprocessing for seeds selection is needed. All cuts

presented in the rest of this section are investigated in detail within this work such that the

following text is meant to be only an introducing overview and motivation.

The work of Wu and Leahy [1990, 1993] can be seen as the starting point for this branch of

segmentation methods. Instead of using minimum terminal cuts for extended pixel grid graphs,

the idea ofWu and Leahy was to directly search for minimum terminal cuts in the �pure� pixel

grid graph. If the edge weights in such graphs correspond to pairwise similarities of pixels, a cut

with minimal costs splits the graph, and thus the image, into two parts divided by a common

high contrast boundary. Wu and Leahy presented an e�ective algorithm capable of e�ectively

determining all possible minimum terminal cuts of a graph which can be used to create a globally

optimal segmentation. They successfully used this segmentation method in the �eld of tissue

classi�cation in MR images and for segmenting aerial images.

d
es
ir
ed

cu
t

minω(A,Ac)

A
Ac

Figure 3.3: Bias of the minimum cut to small regions; all points in the �gure represent nodes of a
complete graph (every node is connected to all other nodes) and the position of each point indicates the
edge weights of the graph (nodes close to each other are very similar). A desired cut in such a graph
would separate group A from group Ac.

However, as already noted by the authors, the resulting segmentations su�er from many small

regions. This bias to small regions is due to the minimum cut on which their optimality criterion

is based. The reason for this can be seen from �gure 3.3: Assume a node for each point in the

�gure connected to all other nodes with edge weight inversely proportional to their Euclidean

distances. The arrangement of the points suggests a separation into a left and a right half but

a minimum cut separates one node from the others. The minimum cut has this tendency to
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separate small sets of isolated nodes as the costs of the cut also increase with number of edges

in it.

This situation initiated many suggestions in the literature on how to appropriately extend the

minimum cut problem. The basic idea of all of them is to scale the costs of the edges in the cut

such that more balanced partitions are favored:

ω(A,Ac)
ω(A,Ac)
f(A,Ac)

(3.4)

where f is usually a function de�ned on the edges in the cut or a function de�ned on the vertices

in A and Ac. Due to the form of the resulting energy functions, they are subsumed here under

the term normalized cuts.

The exact nature of the energy function used strongly depends on the existence of an e�ective

algorithm for determining an optimizing cut. While the classical minimum cut and the foreground

cut problem is solvable in polynomial time all other cut problems presented below are NP-hard

for general graphs. The reason why they can be used for image segmentation nevertheless is

twofold. On the one hand some cost measures become computational tractable if they are used

only for a more restricted class of graphs such as the class of planar graphs. On the other hand

it is sometimes possible to use some kind of relaxation of the original problem which can be

e�ectively computed and used as an approximating solution. An overview of the graph cuts

which are in the scope of this work is depicted in table 3.1.

name formula complexity section

minimum cut cut(A,Ac) = ω(A,Ac) P 3.4

mean cut mcut(A,Ac) ,
ω1(A,Ac)
ω2(A,Ac)

NP 3.5

foreground cut fcut(A,Ac) ,
ω(A,Ac)
γ(A)

P 3.6

isoperimetric cut icut(A,Ac) ,
ω(A,Ac)

min {γ(A), γ(Ac)} NP 3.7

normalized cut ncut(A,Ac) ,
ω(A,Ac)
γ(A)

+
ω(A,Ac)
γ(Ac)

NP 3.8

Table 3.1: Overview of the di�erent normalized cuts used within this work

In order to overcome the problems of the minimum cut Wang and Siskind [2003] presented

a normalized version they refer to as the �ratio cut�. Their cut measure yields a perceptual

appealing image segmentation if recursive bi-partitioning is applied starting from a pixel grid

graph. The ratio cut is a generalization of the �mean cut� which was introduced in a previous

paper [Wang and Siskind 2001] and has better runtime complexity. Since only the generalized

version is investigated here, we use the term �mean cut� instead of �ratio cut� nonetheless. A

minimum mean cut can be e�ectively computed if the encountered graph is restricted to be
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planar and only integer edge weights are used. The corresponding algorithm is presented in

detail in section 3.5.

A popular approximation scheme for cut measures is spectral relaxation where an eigenvalue

decomposition of a graph's Laplacian is used in connection with thresholding techniques. An

example of such a relaxation scheme was presented by Shi and Malik [1997, 2000] who were

also the �rst using a normalized version of the minimum cut for image segmentation. Shi and

Malik also used their normalized cut for recursively splitting a pixel grid graph. It is probably

the most prominent example of using graph cuts in this �eld. Another example of using spectral

methods is the �average cut� of Sarkar and Soundararajan [2000] which can be seen as a

more simpler variant of the normalized cut of Shi and Malik. Both cut measures are discussed

in more detail in section 3.8.

Spectral methods can also be used for the �foreground cut� [Perona and Freeman 1998].

Perona and Freeman did not explicitly tested their method for image segmentation but for

line grouping and as clustering tool in general. For the foreground cut we do not use spectral

relaxation but instead present a polynomial algorithm in section 3.6.

Grady and Schwartz [2006a,b] proposed the �isoperimetric cut� for image segmentation.

They also used recursive bi-partitioning of a pixel grid graph. Although their are also spectral

methods for this cut (see [Grady and Schwartz 2006a] and references therein) a new simpler

linear approximation technique was presented, see section 3.7 for more details.

3.3 Similarity Measures

In this section the di�erent kinds of edge weights measuring the similarity of neighboring faces in

a region adjacency graph of the segmentation framework described in section 2.3.4 are discussed.

Given a partition of the plane P and the corresponding region adjacency graph G, we de�ne

three edge weight functions which measure the dissimilarity of two neighboring faces. They can

be transformed into a similarity measure with an additional transformation which we describe

below. These three dissimilarity measures are:

1 The di�erence of the mean color of two segments is de�ned as:

colorMean(v1, v2) , ‖cm(v1)− cm(v2)‖

with

cm(v) ,

∫
R(v) i(p) dp

area(v)

being the mean color of the face associated with v. Recall that i is an image function (see

section 2.1) and that R maps every vertex of G to its face in P . The term area(v) is the area
of the face R(v) and can be simply computed if all edges of P are polygonal arcs.
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2 The average gradient magnitude along the common boundary of two segments is de�ned as:

averGrad(v1, v2) ,

∫
R({v1,v2}) ‖∇i(p)‖ dp

length({v1, v2})

where length({v1, v2}) denotes the length of the common edges R({v1, v2}) of the correspond-
ing faces. Again, it can be simply computed if the edges of P are polygonal arcs.

3 While the former measure are quite simple, we also would like to use a more complex one

which analyzes the distribution of the pixels in each face. We use the earth mover distance

for this:

EMD(v1, v2) , emd(sig(v1), sig(v2))

where the function sig maps every vertex of the graph to the signature of the corresponding

face and emd is the earth mover distance between them. More details on this follow in the

next section.

In order to get an similarity measure we apply a nonlinear transformation to each edge weight

function: For a given edge weight function s the �nal edge weight for an edge e of the graph G

is

length(e) · exp (−β · s(e)2
)

(3.5)

where β is the scaling parameter of s. The incorporation of the common boundary length re�ects

the geometric properties of the regions in the underlying segmentation. This way the cut value

of a cut now increases with the total length of the common boundary of its two components

and not with the number of edges in the cut as it is the case if we do not use the scaling factor

length(e).

The nonlinear transformation allows one to adjust how sensitive a cut is with respect to

increasing edge weights. Especially, for the normalized cuts the dominance of the normalization

factor can be adjusted this way. Similar transformations are used in the literature, e.g. in [Cox

et al. 1996; Grady and Schwartz 2006b; Shi and Malik 2000; Wu and Leahy 1993]. Here

we only add the incorporation of the common boundary length for reasons already given above.

3.3.1 The Earth Mover Distance

The earth mover distance (EMD) is a distance measure for signatures [Rubner et al. 1998, 2000].

A signature s , {(x1,w1), . . . , (xm,wm)} is a set of ordered pairs with xi ∈ Rn being a feature

vector and wi ∈ R being its weight. Similar to a histogram, a signature represents an estimate of

an unknown probability density function based on a set of samples. In fact every histogram can

be represented by a signature: For a histogram we select the feature vectors such that for a given

i ∈ n the i-th components of the feature vectors form a sequence x1i ≤ · · · ≤ xmi of equidistant

monotone increasing numbers. The feature vectors then represent the midpoints of the bins and
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the weights wi equal the number of samples which lie in the bin associated with the i-th feature

vector.

However, a drawback of histograms is that they are static structures, i.e. the quantization of

the feature space is everywhere the same but often the samples are located in isolated regions

of it. As a result, only a small fraction of the bins actually contains signi�cant information.

So, one has to choose between a high resolution of the data and a manageable number of bins.

Signatures do not have this drawback as the feature vectors can be arbitrarily distributed in the

feature space. As an example, the feature vectors can represent clusters of the samples and its

weights the number of samples falling into the corresponding cluster.

ws1
4

ws1
3

ws1
2

ws1
1

ws2
3

ws2
2

ws2
1

fij

s1
s2

Figure 3.4: Computing the earth mover distance corresponds to solving a transport problem in a bipartite
graph. Each signature is represented by several vertices (one for each feature/weight pair). The signature
with the greater total amount of weights is the associated with the piles of earth (s1) and the other signature
is associated with the holes (s2). The height of the earth piles (holes) corresponds to the weight of the
features vectors.

The idea of the EMD is to imagine one signatures as piles of earth located in the feature space

at points given by the feature vectors with height equal to their weights and to imagine the other

signature as holes de�ned analogously. Then, the EMD measures the amount of work to �ll the

holes with earth where the work is measured in units of earth times units of distance the earth

is moved. In order to assure that all holes can be �lled the signature with smaller total weight

is associated with them. More precisely, for two signatures s1 ,
{

(x1,ws11 ), . . . , (xl,ws1l )
}
and

s2 , {(y1,ws21 ), . . . , (ym,ws2m )} the earth mover distance is de�ned as [Rubner et al. 2000]:

emd(s1, s2) ,

∑l
i=1

∑m
j=1 cijfij∑l

i=1

∑m
j=1 fij

(3.6)

with cij , ‖xi − yj‖.2 The terms fij present the earth transported from pile i of one signature

to hole j of the other signature. They are selected such that the expression

l∑
i=1

m∑
j=1

cijfij

2Actually, cij can be any distance de�ned on feature vectors, we use this straightforward selection.
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is minimal subject to the conditions:

fij > 0, ∀i ∈ l ∀i ∈ m (3.7)∑
i

fij = ws2j , ∀j ∈ m (3.8)∑
j

fij ≤ ws1i , ∀i ∈ l (3.9)

l∑
i=1

m∑
j=1

fij = min
{ l∑
i=1

ws1 ,
m∑
j=1

ws2j

}
(3.10)

where condition (3.7) ensures that earth is only moved in one direction, i.e. from piles to holes,

condition (3.8) ensures that all holes are �lled, condition (3.9) ensures that from each pile only

as much earth is transported than available, and condition (3.9) ensures that the maximum of

earth is transported which means that the signature with smaller total weight is the signature

associated with the holes. The normalization factor of equation (3.6) then assures that signatures

with smaller total weight are not favored.

The fij 's can be computed by solving the transport problem (see [Rubner et al. 2000] and

references therein) which is de�ned for directed bipartite weighted graphs, see �gure 3.4. 3

3.3.1.1 Signature Computation

Given a partition of the plane P and the corresponding RAG G the signatures of the faces are

computed as follows: For every vertex v ∈ V (G) we determine the set of pixels which are in the

face associated with v:

{iLuv(p) |p ∈ w × h ∧ p ∈ R(v)} (3.11)

where iLuv is the image function with width w and height h from which P has been created

with color values converted to the CIE LUV color space (cf. section 2.1). From the set (3.11)

n clusters with centroids c1, . . . , cn with ci ∈ R3 are computed with the well known K-means

clustering algorithm. For the vertex v the term sig(v) , {(c1,w1), . . . , (cn,wn)} then denotes

the signature of v where wi is the number of points which are in cluster i normalized by the total

number of points in (3.11). In order to get a good representation for the color values in each

face, we have decided to choose n = 15 which is a fairly high number of clusters for each face in

P : In [Rubner et al. 2000] n = 8.8 on average is used for a whole image with size comparable

to size of the images of the Berkeley Image Database.

3At the time of writing an implementation in C of the EMD was available at http://www.cs.duke.edu/~tomasi/
software/emd.htm
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3.4 Minimum Cut

The minimum cut problem concerns the simplest cost measure considered here. Recall its de�ni-

tion of section 3.2: For a weighted graph G with edge weight function ω we seek for a nontrivial

cut E(S,Sc) whose cut value is minimal, i.e.

ω(S,Sc) = min
A⊂V (G)

ω(A,Ac)

Note that every minimum cut is also a minimum terminal cut for every pair of terminals (s, t)
with s ∈ A and t ∈ Ac and as a �rst characterization we can show that every minimum terminal

cut must be connected:

Theorem 1. Let C = E(A,Ac) be a minmum terminal cut in a connected simple graph G. Then

both A and Ac must be connected.

Proof. Without loss of generality assume that A is not connected and let A1, . . . ,An be its

connected components. One of these components must contain one of the terminals, say Ai.

This also means that E(Ai,Ac
i ) is a minimum terminal cut with strictly smaller cut value than

C which means that C cannot be a minimum terminal cut.

There are several algorithms for solving the minimum cut problem. As there are many e�ective

algorithms for �nding a minimum terminal cut and there are n(n− 1)/2 di�erent terminal pairs

in a graph, with n being the number of vertices, one could in a naive approach simply search for

the smallest terminal cut among all terminals. However, a both very simple and fast algorithm

was developed by Stoer andWagner [1997] with runtime complexity O(|V | · |E|+ |V |2 log |V |)
for an undirected simple graph G = (V ,E). It is based on vertex condensation and uses a scheme

very similar to the one of an algorithm by Gomory and Hu [1961] (see below).

However, for the minimum cut we do not use the recursive segmentation scheme of section 2.3.4

but instead use the clustering scheme of Wu and Leahy [1993] which uses several minimum

terminal cuts of a graph. The reason for this is twofold: Firstly, we already discussed the bias of

the minimum cut to produce very small segments in section 3.2.1.1. Indeed, we have experienced

this behavior, if the minimum cut is recursively applied to region adjacency graphs from an

initial segmentation. The result is bad performance of the overall procedure as the sizes of the

encountered subgraphs decay very slow in practice. The clustering scheme of Wu and Leahy

also has this bias but is far more e�ective to compute.

Secondly, it is possible to e�ectively compute all minimum terminal cuts of a simple graph

with an algorithm by Gomory and Hu [1961]. They can be encoded in a tree structure, which

we call here Gomory-Hu tree, and used to form a partition of the vertex set of the graph into

several components which ful�ll a global optimality criterion. Note, that for the recursive scheme

only binary optimization problems are solved for the single encountered subgraphs. We discuss

this aspect in more detail in section 3.4.2.
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The idea of using an Gomory-Hu tree for the segmentation problem was already presented

by Wu and Leahy [1993] for pixel grid graphs. They developed an modi�ed version of the

algorithm of Gomory and Hu which has better runtime performance in practice but is harder

to implement. Since the problem size of the region adjacency graphs computed here are much

smaller than the pixel grid graphs of the associated image, the original algorithm will also do.

Finally, we would like to note that we have found several times in the literature that the work

of Wu and Leahy has been cited as an example of recursively searching for minimum cuts, e.g.

[Shi and Malik 2000; Soundararajan and Sarkar 2003; Veksler 2000]. In fact that is not

true and it can be shown that the method of Wu and Leahy, that we are about to describe

in the following, actually does not give the same results. We give a simple counter example in

section 3.4.3.

3.4.1 Gomory-Hu Trees

The algorithm of Gomory and Hu o�ers an e�ective way for revealing the complete minimum

terminal cut structure of a graph. More precisely, it constructs a tree which can be used to

compute a minimum terminal cut for every possible pair of nodes in the given graph. For

the construction of the tree itself only |V (G)| − 1 calls to an arbitrary minimum terminal cut

algorithm are needed. Even better, due to vertex condensation most of these calls encounter

much smaller problem instances (see below). Using the tree an arbitrary minimum terminal cut

can then be computed with linear runtime complexity.

In order to clarify how this tree can be useful for solving the k-partition problem described

above, it is necessary to get a deeper understanding of the nature of this tree structure. For this,

consider a connected weighted simple graph G and the complete graph G∗ which has the same

vertex set as G and an edge weight function ω∗ which assigns to every edge {u, v} of G∗ the cut
value of the minimum (u, v)-cut in G. A classical result of the work of Gomory and Hu [1961] is

that there is always a minimum spanning tree T of G∗ with the following properties: If for a given
pair (s, t) of terminals the edge {s, t} is not in T the cut value of the corresponding minimum

terminal cut is equal to the smallest edge weight of the edges on the unique path leading from

s to t. Moreover, if this edge is removed from T the tree falls into two connected components

which are also the components of the minimum (s, t)-cut. So, this means that we can e�ectively

compute every desired minimum terminal cut of G if we have the spanning tree T . For a given

pair of terminals, one only has to determine the smallest edge on the path from the terminal

to the other and compute the connected components of the tree resulting from the removal of

this edge. This tree is called Gomory-Hu tree here and its mathematical characterization is

captured in the following de�nition:

De�nition 17 (Gomory-Hu tree). A graph TG with edge weight function ωT is a Gomory-Hu

tree of a connected simple graph G with edge weight function ω i� it has the following properties:

TG is a spanning tree of the complete graph with the vertex set V (G).
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For every pair of terminals s, t ∈ V (G) the corresponding minimum terminal cut in G can be

computed from TG as follows: Let e be the smallest edge with respect of ωT on the unique path

connecting s with t in TG. The removal of e disconnects TG into two parts S,Sc such that

C = E(S,Sc) is a minimum (s, t)-cut with ω(C) = ωT (e).

The following propostion is given without proof as it requieres alot of theory not introduced

here. A stringent proof can be found in [Gomory and Hu 1961; Hu et al. 1982] instead; a less

formal argumentation can be found in [Christofides 1975].

Theorem 2. For every connected simple graph there is a Gomory-Hu tree.

The existence of a Gomory-Hu tree for each simple graph has some interesting implications.

At �rst note, since each Gomory-Hu tree is also a minimum spanning tree, it has |V | − 1
edges. This also means that only |V | − 1 di�erent minimum terminal cuts are needed to have

a minimum terminal cut for every possible pair of terminals. There can be still
(|V |

2

)
di�erent

minimum terminal cuts in a graph but they can only take on |V | − 1 di�erent cut values. The

existence of a Gomory-Hu tree for every connected simple graph makes also the following

property of minimum terminals cuts easy to derive:

Lemma 1. For every two pairs of terminals there are two corresponding minimum terminal cuts

in a connected simple graph which do not cross.

Proof. This follows from the fact that for every pair of terminals there is a minimum terminal

cut represented by an edge in a Gomory-Hu tree of the corresponding graph. So, for two pairs

of terminals this minimum cuts are either identical, as they are represented by the same edge;

otherwise they are represented by two di�erent edges, say e1 and e2. If one these edges, e.g. e1,

is removed form the tree, e2 must be in one of the resulting components. Therefore, removing e2

from the tree yields two components with one being entirely contained in the components from

the �rst removal which proves the statement.

ω1

ω2 ω3

ω4ω5

ω6

(a)

ω1 ω5

ω6

ω2

ω4

(b)

ω1

ω2+ω6

ω5+ω4

(c)

Figure 3.5: Example of vertex condesation; the two nodes enclosed by the dotted line (in (a)) are to be
condensed; the condensed graph is in shown (c)

We now give an algorithm for actually computing a Gomory-Hu tree. For this we need the

concept of vertex condensation:
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De�nition 18 (vertex condensation). Let G be a simple graph with edge weight function ω

and S ⊆ G(V ) a set of vertices. For another graph G′ with edge weight function ω′ we say G′

can be created from G by vertex condensation of S (into s) i� the following holds:

V (G′) = V (G) \ S ∪ {s} with s 6∈ V (G)

E(G′) = {{u, v} ∈ E(G) |u, v 6∈ S} ∪ {{u, s} | ∃v : {u, v} ∈ E(S,Sc)}

ω′(u, v) =

{
ω({u} ,S) if v = s

ω(u, v) else

Stated less formal, vertex condensation of a set S of vertices in a weighted graph means to replace

this set with a new node s with all edges having a common starting point u ∈ Sc replaced by

a new edge {u, s} with edge weight equal to the sum of the weights of these edges. A small

example for this operation can be seen in �gure 3.5. The following theorem shows the usefulness

of vertex condensation:

Theorem 3. Let E(A,Ac) be a minimum terminal cut in a connected simple graph G. For two

terminals s, t ∈ A, a minimum (s, t)-cut in the graph created by vertex condensation of Ac is also

a minimum (s, t)-cut in G. The same applies for s, t ∈ Ac with vertex condensation of A.

Again, we would like to refer to [Gomory and Hu 1961] for a proof. Note that theorem 3 also

means that for a pair of those minimum terminal cuts holds that they do not cross.

The computation of a Gomory-Hu tree now can be achieved by a series of minimum terminal

cuts in condensed graphs, see algorithm 3.4.1. Additionally, we would like to give some comments

on certain steps of the algorithm:

1 The tree is initialized with a single vertex which represents the whole vertex set of G.

During the algorithm, this set is step by step split into smaller sets. So, the vertices of the tree

are actually subsets of vertices of G. The algorithms is �nished if all sets of the tree build only

contain one vertex of G.

2 + 3 Strictly speaking, the step 2 subsumes several vertex condensations in the sense of

de�nition 18. The minimum terminal cuts are thus not computed in the original graph but

in a condensed version (step 3 ). Note that due to theorem 3 a minimum terminal cut in the

condensed graph G′ is also minimum terminal cut in the original graph G as the to be condensed

vertex sets have been computed by minimal terminal cuts in the preceding steps of the algorithm.

The condensation also ensures that all minimum terminal cuts computed do not cross each other.

As a side�ect, the runtime of whole algorithm bene�ts from this as the condensed graphs have

less vertices as the original graph.

4 The tree is modi�ed in each iteration based on the minimum terminal cut of step 3 : The

vertex set N is split into two sets v1 and v2 which become new vertices of the tree with an
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Algorithm 3.4.1: gomoryHuTree

Input: a connected and undirected graph G = (V ,E) with edge weight function ω
Output: a Gomory-Hu tree of G
begin

1 VT ← {V }, ET ← ∅
while |VT | 6= |V | do

select N ∈ VT with |N | > 1 arbitrarily;
2 G′ ← the graph which can be created from G by vertex condensations of the

vertices in each M ∈ V (T ) with M 6= N ;

select n1,n2 ∈ N arbitrarily;
3 determine a minimum (n1,n2)-cut C in G′ and A ⊂ V (G) such that C = E(A,Ac);

v1 ← A ∩N ; v2 ← Ac ∩N ;
VT ← VT \ {N} ∪ {v1, v2};
ET ← {{u, v} ∈ ET |u 6= N ∧ v 6= N} ∪ {{v1, v2}}∪

{{u, v1} | {u,N} ∈ ET ∧ u ⊂ A}∪
{{u, v2} | {u,N} ∈ ET ∧ u ⊂ Ac} ;

ωT (e)←


ω(v1, v2) if e = {v1, v2}
ωT ({u,N}) if e = {v1,u} ∨ e = {v2,u}
ωT ({u, v}) else

return (VT ,ET ) with ωT ;
end

4

connecting edge with weight equal to the cut value of the minimum terminal cut. All edges

{u,N} in the tree are replaced by new edges incident to {u, v1} or {u, v2} with the old edge

weight depending on whether u ⊂ A or u ⊂ Ac holds. Note that due to the vertex condensations

of step 2 only these two cases can occur. These operations ensure that in each iteration for every

edge in the tree holds that it represents a minimum terminal cut with components composed of

the vertices of G which are on either sides of this edge with cut value equal to its weight. The

algorithm is then guaranteed to terminate in |V | − 1 steps.

3.4.2 Gomory-Hu Tree Based Clustering

This section discusses how a Gomory-Hu tree can be used to divide a simple graph into several

connected components and how the quality of the resulting partition can be characterized.

We know from section 3.4.1 that given a graph G with n vertices there are n − 1 di�erent

minimum terminal cuts such that for every possible pair (s, t) of terminals there is a minimum

(s, t)-cut among them. Additionally, these cuts have the property that they do not cross each

other and can be represented by a Gomory-Hu tree TG.

We can use these facts for clustering in the following way: The smallest of these minimum

terminal cuts is also a minimum cut of G. If the edges of this cut are removed from G the graph

falls into two connected components. If we further remove the edges of the second smallest
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minimum terminal cut, the graph falls into exactly three connected components as all pairs of

minimum terminal cuts are non-crossing. This idea can be further generalized to form a k-

partition of the vertex set by removing the edges of k − 1 minimum terminal cuts. If these

cuts are also the k − 1 smallest ones, the resulting partition is the optimal partition among all

possible k-partitions in the sense that the largest inter-component cut value is minimal. The

inter-component cut value is one way to characterize the pairwise similarity of the components:

De�nition 19 (component cut value). Let G be a connected simple graph with edge weight

function ω. For two connected components S1,S2 ⊂ V (G) the inter-component cut value between

S1 and S2 written λ(S1,S2) is the cut value ω(C) of the cut C = E(A,Ac) for A ⊂ V (G) such

that

1 C separates S1 from S2, i.e. S1 ⊆ A and S2 ⊆ Ac and

2 the cut value of C is minimal, i.e. for all other cuts C ′ having property 1 holds

ω(C ′) ≥ ω(C).

Note that the inter-component cut value is equal to the inter-subgraph maximum �ow in [Wu

and Leahy 1993]. The later is not used here as it would require the de�nition of the maximum

�ow problem which is dual to the minimum terminal cut problem.

Now we have the following theorem which can be proofed with aid of a Gomory-Hu tree of

the corresponding graph:

Theorem 4. Let G be a connected simple graph with edge weight function ω and TG its Gomory-

Hu tree. The connected components C1, . . . ,Ck of TG after removing the k − 1 smallest edges

from TG form a k-partition on G such that

1 each of the k components is connected in G and

2 the largest inter-component cut value, i.e.

max
i<j
{λ(Ci,Cj)}

is minimal among all possible k-partitions of G and equal to the largest cut value of the k− 1
cuts.

Proof (based on [Wu and Leahy 1993]). First note that since TG is spanning tree ofG removing

k− 1 edges from the tree imposes a k-partition on the vertex set of G. Further note that for two

of these components their inter-component cut value is equal to the minimum of the edge weights

on the unique path in TG which connects the components. This follows from the properties of a

Gomory-Hu tree given in de�nition 17. Hence the inter-component cut value between any pair

of components cannot exceed the largest weight of the removed edges. Additionally, for those
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components being linked only by a single edge in TG, the inter-component cut value must be

equal to the weight of that edge. Hence, the largest inter-component cut value is equal to the

largest weight of the k − 1 removed edges, which is minimized when the k − 1 edges with the

smallest weight are removed.

So theorem 4 suggest to use aGomory-Hu tree for getting a partition into a desired number of

components. However, instead of removing a �xed number of edges, we can also use a threshold

which serves as a upper bound for all edges to remove. We know form theorem 4 that the

threshold is then also an upper bound for the inter-component cut value. Wu and Leahy [1993]

�rst suggested to use a Gomory-Hu tree in this way and we do as well. Finally, algorithm 3.4.2

describes the resulting clustering scheme in pseudo-code.

Algorithm 3.4.2: gomoryHuTreeClustering

Input: a connected simple graph G with edge weight function ω and stop ∈ R
Output: a map c : V (G)→ k for a k ∈ N
begin

compute the Gomory-Hu tree TG and its edge weight function ωT using the
gomoryHuTree algorithm;
sort all edges of TG in increasing order;
remove all edges from TG with ωT (e) < stop;
compute the connected components of TG and enumerate them arbitrary;
c← a function mapping each vertex to the component it belongs to;
return c;

end

Time Complexity The dominating operations of the clustering algorithm are the computation

of the Gomory-Hu tree and the sorting step. The computation of a Gomory-Hu tree can be

done with O(n ·N(n,m)) operations where N(n,m) is number of steps needed for computing a

minimum terminal cut in a graph with n vertices and m edges. Goldberg's pre�ow algorithm

needs O(n2√m) operations for this, see [Goldberg and Tsioutsiouliklis 2001] and references

therein. The complexity of the sorting step is O(n log n). As the number of edges is proportional
to the number of vertices with a small factor in a sparse graph (cf. 2 in section 2.3.4) the total

time complexity is O(n
5
2 + n log n).

Implementation Notes For the computation of the Gomory-Hu tree algorithm we used the

graph library Lemon [Jüttner 2008] which contains an implementation of this algorithm.

However, this implementation does not follow the algorithm of Gomory and Hu but instead

uses the approach of Gusfield which has the same time complexity. Gusfield's algorithm

does not use vertex condensation and is therefor much easier to implement. An description of

Gusfield's algorithm along with an experimental study of the computational performance of

both algorithms can be found in [Goldberg and Tsioutsiouliklis 2001].
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3.4.3 Discussion

We already noted that some authors refereed to the work of Wu and Leahy [1993] as an

example of recursively searching for minimum cuts in the sense of the segmentation scheme

given in section 2.3.4. We give here a simple counter example to proof that this is actually not

true. In �gure 3.6 a graph G with four vertices is shown; the numbers in the �gure are the edge

weights. The smallest and the second smallest minimum terminal cut are indicated with dotted

lines. Removing the edges of these two cuts would result in the partition {{v1} , {v2} , {v3, v4}}
while the recursive scheme would result in {{v1} , {v2, v3} , {v4}}.

v1

v2 v3 v4

1

6 5

32

1st

2nd

Figure 3.6: A counter example which shows that the Gomory-Hu tree based clustering scheme is not
equivalent to the recursive application of the minimum cut; see text for more details.
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3.5 Minimum Mean Cut

The last section introduced the minimum cut as a clustering tool for image segmentation. While

the successive application of the minimum terminal cuts is e�ective computational by using a

Gomory-Hu tree its bias to small clusters is problematic. A more sophisticated cost measure,

that gives small costs to salient boundaries irrespective of their length would be desirable.

To overcome this situation, Wang and Siskind [2003] proposed to normalize a cut via a

second edge weight function:

De�nition 20 (minimum mean cut). Let G be a simple graph with two edge weight functions

ω1 and ω2. All edge weights ω1(e) are called �rst edge weights and all weights ω2(e) are called

second edge weights respectively. Then the mean cut value of a cut E(A,Ac) in G is de�ned as

mcut(A,Ac) ,
ω1(A,Ac)
ω2(A,Ac)

(3.12)

and each cut minimizing (3.12) is a (minimum) mean cut of G.

The �rst edge weights encode some kind of inter-vertex a�nity as it is the case with the minimum

cut. For the choice of the second edge weights there are at least two possibilities: At �rst, one

straightforward choice would be ω2(e) = 1 for all edges of G in order to normalize the cut

value by the number of edges in the cut, i.e. |E(A,Ac)|. Then, mcut(A,Ac) represents the

average a�nity of the common boundary of A and Ac. This should overcome the problem

inherent to the minimum cut to penalize long boundaries. However, selecting the second edge

weights this way ignores the geometric properties associated with each edge. Since each edge

in the region adjacency graph derived from an initial segmentation also represents the common

boundary of the associated regions, the corresponding boundary length should also be taken into

account. Otherwise, boundaries with many short segments (see �gure 3.7 for example) would

be preferred instead of boundaries with long segments. So, in order to take into account the

geometric interpretation of the graph structures, we use a function of the common boundary

length for two neighboring regions in a partition of the plane as the second edge weight function,

i.e. ω2(e) = length(e) for all edges (see section 3.3). Then mcut(A,Ac) represents the average

a�nity per unit length of the common boundary of A and Ac.

While the minimum cut problem is solvable in polynomial time things become more compli-

cated with the minimum mean cut. Unfortunately, for simple graphs the problem is NP-hard in

general. A proof can be found in [Wang and Siskind 2003]. If the problem class is restricted

to planar graphs and all cuts must be connected, the minimum mean cut problem can be solved

in polynomial time for ω2(e) = const and in pseudo-polynomial time for positive second edge

weights. Here, the term �pseudo-polynomial� means that the number of processing steps de-

pends on the precision of the edge weights and is only bounded by a polynomial function if the

edge weights are constrained to be integers.

48



CHAPTER 3. GRAPH CUTS 3.5. MINIMUM MEAN CUT

Figure 3.7: The image shows the partition of the plane from a watershed segmentation, the faces
(colored with mean of the underlying pixels) are enclosed by lines (edges of the partition of the plane).
The boundary marked with thick lines consists out of several both long and very short segments. Each
boundary segment should contribute to the cost of the whole boundary depending on its length.

Before we give an algorithm for solving the minimum mean cut problem, we brie�y want to

discuss the constraints just mentioned. As far as the planarity constraint is concerned: Since

all graphs encountered here are region adjacency graphs and thus planar, this restriction is not

problematic. A very important question is if the minimum mean cut problem is still well de�ned

with the connectedness constraint imposed. For this, we have to proof that there is always at

least one connected cut among all minimum mean cuts of a graph:

Lemma 2. For a connected graph G there is always a minimum mean cut E(A,Ac) such that

both A and Ac are connected components of the corresponding graph G.

Proof. Assume there is a cut E(A,Ac) where A is not connected. We can always take the

connected component of A with minimum mean cut value among all other components to get a

cut which is as least as costly as A. More precisely, let A1, . . . ,Am be the connected components

of A. Then, we have

mcut(A,Ac) =
∑m

i=1 ω1(Ai,Ac
i )∑m

i=1 ω2(Ai,Ac
i )

(3.13)

and thus

mcut(A,Ac) ≥ min
i∈m

ω1(Ai,Ac
i )

ω2(Ai,Ac
i )

. (3.14)

Since E(A,Ac) is a minimum mean cut, E(Ak,Ac
k) is also a minimum mean cut if k is the index

which minimizes (3.14). The same arguments apply if Ac is not connected. If both A and Ac

are not connected one can use this method this �rst for A and then for Ac in order to get a

minimum mean cut.

Additionally, the author thinks that connectedness requirement is not problematic if the min-
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imum mean cut is used for clustering but rather a desirable feature, since both A and Ac then

correspond to a spatially connected region which is a perceptually appealing bi-partition. One

may argue that there might be situations where this constraint forbids desirable segmentations

such as in �gure 3.8: The region patches forming the connected component A represent a salient

segment. However, the cut E(A,A1 ∪ A2) is not connected. This is no problem since one can

�rst �nd the cut E(A,A1) and afterward the cut E(A,A2).

A

A1

A2

Figure 3.8: The example of �gure 3.7 with only the boundary between the components A, A1, and A2

drawn. The cut E(A,A1 ∪A2) contains both boundary segments marked and is not connected.

3.5.0.1 Planar Graphs and Duals

We already mentioned planar graphs to be essential for the solution of the mean cut problem.

Before we proceed with the discussion we would like to shed some light of the meaning of this

concept. A planar graph is a graph which can be drawn such that its edges only intersect at

their endpoints. The classical concept for formalizing this idea is the embedding of a graph. We

already introduced the partition of the plane (de�nition 4 in section 2.2.1); we can use this for

the de�nition of planar graphs:

De�nition 21 (planar graph). A simple graph G = (V ,E) is planar if and only if it can be

embedded into the plane R2 which means that there is a partition of the plane P = (VP ,EP ,FP )
such that:

There is a bijection f : V → VP with

{u, v} ∈ E if and only if there is an edge in VE which has f(u) and f(v) as its endpoints.

The partition of the plane P is then also called the embedding of G.

From the embedding of a planar graph G one can derive its dual graph G∗. The construction is

similar to the region adjacency graph (de�nition 11): For every face in the embedding we have

exactly one vertex in G∗ and for every pair of faces sharing one edge in the embedding we have
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exactly one dual edge in G∗. This also means that G∗ cannot guaranteed to be simple if two

faces share several edges. In this case G∗ has multi-edges which cannot be modeled with simple

graphs. There can also be loops if one edge has the same face on both sides. For this we need the

concept of multi-graphs which is not further speci�ed here. However, this informal introduction

to dual graphs should be su�cient for our needs. The graph G is also called the primal of G∗

in this context. More details can also be found in [Even 1979]. An example for a dual graph

shows �gure 3.9. As a �nal note, as there can be several embeddings of a graph there can be

also several duals; but this is no problem, as any dual will ful�ll our needs.

3.5.1 A Pseudo-Polynomial Algorithm

We only present the more general pseudo-polynomial algorithm. The basic ideas and line of

argumentation is based on [Wang and Siskind 2003] but with di�erences in use of terminology

and style of presentation. The algorithm for constant second edge weights is very similar and

can be found in [Wang and Siskind 2001].

The algorithm of Wang and Sisking consists of a series of reduction steps. The constraints

given above allow a reformulation of the original problem such that it becomes solvable with

standard techniques of graph theory.

Recall that the �rst constraint only admits planar graphs and the second requires every cut to

be connected. These constraints allow us to establish a connection of connected cuts in a graph

and simple cycles in its dual:

De�nition 22 (simple cycle). For a graph G a simple cycle is a set C ⊆ E(G) of edges such
that the vertices incident to the edges in C are pairwise distinct and can be arranged as a series

(v1, v2, . . . , vn) with {vi, vi+1} ∈ C for i ∈ n− 1 and {vn, v1} ∈ C.

The �rst key observation for approaching the minimum mean cut problem is then given with the

following theorem:

Theorem 5. For every simple planar graph there is an one to one correspondence between

connected cuts and simple cycles in its duals.

A proof of this theorem can be found in [Even 1979]. Instead we give a small example: Figure 3.9a

shows an embedding of a simple graph together with the corresponding dual. Recall, the dual

contains a dual edge for every edge in the original graph and the dual can have self loops and

multi-edges. Figure 3.9b shows a connected cut and the corresponding simple cycle whereas

�gure 3.9c shows a none-connected cut and the corresponding none-simple cycle.

If G∗ is a dual graph of G and f is a function which takes every edge of G to its corresponding

dual edge, the costs of a simple cycle C are de�ned as

mcyc(C) , mcut(f−1(C)). (3.15)
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A cycle which minimizes equation (3.15) is then equivalent to a minimum mean cut in G. There-

fore, instead of searching for a minimum mean cut in a simple graph we can turn to the problem

of �nding a minimum mean cycle in its dual:

Lemma 3. For a simple planar graph G every connected minimum mean cut has a corresponding

simple minimum mean cycle in a dual of G provided that the edges of G have the same edge

weights as their duals.

(a) (b) (c)

Figure 3.9: (a): an embedding of a simple graph (round vertices) with a dual (rectangular vertices), note
that the dual is not a simple graph (b): same construction with a connected cut in the primal graph (dashed
edges) and the corresponding simple cycle (green bold edges) in the dual (c): the same construction with
a none-connected cut in the primal graph (dashed edges) and the corresponding none-simple cycle (red
bold edges) in the dual

Now the question is how to �nd a minimum mean cycle in the dual of a graph. In general, a

quite popular approach for solving an optimization problem of a fractional energy function such

as (3.12), or equivalently (3.15), is to use a linearized versions of it and then to perform a search

for an optimizing argument. More formally, we recast the problem into the question

“∃C : ω1(C)− b · ω2(C) < 0 ?′′ (3.16)

and do a search on the parameter b. If the answer to question (3.16) is �yes� we know that there

is a cycle C such that mcyc(C) < b and thus that the costs of the minimum mean cycle must be

smaller than b. Likewise, if the answer is �no� we know that the costs of the minimum mean cycle

must be greater than or equal to b. Now, one can gradually approach to the optimal value of b

by using a binary search technique. Of course, this method only works well if there is an e�ective

algorithm which answers question (3.16) and if it is also possible to extract the corresponding

cycle e�ectively. That is why we switch from the minimum mean cut problem to the minimum

mean cycle problem as we can give a fast algorithm which solves the parameter question for

cycles instead of cuts and also gives such a cycle if the answer is positive. Sometimes it is also

possible to use the solution of one parameter to speed up the computation of a subsequent call

to the algorithm for another parameter; some problems are even more tractable since they allow

a linear instead of a binary search on the parameter. Both applies to the algorithm described in
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the following. At �rst we �x the idea of using a linear transformation with the next de�nition

which together with lemma 4 provides the decisive part for using this method.

De�nition 23 (linear transformed weighted graph). For a graph G with �rst edge weight

function ω1 and second edge weight function ω2 the term Gb with parameter b ∈ R denotes the

same graph but with the �rst edge weights replaced with

ωb(e) = ω1(e)− b · ω2(e),∀e ∈ E(G).

Note that the ordering of simple cycles with respect to their mean cycle costs is invariant under

this linear transformation, i.e. for two cycles C1,C2 ⊂ E(G∗) with mcyc(C1) ≤ mcyc(C2) also

holds in G∗b

mcyc(C1) =
ωb(C1)
ω2(C1)

=
ω1(C1)
ω2(C1)

− b ≤ ω1(C2)
ω2(C2)

− b =
ωb(C2)
ω2(C2)

= mcyc(C2).

Thus every minimum mean cycle in G∗b is also a minimum mean cycle in G∗ and vice versa. This

implies that if b is set to the cost of a minimum mean cycle of G∗, say C ′, all minimum mean

cycles in G∗b have zero costs, i.e.

mcyc(C ′) =
ωb(C ′)
ω2(C ′)

=
ω1(C ′)
ω2(C ′)

− b != 0 for b = min
C

mcyc(C)

The other way round, if a minimum mean cycle in G∗b has zero costs then b is equal to the cost

of a minimum mean cycle in G∗.

Lemma 4. A graph G has a minimum mean cycle C with cycle ratio b if and only if C is a

minimum mean cycle of Gb with zero cycle costs.

So, due to lemma 4 instead of searching for a minimum mean cycle in G∗ it is su�cient to �nd

a cycle with zero costs in G∗b if b is selected properly.

It is both possible to test whether a graph G∗b has a negative cost cycle and to compute such

a cycle in one go using an auxiliary graph derived from G∗b which is described in more detail in

the next section. With such an algorithm together with lemma 4 it is possible to employ the

search technique described above: Let o be the optimal parameter � the costs of a minimum

mean cycle of G∗ � if for any other parameter b the graph G∗b has a cycle with negative costs

we know b > o. Otherwise, if there is no such cycle we know b ≤ o. If we select an initial guess

on b which is guaranteed to be greater than o, the algorithm for determining a negative cost

cycle outputs such a cycle C. If b is then set to mcyc(C) the cycle C has zero costs in G∗b and a

negative cost cycle C ′ in G∗b has lower mean cost, i.e. mcyc(C ′) < mcyc(C) . This way one gets

a series of cycles with monotone decreasing mean costs until no further negative cost cycle can

be detected. The last cycle computed this way is the wanted minimum mean cycle.

Since there is only a �nite number of cycles in a �nite graph this procedure must end. Un-

fortunately this method has exponential runtime for the number of cycles grows exponentially
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with the size of the graph. However, if all edge weights are constrained to take only on integer

values, the number of iterations is bounded on the number of di�erent possible parameters which

is ω1(E(G)) ·ω2(E(G)). For the selection on the initial guess b = maxe ω1(e)
mine ω2(e) is su�cient. Putting

all together, we �nally arrive at algorithm 3.5.1.

Algorithm 3.5.1: minimumMeanCut

Input: a connected and planar graph G and two functions ω1,ω2 : E(G)→ n
Output: a minimum mean cut C ⊂ E(G)
begin

compute a dual G∗ of G and f : E(G∗)→ E(G) with e 7→ f(e) = dual of e;
a← minω2(e);
b← maxω1(e);
ω′(e)← a · ω1(f(e))− b · ω2(f(e)),∀e ∈ E(G∗);
C ←negativCostCycle(G∗,ω′);
while C 6= ∅ do

C ′ ← C;
a← ω2(C);
b← ω1(C);
ω′(e)← a · ω1(f(e))− b · ω2(f(e)),∀e ∈ E(G∗);
C ←negativCostCycle(G,ω′);

return f(C ′)
end

3.5.2 Determining a Negative Cost Cycle

Now we only have to �nd an e�ective method for determining a negative cost cycle. It is possible

to attack this problem by an additional reduction step. We construct a new graph from the dual

of the initial graph and then use minimum cost perfect matchings in order to test whether there

is a cycle with negative costs. If there is such a cycle the perfect matching can also be used for

reconstructing it.

De�nition 24 (auxiliary graph). For a simple graph G with edge weight function ω the graph

Ĝ with edge weight function ω̂ denotes its auxiliary graph with the following properties:

For every v ∈ V (G) there are two real vertices v1, v2 and one virtual edge {v1, v2} in Ĝ with

ŵ(v1, v2) = 0.

For every edge {u, v} ∈ E(G) there are two virtual vertices uv, vu in Ĝ, one real edge {uv, vu} ∈
E(Ĝ) with ω̂(uv, vu) = 0 and four edges {u1,uv} , {u2,uv} , {v1, vu} , {v2, vu} all being mapped

by ω̂ to ω(u,v)/2 and with v1, v2 being the real vertices of v and u1,u2 being the real vertices of

u.

Figure 3.10 shows an example of such a construction. In the following the one to one correspon-

dence between edges of a simple graph and real edges of its auxiliary graph is represented by the
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e

(a)

f(e)

(b)

ω(e)/2 ω(e)/20

f(e)

(c)

Figure 3.10: (a): The dual graph of �gure 3.9 slightly di�erently drawn (b): the corresponding auxiliary
graph with real edges (solid), virtual edges (dotted), real vertices (black,rectangular) and virtual vertices
(white,circular) (c): the division of the edge weights (for edge f(e)).
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function f . In order to proceed the concept of �perfect matchings� is needed:

De�nition 25 (perfect matching). A perfect matching of a graph G with edge weight func-

tion ω is a set M ⊆ E(G) of edges for which every vertex in G is incident to exactly one edge

in M . A perfect matching is a minimum perfect matching if it has minimal edge costs, i.e. for

every other perfect matching M ′ it is ω(M) ≤ ω(M ′).

For a graph G its auxiliary graph is especially designed such that a perfect matchingM of it can

be used to derive a set of cycles in G which has the same total edge costs than the costs of the

edges in M . One can form such a set by taking each edge of G whose associated real edge in Ĝ

is not contained in the perfect matching M , i.e.

C , {e ∈ E(G) | f(e) 6∈M} .

Now, the subgraph of G induced by the set C only contains two-degree nodes. Instead of a rigid

proof of this proposition, we only describe the underlying idea of the auxiliary graph construction

using a small working example. From this a proof can then easily be derived.

Consider the small graph in �gure 3.11. Following the de�nition of an auxiliary graph the

node r has two corresponding real nodes r1 and r2 in Ĝ which are connected through a virtual

edge e. If this edge is in the perfect matching M , as in �gure 3.11 b), none of the remaining

virtual edges incident to r1 and r2 can be in M . So, in order to form a valid perfect matching all

real edges in Ĝ which are connected to r1 and r2 through a virtual edge also have to be in M (e1

and e2 in �gure 3.11 b). The other way round, if the edge e is not in M there must be exactly

two virtual edges, one for r1 and one r2, in M (v1 and v2 in �gure 3.11 c). These two virtual

edges are each incident to a real edge which therefore cannot be in M . Putting all together, for

every pair of real nodes there are either exactly two of its associated real edges not in M or all.

e2e1
e

v2

v1

a)

b)

c)

r

r2

r1

Figure 3.11: A small graph (�rst), its auxiliary graph with two di�erent perfect mathings marked

So, if C only contains two-degree nodes it must be an union of simple cycles. Moreover, since

there are exactly two virtual edges in a perfect matching for each real edge not in M and only

those edges have none-zero edge costs in Ĝ it follows ω̂(M) = ω(C) which in turn implies that if
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Ĝ has a perfect matching with negative costs one of the cycles in the corresponding set C must be
a simple cycle with negative costs. A more complex example of a cycle together with its perfect

matching is shown in �gure 3.12.

e1

e2 e3

(a) (b)

Figure 3.12: (a): the dual graph from �gure 3.9 with cycle C = {e1, e2, e3} (b): the corresponding
auxiliary graph with a perfect matching: green and blue edges are in the matching where green edges
(virtual edges) form the cycle C and blue edges (real edges) do not correspond to a cycle.

Conversely, for a simple cycle in a graph it is always possible to construct a perfect matching in

the corresponding auxiliary graph with the same total edge costs. The following lemma subsumes

the last observations:

Lemma 5. A simple graph has a negative cost cycle if and only if its auxiliary graph has a perfect

matching with negative costs.

We �nally arrive at the question whether an auxiliary graph has a perfect matching with

negative costs. This can be easily answered by computing a minimum cost perfect matching

which is a standard problem in graph theory and for which e�ective algorithms exist, see [Cook

and Rohe 1999] for an overview. Algorithm 3.5.2 then gives the steps to take for �nding a

negative cost cycle.

Time Complexity The computation of minimum perfect matchings can be done in O(|V | ·
|E| log |V |) [Galil et al. 1986]. The overall performance of the minimum mean cut algorithm is

dominated by these computations. Wang and Siskind already reported that they experienced

only a small number of iterations needed to �nd a minimum mean cycle. In order to investigate

the convergence behavior of this method for our segmentation scheme, we clustered all subgraph

sizes encounter during recursive application of the algorithm on one hundred images using the

segmentation scheme described in section 2.3.4, with the watershed method for the initial seg-

mentation, the function colorMean (section 3.3) for the edge weights, and the optimal parameters

found by parameter search as described in section 4.3.1. The mean number of iterations has been
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Algorithm 3.5.2: negativeCostCycle

Input: a connected and planar graph G and a functions ω : E(G)→ n
Output: a simple cycle C ⊂ E(G) with negative costs, ∅ if no such cycle exists
begin

build the auxiliary graph Ĝ with edge weights ω̂ from G and ω;
compute a minimum cost perfect matching M from Ĝ, ω̂;
if ω̂(M) = 0 then

return ∅
C ← {e ∈ E(G) | f(e)6∈M};
compute S the set of connected components of C;
return arg minC∈S w(C)

end

assigned to each cluster and the results can be see in �gure 3.13. Indeed, as one can see the

number of iterations needed is very small and does not grow with the size of the graphs.
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Figure 3.13: This �gure shows the dependence between number of nodes in the graph and number of
iterations used by the algorithm for the minimum mean cut; the scaling for x-axis is logarithmic and for
the numbers we have ex = x · 10e; see text for the data generation.

Implementation Notes The algorithm was implemented using lemon a C++ open source

graph library [Jüttner 2008]. The crucial routines used from lemon for this include routines

for computing connected components, planar embeddings and maximum perfect matchings. All

edge weights are transformed to the range [1, 1200] and rounded to the nearest integers.
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3.6 Foreground Cut

This section introduces the foreground cut for another way of normalizing the minimum cut.

Whereas the minimum mean cut uses a second weight function de�ned on the edges, the fore-

ground cut takes another approach for normalizing the minimum cut; a vertex weight function

is used for this purpose:

De�nition 26 (Foreground Cut). For a graph G with edge weight function ω and vertex

weight function γ the foreground cut value of a cut E(A,Ac) is de�ned as

fcut(A,Ac) ,
ω(A,Ac)
γ(A)

. (3.17)

A cut minimizing (3.17) with Ac 6= ∅ is then a (minimum) foreground cut.

A foreground cut thus takes into account the vertices contained in one of the two components

and can be considered as an asymmetric version of the isoperimetric cut (section 3.7) or the

normalized cut (section 3.8) which use both components of the cut. An interesting question is how

this asymmetric nature of the foreground cut impacts on the segmentation quality. We expect

it to have a bias to large regions such that the denominator in equation (3.17) is maximized. A

more detailed discussion on this aspect is given in section 4.4.

The component A which is favored this way is called foreground (component) and analogously

Ac is the background (component). For the background we have the following property:

Lemma 6. If E(A,Ac) is a foreground cut in a connected graph, then Ac is also connected.

Proof. Suppose that for a minimal foreground cut C = E(A,Ac) the component Ac is not

connected and let Ac
1, · · · ,Ac

k be its connected components. Since all weights are positive, we

have

fcut(A,Ac) =
∑k

i=1 ω(A,Ac
i )

γ(A)

≥ ω(A,Ac
j)

γ(A) +
∑

i 6=j γ(Ac
i )

for any j ∈ k which means that C cannot be minimal.

Similarly to the minimum mean cut, there are two straightforward choices for the vertex weight

function. At �rst, one could simply select γ(v) = 1 for all vertices. Then the weights of the edges

in the cut are normalized by the number of vertices in the foreground. However, this selection

would not attend to the di�erent features of the underlying image patches. Their geometric

properties can be incorporated via the vertex function γ(v) = area(v) such that the total weight

of the boundary is normalized by the enclosed area, but it would be more desirable to respect

the underlying image statistics of the enclosed area. An attempt for this is to use the weighted
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degree which is the total weight of the incident edges, i.e γ(v) , ω({v} ,V ). Regions with a

high total weighted degree have then a high inter region similarity measured in terms of the

edge weights. Choosing the vertex weights this way has already been proposed in [Grady and

Schwartz 2006a; Shi and Malik 2000] and here we do likewise.

The foreground cut was already introduced in [Perona and Freeman 1998] within the context

of spectral clustering. Therein, some insights of the relation between the spectrum of a graph

and equation (3.17) are given. The connection of the foreground measure to the spectrum of a

graph can be used to derive an approximation technique in the spirit of the methods described

in section 3.8. However, the theory around these methods often lacks of a clear statement about

upper approximation bounds and such: If no exact solution to a problem is known, and one has to

resort to an approximation scheme instead, it would be desirable to have at least evidence about

how bad the approximating solution can be in worst case. Fortunately, the minimum foreground

problem can be e�ciently solved with parametric network �ows. The simple algorithm presented

here was motivated by an email correspondence with Satish Rao 4 who pointed the author

to the basic graph construction which includes the derivation of equation (3.21). The detailed

elaboration presented in the following and the idea of using parametric network �ows is due to

the author of this thesis.

3.6.1 A Polynomial Algorithm

For the solution of the foreground cut problem an auxiliary graph can be employed which in this

case is a rather simple extension of the original graph. For this, we simply take the initial graph

of interest and add two di�erent kind of vertices together with some edges: At �rst we have to

determine a set of seeds among the set of the original vertices. The exact nature of these seeds

is described below. Then we add a new node to the graph which is called the sink. Each seed is

connected to the sink via a sink edge with edge weight of in�nity. Moreover, all vertices except

the sink are connected to another new vertex � the source � via source edges. For each vertex v,

the corresponding newly added source edge has an edge weight equal to γ(v) · λ where λ is the

parameter of the graph and γ is the vertex weight function of the original graph. The parameter

λ is crucial for the solution of the foreground cut problem. The following de�nition characterizes

such an auxiliary graph in rigorous terms:

De�nition 27 (auxiliary graph). An auxiliary graph Gλ with the parameter λ, a set T ⊂
V (G) of seeds, and an edge weight function ωλ of a simple graph G with edge weight function ω

and vertex weight function γ is a graph with

V (Gλ) , V (G) ∪ {s, t} with source and sink s, t 6∈ V (G),

E(Gλ) , E(G) ∪ Es(Gλ) ∪ Et(Gλ) with

Es(Gλ) , {{s, v} | v ∈ V (G)} a set of source edges and

4
Satish Rao is professor at the University of California, Berkeley
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Et(Gλ) , {{t, v} | v ∈ T} a set of sink edges

and

wλ(u, v) ,


λ · γ(v) if {u, v} ∈ Es
ω(u, v) if {u, v} ∈ E(G)
∞ if {u, v} ∈ Et

An example of such an auxiliary graph can be seen in �gure 3.14 for a graph with three vertices.

Note that the structure of the auxiliary graph is similar to the graphs used for the minimization

s

t

v1 v2 v3
w12 w23

w13

λγ(v1)
λγ(v2)

λγ(v3)

∞

Figure 3.14: The auxiliary graph for the complete graph with vertex set {v1, v2, v3}. All edges are marked
with their edge weight in the auxiliary graph. Edges connected to s are source edges and edges connected
to t are sink edges.

of energy functions used by Komologorov and Boykev (see section 3.2 along with equation

(3.1)). In fact, these energy functions are quite similar to the costs of a minimum terminal cut in

an auxiliary graph. More precisely, if E(A,Ac) is a terminal cut in an auxiliary graph Gλ with

terminal s and t, for the corresponding cut value holds

ωλ(A,Ac) = ωλ({s} ,Sc) + ωλ(S,Sc) + ωλ({t} ,S), (3.18)

where S is the source set, i.e. S = A − {s}, and Sc is in the following always the complement

of S with respect to V (G), i.e. Sc = Gλ − S − {t}. Recall from the de�nition of a terminal cut,

that it has to divide both terminals from each other. In order to achieve this, it can directly cut

some source edges, some edges from the original graph, and directly cut some sink edges which

respectively corresponds to the �rst, second, and third term in the sum of equation (3.18). Since

all sink edges have weights of in�nity the last term in (3.18) is de facto zero if we are seeking for
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a terminal cut with minimal cut value. Moreover, the set of possible minimum cuts depends on

the parameter λ. Irrespective of the actual selection of λ, all minimum (s, t)-cuts obey

ωλ({s} ,Sc) + ωλ(S,Sc) ≤ ωλ({s} ,G(V )) (3.19)

with S being again the source set as above. Due to the special selection of the edge weights of

an auxiliary graph the inequality (3.22) can also be written in the form

λ · γ(Sc) + ω(S,Sc) ≤ λ · γ(V ). (3.20)

Since γ(V )− γ(Sc) = γ(S) and if S 6=∅ we �nally get

ω(S,Sc)− λ · γ(S) ≤ 0 (3.21)

and equivalently

ω(S,Sc)
γ(S)

≤ λ. (3.22)

So, if λ = minA fcut(A) a minimum (s, t)-cut in Gλ is also a minimum foreground cut in G.

Further note that (3.21) is the foreground cut version of �the question� of section 3.5 used for an

optimal parameter search for the minimum mean cut problem; likewise, we can perform a search

on the parameter λ: If it is selected �too small� a minimal (s, t)-cut simply cuts all source edges

and thus yields the trivial cut with S = ∅ and ω(S,Sc) = γ(S) = 0 and we know λ < fcut(G).
That means, in order to solve the minimum foreground cut problem we must search for the �rst

parameter which gives a nontrivial cut which in turn can be done with binary search and requires

the solution of the minimal terminal cut problem for each selection on λ.

However, similar to the minimum mean cut problem a more e�ective search technique is

possible: one can show that the optimal parameter can be found with at most |V (G)| iterations.
Even better, as the problem of �nding a minimum (s, t)-cut in Gλ is an instance of the parametric

maximum �ow problem, the optimal value can be found with an algorithm which has the same

time complexity as a single invocation to the minimum terminal cut algorithm if the pre�ow

algorithm of Gallo et al. [1989] is used. How this works is described in the next section.

3.6.2 Optimal Parameter Search

The key observation for an e�ective parameter search technique is that minimum terminal cuts

in an auxiliary graph with terminals selected appropriately are nested in the following sense:

Lemma 7. Let G be a simple graph and Gλ1 and Gλ2 two auxiliary graphs of G with λ1 ≥ λ2

and with the same seed set. Let further s, t be the source and the sink of the auxiliary graphs
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κ(λ)

λ
λ`λ′ λ′′

(0)λ′′
(1)λ′′

(2)

LS′′
(0)

LS′′
(1)

LS0

κ(λ`) = κ(λ′′
(3))

Figure 3.15: The modi�ed newton method for determining the �rst breakpoint � here λ` � of κ in the
range [λ′,λ′′] . The computation starts with λ′′(0) = λ′′ . The �rst intersection point of the corresponding

line segments LS0 and LS′′
(0)

is λ′′(1). The �rst linesegment after LS0 , framed green, is the linesegment of

the foreground cut.
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according to de�nition 27. If S1 is the source set of a minimum (s, t)-cut in Gλ1 and S2 is the

source set of a minimum (s, t)-cut in Gλ2 then also holds S1 ⊆ S2.

Proof. Due to the construction of an auxiliary graph, all source edges in Gλ2 have edge weights

smaller than or equal to all weights of the source edges in Gλ1 . Therefore, a source edge which

is in a minimum terminal cut of Gλ1 must also be in Gλ2 .

That means that there is a maximal sequence λ1 > λ2 > · · · > λ` of monotone increasing

parameters where the source set of the corresponding minimum terminal cuts of Gλi
strictly

expands, i.e. one gets a sequence S1 ⊂ S2 ⊂ · · · ⊂ S` of strictly nested source sets. If κ(λ) denotes
the cut value of a minimum (s, t)-cut in Gλ as a function of λ, it follows that κ is a monotone

piecewise linear function with at most ` ≤ |V (G)| discontinouties. These discontinouties are also
called breakpoints.

Now recall that we are interested in the smallest λ for which the left side of (3.21) is nonzero.

The desired parameter is λ`, i.e. the smallest breakpoint of κ. It can be determined with a

modi�ed newton method which we adapt from [Gallo et al. 1989]. Since κ is a piecewise linear

function, it can be represented as composition of line segments, the intersection point of these

line segments being the breakpoints of κ. Each line segment is given through

LSi(λ) , ω(Si,Sc
i ) + λ · γ(Sc

i ),

if Si is the source set of the minimum (s, t)-cut in Gλ for λ ∈ (λi,λi+1]. The �rst breakpoint

within a given range λ ∈ [λ′,λ′′] can be found by �rst determining the slope at κ(λ′) and

κ(λ′′) which requires the computation of two minimum terminal cuts. Then we replace λ′′ with
the point of intersection of the two line segments. If then κ(λ′′) = LSi(λ

′′) we know that λ′′

must be the �rst breakpoint after λ′ otherwise we go on with this procedure until we are done,

see �gure 3.15 for an example. The computation of the exact value of the breakpoint may be

problematic in practice due to precision issues. However, this is not really a problem as we are

mainly interested in the cut itself and not in the exact cut value (which can be easily computed

if we have the optimal cut anyway). Therefore, it is su�cient to know if we are on the �rst line

segment after the line segment of λ′ which is the case if the computed cut for the intersection

point is the same as the cut for λ′ or λ′′.
For the �nal algorithm, we have to select an appropriate interval which is guaranteed to contain

the optimal parameter and we have to determine at least one seed vertex. For the interval we

select
minv∈V (G) {ω(v)}

γ(V (G))

as the lower bound and
ω(V (G))

minv∈V (G) {γ(v)}
for the upper bound. The seed selection is discussed in the next section.
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Algorithm 3.6.1: minForegroundCut

Input: a connected simple graph G with edge weight function ω and vertex weight
function γ

Output: a minimum foreground cut
begin

select λ0,λ1 such that λ0 ≤ λ` ≤ λ1;
vs ← vertex with maximal weighted degree, i.e. max {ω({v} ,V (G))};
compute the auxiliary graph Gλ1 with vs as seed;
S1 ← source set of a minimum (s, t)-cut of Gλ1/* s and t denote the source and the

sink of Gλ according to definition 27 */;
α← ω(S1,Sc

1);
β ← γ(S1);
λ′ ← λ1;
repeat

λ← λ′;
update edge weights of Gλ;
S ← source set of a minimum (s, t)-cut of Gλ;
λ′ ← (α− ω(S,Sc)) · (β − γ(S))−1 /* intersection point of LSi

and LS`
*/;

until LS0(λ) = LS(λ) ;
return E(S,Sc)

end

3.6.3 Seed Selection

For the solution of the foreground cut problem with the method just described it is necessary

to automatically select at least one seed for the auxiliary graph. Alternatively, one could also

select seeds at hand which would correspond to an interactive segmentation method but this is

not further examined here. Graph cut segmentation methods which require the selection of one

seed have already been described in the literature: Cox et al. [1996] solved the foreground cut

problem in planar graphs by searching for a closed contour in the dual of a pixel grid graph.

Their algorithm requires the selection of an edge which is guaranteed to be in this contour.

For this they select the edge with the smallest weight for the seed; the idea is that this edge

is likely to be in the cut. Grady and Schwartz [2006a] proposed an approximation scheme

for the isoperimetric cut which is described in detail in section 3.7. As with the foreground

cut method used here their algorithm also requires the selection of a seed which is guaranteed

to be in the background. For this they choose the vertex with maximal weighted degree, i.e.

max {ω({v} ,V (G))}. Their idea is that a seed selected in this was is likely not to be incident to

an edge in the cut. A result of both the work of Cox et al. [1996] and Grady and Schwartz

[2006a] is that selecting the seed based on the local features encoded by the edge weights is a

good heuristic for seed selection. So, we also choose the vertex with maximal weighted degree as

the seed. The resulting algorithm 3.6.1 then solves the minimum foreground cut problem with

the additional constrain that the background of the optimal cut contains the selected seed.

As a �nal note, it is also possible to use all vertices as seed in turn and select the cut with
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minimal foreground cut value as the �nal result. The resulting cut is then the optimal foreground

cut. However, this would also greatly increase the computation time and is therefore not used

here. Nevertheless, the impact of the seed selection on the �nal segmentation can be further

investigated in this way and could be the object of future work.

Time Complexity The most expensive part in computing the foreground cut is the computation

of the minimum terminal cuts. The pre�ow algorithm of Gallo et al. [1989] can be used for this.

It runs with time O(nm log n2/m) with n being the number of nodes and m being the number

of edges in the graph. As the number of edges is proportional to the number of vertices with a

small factor in a sparse graph (cf. 2 in section 2.3.4) the total time complexity is O(n2 log n).
Moreover, using reoptimization techniques Gallo et al. showed that all breakpoints can be

computed by O(1) invocations of this algorithm. We have not implemented these optimization

techniques due to time constraints. However, we have found that for our experiments the actual

number of iterations needed only scales very slightly with the number of nodes in the graph, see

�gure 3.16 for comparison.
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Figure 3.16: This �gure shows the dependence between number of nodes in the graph and number
of iterations for the foreground cut algorithm method, the scaling for x-axis is logarithmic and for the
numbers we have ex = e · 10x; for data generation same method as described on page 57 has been used.

Implementation Notes For the computation of the minimum terminal cuts we also used the

open source graph library lemon [Jüttner 2008].
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3.7 Isoperimetric Cut

In this section we want to propose the isoperimetric cut of a graph as a candidate for our seg-

mentation tool. Computing it is a classical problem of extremal graph theory [Chung 1997].

Isoperimetric problems, in general, also have a long history in the �eld of geometry. Originally, it

describes the problem of determining a closed curve with �xed length which encloses a maximal

area [Chung 1997]. In graph theory, we are faced with the same problem if volume and perime-

ter are de�ned properly. In general, all optimization problems concerned with the problem of

optimizing some kind of relation between perimeter and volume can be regarded as isoperimetric

problems. The foreground cut (section 3.6) and the normalized cut problem (section 3.8), for

example, could thus also be put into this category. However, the term often means the problem

of determining the isoperimetric number of a graph respectively the corresponding isoperimetric

cut :

De�nition 28 (isoperimetric cut). For a simple graph G with edge weight function ω and

vertex weight function γ a cut E(A,Ac) for which the term

icut(A,Ac) ,
ω(A,Ac)

min {γ(A), γ(Ac)} . (3.23)

is minimal is called (minimum) isoperimetric cut (of G) and the cut value with respect to this

function, i.e. icut(A,Ac), is called the isoperimetric number of G.

The cut measure icut is thus a balanced version of the foreground cut (section 3.6) which only

uses the term γ(A) for normalization. For the selection of the vertex weights we have the same

options as with the foreground cut. Again, we choose the weighted degree which is also used in

[Grady and Schwartz 2006a].

The isoperimetric cut possesses an even stronger connectedness property than the foreground

cut (for a proof see [Grady and Schwartz 2006a] and references therein):

Theorem 6. If E(A,Ac) is an isoperimetric cut of a simple graph then holds that both A and

Ac are connected.

Unfortunately, computing a minimum isoperimetric cut is NP-hard in general (see [Grady

and Schwartz 2006a] and references therein). The problem becomes more tractable if the

class of considered graphs is constrained to the class of planar graphs. The currently best

known algorithms for determining the isoperimetric cut within a planar graph is due to Park

and Phillips [1993]. They have developed two exact algorithms which run in O(n3W ) and

O(n2W · log nW ) time respectively where W , γ(V (G)) is the total vertex weight and n is

the number of vertices in the graph. Hence, both algorithm have exponential time complexity

if the vertex weights are given in binary form and are therefore pseudo-polynomial. We think

that the run-time performance of these algorithms is too slow for graph structures encountered

here. Instead we use an approximation scheme which has recently been published by Grady
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and Schwartz [2006a]. An interesting question for further work would be to investigate how

close the method of Grady and Schwartz is to the optimal solution.

Linear Approximation

Grady and Schwartz [2006a,b] proposed a new, simple approximation technique for �nding

isoperimetric cuts in simple graphs. It only requires the solution of a system of linear equations

with an additional sorting step.

For a simple graph G with vertex set V , {v1, . . . , vn}, a cut induced by S ⊆ V can be

represented with an indicator vector x with

xi ,

{
1 if vi ∈ S
0 else

Then, the total costs of the edges in the cut E(S,Sc) can be written

ω(S,Sc) = xTLx

if L is the well-known Laplacian of G which is de�ned as

Lij ,


ω({vi} ,V ) if i = j

−ω(vi, vj) if {vi, vj} ∈ E(G)
0 else

In addition, the total vertex weights of a set S ⊆ V (G) can be written

γ(S) = xTγ

with γ = (γ(v1), . . . , γ(vn))T. Putting all together, we can cast equation (3.23) into the form

icut(A,Ac) =
xTLx

min {xTγ, (1− x)Tγ} (3.24)

with x being the indicator vector of A. The crux of the isoperimetric cut problem is the minimum

operator in denominator of equation (3.24). The incorporation of both the fore- and background

vertices into the optimization problem makes it very di�cult to handle. However, it is possible to

overcome this situation if we �rst remove the minimum operator and add an additional constrain

instead. Moreover one can �relax� the problem by letting the variables xi take on the contin-

uous interval [0, 1] instead of only the two values {0, 1}. So, if we apply the �rst modi�cation

minimizing (3.24) is equivalent to minimizing the simpler expression

xTLx

xTγ
(3.25)
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subject to the constrain xTγ = k ≤ 1/21Tγ. The second modi�cation, allows one to insert the

constrain just added into 3.25 with aid of a Laplacian Multiplier:

Q(x) , xTLx− Λ(xTγ − k),

such that �nding an optimal argument for (3.25) can be done by �nding an optimal argument for

Q(x). Since L is positive semi-de�nite and xTγ is non-negative the expression Q(x) is minimized

at any critical point [Grady and Schwartz 2006a]. Di�erentiatingQ(x) with respect to x yields

Q′(x) = 2Lx− Λγ

Setting Q′(x) = 0 we �nally get after some rearranging:

2Lx = Λγ.

Since we are only interested in the relative values of x we can safely drop the scalars 2 and Λ.
Unfortunately, L is singular, i.e. all columns and rows sum to zero, which also means that it

is not invertible. In order to overcome this situation Grady and Schwartz propose to assign

one beforehand selected seed vertex vi ∈ V (G) to the �background� Sc which is equivalent to

setting xi = 0. This way, we can remove the i-th row and column from L yielding Li and the

i-th component from x and γ yielding xi and γi. So we �nally arrive at solving the system of

linear equations represented by

Lixi = γi. (3.26)

So solving equation (3.26) results in a vector x ∈ [0, 1]n−1. This vector can be converted into a

cut by application of a threshold t on each component, i.e. by setting

S = {vi ∈ V (G) |xi < t} . (3.27)

The resulting cut E(S,Sc) is then not guaranteed to be connected. However, Grady and

Schwartz [2006a] show that at least the component of the resulting cut containing the seed

vertex is always connected. In summary, starting with a region adjacency graph with given edge

and vertex weights we have the following steps to take in order to get an approximating solution

to the isoperimetric cut problem:

Algorithm 3.7.1: isoperimetric cut

1 Enumerate all vertices of the graph arbitrarily and compute the entries for L and γ,

2 determine a vertex vi which functions as seed vertex,

3 solve the system Lixi = γi of linear equations, and

4 threshold the solution xi to take only on binary values.
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We brie�y discuss these steps

2 For the selection of the seed vertex Grady and Schwartz [2006a] suggest to use the vertex

with the maximal weighted degree. The motivation of this is that a vertex with high degree is

likely not to have an edge in the optimal cut. They also have found that the selection of the seed

vertex is only crucial in pathological cases. Therefore, we adopt this selection method here.

3 Solving the linear system of equations is computationally the most expensive step. Since Li

is symmetric and semi-de�nite the conjugate gradient method can be used which is both e�ective

and accurate [Press et al. 2002, p. 87 et seqq]. Moreover, since the Laplacians of the region

adjacency graphs derived from an initial segmentations are sparse (cf. 2 in section 2.3.4), the

matrix-vector multiplications needed for the conjugate gradient can be e�ectively computed. We

used the conjugate gradient method available in the scipy python module for this 5. Figure 3.17

shows the solution of the linear system of equations for a region adjacency graph derived from

the watershed segmentation of an image from the Berkeley Image Database.

Figure 3.17: An example for the isoperimetric cut approximation; the image on the right shows the
entries for the vector xi after solving the linear system of equations and the resulting cut (red line) after
thresholding. The region adjacency graph has been derived form a watershed segmentation and has edge
weights from colorMean.

However, it should be noted that the solution of the linear system of equa-

tions can be problematic for small problem instances which correspond to �star�

graphs, see the �gure on the right. We encounter such graphs during the recur-

sive application of the isoperimetric cut. If the seed vertex happens to be the

vertex in the middle the corresponding Laplacian only contains one row which means that we

cannot use the approximation scheme. The solution to this problem is very simple: Since the

isoperimetric cut has to be connected with both components being nonempty, it can only cut

one isolated vertex from the star con�guration being unequal to the vertex in the middle. So,

the computation of the isoperimetric cut for such con�gurations is straightforward.

4 Grady and Schwartz investigated several ways to actually determine such a threshold

5For the time of writing (September 10, 2008) this software was available to the author at http://www.scipy.org.
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value. Here we chose the method which also yields the smallest isoperimetric number. In order

to achieve this, one could successively select all xk as a threshold and compute the isoperimetric

number of the resulting partition and select the partition with the optimal value. This would re-

quire O(n2) operations. However, it is possible to determine the optimal threshold in O(n · log n)
operations requiring an additional sorting step [Grady and Schwartz 2006a]: If the compo-

nents of an indicator vector x are sorted one can simple successively use its components xk in

increasing order as the threshold value. So, if we set t = xk, the cut value of the cut satisfying

equation (3.27) can be computed from the Laplacian L and the vertex weight vector γ which

now have only for the components Lij ,γi with i, j < k nonzero entries. This also means that the

cut value can be computed with O(n) operations if the indicator vector is already sorted.

Time Complexity The time complexity for the algorithm is composed of the time complexity

of solving the linear system of equations and the time complexity of the sorting step which

is O(nlog n). For the linear system of equations the dominant operations is the matrix-vector

multiplication for the Laplacian which is for sparse matricesO(m) ifm is the number of nonzero

entries. Since m < c · n for n being the number of vertices in the graph and c a constant, the

time complexity for this operations is O(n). This makes a total complexity of O(N · n+ nlog n)
where N is the number of iterations needed for the conjugate gradient method. Grady and

Schwartz [2006a] assumed N to be constant. Figure 3.18 shows the dependence of the number

of vertices in the graph and the number of iterations used by the conjugate gradient method for

our experiments. As one can see, the number of iterations indeed increases much with increasing

graph size.
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Figure 3.18: This �gure shows the dependence between number of vertices in the graph and number of
iterations for the conjugate gradient method, the scaling for x-axis is logarithmic and for the numbers we
have ex = x · 10e; for data generation same method as described on page 57 has been used.
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3.8 Normalized Cut

This section introduces the cut of Shi and Malik [2000] which they call �the normalized cut�.

It is probably the most famous normalized version of the minimum cut and we therefore also

adopt this name here despite of the fact that all cut measures used in this work are normalized

versions of the minimum cut.

Before we discuss the actual normalized cut of Shi and Malik [2000] we introduce are more

generalized version. Similarly to the isoperimetric cut, the normalized cut also uses a weight

function de�ned on the vertices of a graph for proper normalization:

De�nition 29 (normalized cut). For a graph G = (V ,E) with edge weight function ω and

vertex weight function γ the normalized cut value of a cut (A,Ac) with A ∈ V is de�ned as

ncut(A,Ac) ,
ω(A,Ac)
γ(A)

+
ω(A,Ac)
γ(Ac)

(3.28)

and a cut with minimal normalized cut costs is refereed to as a normalized cut.

The usage of a vertex weight function in the normalized cut leads to cuts which are balanced

with respect to the volume of the resulting subgraphs, which is de�ned as sum of the vertex

weights in the subgraph.

For the actual de�nition of the volume we have two common candidates for selecting the value

of γ(v) for v ∈ V : The number of edges incident to v, i.e. γ(v) , |E({v} ,V )|, and the sum of the

weights of the incident edges, i.e γ(v) , ω({v} ,V ) which is the weighted degree of section 3.6.

Using the �rst suggestion the normalized cut de�ned by equation (3.28) becomes the so called

average cut and the second gives the normalized cut as de�ned by Shi and Malik [2000].

Although the average cut has already been used in the �eld of computer vision [Sarkar and

Soundararajan 2000] we concentrate here on the normalized cut of Shi and Malik for the

following reason: The average cut is only balanced with respect to the number of vertices in the

components of the cut and therefore does not take into account the relations of the vertices to

each other encoded in the edge weights. The normalized cut has this property which can be

further investigated if we look at the normalized association de�ned as [Shi and Malik 2000]:

nassoc(A,Ac) ,
ω(A,A)
ω(A,V )

+
ω(Ac,Ac)
ω(Ac,V )

. (3.29)

It describes how tightly connected the nodes in each component of the cut are. Since ω(A,Ac) =
γ(A)−ω(A,A) and similar for Ac the connection of the normalized association to the normalized
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cut can be seen from:

ncut(A,Ac) =
ω(A,Ac)
γ(A)

+
ω(A,Ac)
γ(Ac)

=
γ(A)− ω(A,A)

γ(A)
+
γ(Ac)− ω(Ac,Ac)

γ(Ac)

= 2− ω(A,A)
γ(A)

+
ω(Ac,Ac)
γ(Ac)

= 2− ω(A,A)
ω(A,V )

+
ω(Ac,Ac)
ω(Ac,V )

= 2− nassoc(A,Ac)

Thus minimizing ncut(A,Ac) also maximizes nassoc(A,Ac).

Spectral Relaxation

Unfortunately, �nding a normalized cut is NP-hard in general (see [Shi and Malik 2000] for

a proof) and for the time being it is not known if imposing restrictions on the structure of the

graph makes it more tractable. However one can �nd an approximating solution using spectral

relaxation which means using the eigenvectors of a scaled version of the Laplacian. Note

that we already use the Laplacian in section 3.7 for linear relaxation of the isoperimetric cut

problem. The general idea is similar for the normalized cut; at �rst we proof that we can express

the normalized costs of equation (3.28) using the Laplacian of a graph together with some

constraints and then get an approximating solution if these constraints are relaxed somehow.

More precisely, we can represent a cut E(A,Ac) in a graph G with vertex set V , {v1, . . . , vn}
with an indicator vector x de�ned as

xi ,

{
+1 if vi ∈ A
−1 else

Using the same de�nition of section 3.7 for the Laplacian of G which is

Lij ,


ω(E({vi} ,V )) if i = j

−ω(vi, vj) if {vi, vj} ∈ E(G)
0 else

,

we can write

ω(A,Ac) = 1
4x

TLx.
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For the volume of the hole vertex set V we can write

γ(V ) = xTΓx

if Γ is de�ned as

Γij ,

{
γ(vi) if i = j

0 else
.

The following theorem establishes the connection of these de�nitions to the normalized cut prob-

lem. This theorem, its proof, and the subsequent line of argumentation is based on [Keuchel

2004, chapter 3, p. 29 et seqq] 6:

Theorem 7. If (A,Ac) is a solution of the normalized cut problem, then the optimization problem

min
y

yTLy

yTΓy
(3.30)

subject to the constraints

y ∈ {− α, 1
α2

}n
and yTΓ1 = 0

with α ,
√

γ(A)
γ(Ac) is equivalent to the normalized cut problem.

Proof (based on [Keuchel 2004, chapter 3, p. 29 et seqq]). First note that since γ(V ) = γ(Ac)+
γ(A) equation (3.30) can also be written as

ncut(A,Ac) = γ(V )
ω(A,Ac)

γ(A) · γ(Ac)
(3.31)

Using the alterantive vector and matrix notation as describe above, we have

ncut(A,Ac) = γ(V )
1
4x

TLx

γ(A) · γ(Ac)

=
γ(V )2

γ(Ac)2

γ(V )2

γ(Ac)2

·
1
4x

TLx

γ(A) · γ(Ac)

=
(1
2
γ(V )
γ(Ac)x)TL(1

2
γ(V )
γ(Ac)x)

γ(A)
γ(Ac) · xTΓx

since (ab)xTLx = (ax)TL(bx)

6The results of Keuchel lead us to same algorithm as in [Shi and Malik 2000]. We use Keuchel derivation
as we think that it is more intuitiv and easier to follow.
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for better reading we further de�ne β⊕ , 1 +α2 and β	 , 1−α2 such that we can proceed with

ncut(A,Ac) =
(1
2β⊕x)TL(1

2β⊕x)
α2 · xTΓx

=
(1
2β⊕x)TL(1

2β⊕x)
α2 · xTΓx

+
1
4β

2	1TL1 + 1
2β	β⊕1TLx

α2 · xTΓx︸ ︷︷ ︸
=0 since 1Lv=0∀v

=
(1
2β⊕x)TL(1

2β⊕x) + (1
2β	1)TL(1

2β	1) + 2 · [(1
2β	1)TL(1

2β⊕x)
]

α2 · xTΓx

=

(
1
2α (β⊕x+ β	1)

)T
L
(

1
2α (β⊕x+ β	1)

)
xTΓx

.

Further we can derive

xTΓx = γ(A) + γ(Ac)

= α2γ(Ac) + 1
α2γ(A)

= 1
2( 1
α2 + α2)(γ(A) + γ(Ac)) + 1

2( 1
α2 − α2)(γ(A)− γ(Ac))

= ( 1
4αβ

2
⊕ + 1

4αβ
2
	)(γ(A) + γ(Ac)) + ( 1

2αβ	β⊕)(γ(A)− γ(Ac))

= ( 1
4αβ

2
⊕)xTΓx+ ( 1

4αβ
2
	)1TΓ1 + ( 1

2αβ	β⊕)1TΓx

= ( 1
2αβ⊕x)TΓ( 1

2αβ⊕x) + ( 1
2αβ	1)TΓ( 1

2αβ	1) + 2 ·
[
( 1
2αβ	1)TΓ( 1

2αβ⊕x)
]

= ( 1
2α (β⊕x+ β	1))TΓ( 1

2α (β⊕x+ β	1))

So, if we set

y , 1
2α (β⊕x+ β	1)

= 1
2

(
( 1
α + α2)x+ ( 1

α − α2)1
)
,

one can see that actually y ∈ {− α, 1
α2

}n
holds. For the second constraint, observe that

yΓ1 = 1
2α (β⊕xΓ1 + β	1Γ1)

= 1
2

(
2 1
αω(A)− 2αω(Ac)

)
= 1

2

(
ω(Ac)
ω(A)

ω(A)− ω(Ac)
)

= 0

�nally proves the stated equivalence.
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While theorem 7 does not alter the intractability of the normalized cut problem � the value

α =
√
γ(A)/γ(Ac) has to been known in advance � it o�ers nevertheless a way for an approximation

scheme: One could drop the constraint y ∈ {− α, 1
α2

}n
, that is, relax this binary constraint on

y and instead minimize equation (3.28) for real valued entries of y by solving the generalized

eigenvalue problem

Ly = λΓy (3.32)

Since L is symmetric and positive semi-de�nite [Shi andMalik 2000] and Γ is positive de�nite (it

is a diagonal matrix with all entries being positive) all solutions to equation (3.32) are guaranteed

to be positive. Moreover, since 1 is an eigenvector of the Laplacian with eigenvalue 0 (L1 = 0)
Shi and Malik [2000] suggest to use the second smallest eigenvalue of equation (3.32) for an

approximating solution of the normalized cut problem. The problem can be even simpli�ed as

equation (3.32) can be transformed into a standard eigenvalue problem [Shi and Malik 2000]:

Due to the de�nition of Γ it is symmetric positive de�nite and we can write Γ = FF T with

F = Γ
1
2 = diag(γ

1
2 ). Thus, we can rewrite equation (3.32) into the form

Γ−
1
2LΓ−

1
2 = λz (3.33)

with z , Γ
1
2y. So, solving (3.32) is equivalent to solving (3.33). Since L is positive semi-de�nite

this also holds for Γ−
1
2LΓ−

1
2 which means that all its eigenvectors are positive. Moreover, as

z1 , Γ
1
2 1 is an eigenvector of (3.33) with eigenvalue 0 which is also perpendicular to all other

eigenvectors of (3.33) we have

zT
1 z2 = yΓ1 = 0

if z2 is the second smallest eigenvector of (3.33). This means that solving either (3.32) or (3.33)

also automatically satis�es the second constraint in theorem 7. Note, that if (3.32) is solved the

resulting eigenvector z2 has to be transformed by y2 = Γ−
1
2z2 in order to get the �nal result.

As with the isoperimetric cut (section 3.7) this real valued solution can then be transformed

into a cut of the corresponding graph by thresholding. So, �nally we arrive at the following steps

for �nding a solution for the normalized cut problem:

Algorithm 3.8.1: normalized cut

1 Given a graph enumerate all its vertices arbitrarily and compute the entries for L and Γ,

2 either solve the generalized eigenvalue problem given by equation (3.32) or the standard

eigenvalue problem given by equation (3.33), and

3 threshold the solution y to take only on binary values.

We would like to give some remarks on the last two steps:

2 Solving the generalized eigenvalue problem is computationally a very expensive step. As

already noted for the isoperimetric cut, the Laplacian for the graphs used here are sparse.
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Therefore one can use optimized eigenvalue solvers. We used the implementation available with

the pysparse python package7 which uses the routines of the ARPACK fortran library. Fig-

ure 3.17 shows the solution of the eigenvalue problem for a region adjacency graph derived from

the watershed segmentation of an image form the Berkeley Database.

3 For thresholding we used the same method as described in section 3.7 but appropriately

modi�ed for the normalized cut.

Figure 3.19: An example for the normalized cut approximation; the image on the right shows the entries
for the second smallest eigenvector and the resulting cut (red line) after thresholding. The region adjacency
graph has been derived form a watershed segmentation and has edge weights from colorMean.

Time Complexity The most expensive part for the computation of the normalized cut approx-

imation is solving the eigenvalue problem. This can by done with the Lanzcos Method which

runs in O(nm) + O(nk) time with n being the size of the matrix, i.e. the number of nodes in

the graph, m being the number of iterations needed for the Lanzcos Method, and k being the

costs of a matrix-vector multiplication [Shi and Malik 2000]. Since L is sparse this can be done

using O(n) operations. The number of steps m can not be further determined but �gure 3.20

shows that for our experiments it slowly grows with the number of nodes in the graph.

7For the time of writing (September 10, 2008) this software was available to the author at http://sourceforge.
net/projects/pysparse/.
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Figure 3.20: This �gure shows the dependence between number of nodes in the graph and number
of iterations for the normalized cut algorithm method, the scaling for x-axis is logarithmic and for the
numbers holds ex = x · 10e; for data generation the same method as described on page 57 has been used.
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4 Evaluation

In this chapter we discuss the evaluation method used in order to assess the segmentation quality

of the various instances of the basic segmentation scheme (as described in section 2.3.4). We start

with a brief discussion of the evaluation problem for image segmentation algorithms in general.

Then we give an overview of the work ofMartin et al. in conjunction with the Berkeley Image

Database. After this the Normalized Rand Index is discussed which is used here to actually

assess the segmentation results. Finally, the evaluation scheme is described and the results are

presented and discussed.

4.1 Image Segmentation Evaluation

As the main interest of this thesis is to qualify the impact on segmentation results if di�erent types

of graph cuts and edge costs are used it is necessary to actually tell what a �good� segmentation

is. Moreover, for an exhaustive comparison of di�erent segmentation algorithms on a huge set of

images it is necessary to express the segmentation quality in terms of an index being e�ectively

and automatically computational. The ill posed nature of the segmentation problem renders this

task very di�cult.

There have already been approaches to this problem in the early eighties while the number of

publications increased much in recent years. For an overview of progress on this topic Zhang

published several surveys [Zhang 1996, 2001, 2006].

Following Zhang, evaluation methods can be divided into analytical and empirical methods.

Analytical methods, qualify segmentation methods from a theoretical standpoint on algorithmic

characteristics such as runtime-complexity, stability under variation of intrinsic parameters or

input data. Such attributes can certainly only be given in addition to ones which are more

concerned with the actual segmentation quality.

Empirical methods can be further divided into goodness and discrepancy measures. Goodness

measures assess segmentation results indirectly by using quality measures motivated by human

intuition on properties a good segmentation should have. Examples for goodness measures are

region homogeneity or inter-region contrast respectively. Discrepancy measures actually use a

reference segmentation, also called ground truth, which is seen as being optimal in some sense.

A discrepancy measure then measures how close a segmentation is to the ground truth.

Here we use an empirical method, namely, the Normalized Rand Index together with ground

truth data from the Berkeley Image Database.
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The BerkeleyImage Database

The Berkeley Database is an image database of natural scenes with several manual performed

segmentations for each image. It has been introduced byMartin et al. [2001] and later described

in more detail in [Martin 2003].

The main intention of Martin et al. is to provide a solid basis of ground truth data for em-

pirical evaluation of segmentation algorithms. For this Martin et al. have taken a subset of

images from the well known Corel Image Database. The selected images show mainly natural

scenes that contain at least one discernible object such as animals, human beings, or man-made

structures, see �gure 4.1 for some examples. This excludes images with di�cult photometric phe-

nomena such as prominent shadows, re�ections, or translucence. All images have been segmented

Figure 4.1: some examples of images contained in the Berkeley Image Database

manually by non computer vision experts briefed with the following instructions [Martin 2003,

Chapter 2, p. 11]:

You will be presented a photographic image. Divide the image into some number

of segments, where the segments represent �things� or �parts of things� in the scene.

The number of segments is up to you, as it depends on the image. Something between

2 and 30 is likely to be appropriate. It is important that all of the segments have

approximately equal importance.

These instructions were intentionally formulated in a vague way in order not to bias the ex-

periment and to encourage each subject to segment each image in a natural manner and as a

naive observer. The segmentations were performed using a Java tool, and importantly, each

image has been segmented several times from di�erent subjects. For evaluating segmentation

quality we choose a subset of one hundred randomly chosen images from the Berkeley Image
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Database with 4 − 9 (5.43 on average) di�erent ground truth segmentations for each image 1.

Some examples of the ground truth data can be seen in �gure 4.2

Figure 4.2: some examples of manual segmentations from the Berkeley Image Database. The �rst
column shows the image on which segmentation has been performed. The remaining columns show the
manual segmentation where each of them has been performed by a di�erent subject (at least in the same
row). These examples also show the occurrence of mutual re�nement.

As one can see from these examples, the various manual segmentations di�er in level of gran-

ularity on which the division into segments has been performed: For example, in the second row

of �gure 4.2 one can see that parts of the image have been segmented into several regions by

one subject where another subject only segmented the same region into one group and the other

way around. This phenomenon is called mutual re�nement. The important thing to note is that

di�erence in segmentations performed by humans can be mainly reduced to this aspect and are

therefore perceptually consistent. Hence, Martin et al. [2001] argue that the idea of comparing

segmentation results to all perceptually valid interpretations of an image is a reliable basis for

an evaluation framework.

4.2 Rand Index and Extensions

In this section we discuss the Normalized Probabilistic Rand Index (NPR) introduced to the

�eld of computer vision by Unnikrishnan et al. [2007] for automatically assessing the quality of

segmentation results. The intention of Unnikrishnan et al. was to design an empirical evalua-

tion measure which can be used if several ground truth segmentations for an image are available

1at the time of writing (September 10, 2008) the image data together with the ground truth data was available
in internet at http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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and obeys certain additional requirements such a measure should ful�ll. The requirements are:

1 nondegeneracy

2 no assumption about data generation

3 accommodation to mutual re�nement

4 comparable scores

1 Nondegeneracy means that there should be no pathological con�gurations for which a seg-

mentation gives very high scores although it does not �t well to the ground truth data. This is

one main aspect which motivated Unnikrishnan et al. [2007] to introduce the NPR since other

measures have problems with degenerated segmentations which for example only contain one big

region or many very small sized regions. Therefore those measures required the segmentation to

be assessed and the ground truth data to have comparable number of regions. If this is not the

case those measures produce misleading high scores. The NPR does not have such requirements.

2 The measure should not make assumptions on the number of regions or their size.

3 The phenomenon of mutual re�nement as described above should be handled appropriately.

This means that the measure should not punish di�erence in segmentation granularity being con-

sistent with the ground truth data and do punish di�erence in granularity not being consistent

with the ground truth.

4 To be usable as an evaluation measure the scores of the NPR should allow comparison of

segmentations from di�erent images using the same algorithm as well as comparison on one image

using di�erent algorithms.

The NPR is based on the Probabilistic Rand Index which in turn is based on the Rand Index

which are now presented in detail. For this we assume that segmentation results are represented

with label-images, which are image functions ` : w × h→ N assigning each pixel of an image to

an unique label. The problem of incorporating sub-pixel accurate segment boundaries into an

evaluation framework using label images is discussed on page 86.

Rand Index

Similarity of two di�erent segmentations can be expressed through the pixel pairwise comparison

of the associated labels from label images: For two label images `, `′ de�ned on a set of pixel

positions {p1, . . . ,pn} the Rand Index is de�ned as

R(`, `′) ,

(
n

2

)−1∑
i<j

[c`(i, j) · c`′(i, j) + (1− c`(i, j))(1− c`′(i, j))] (4.1)
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with

c`(i, j) ,

{
1 if ` [pi] = ` [pj ]
0 else

(named afterWilliam Rand, see [Unnikrishnan 2005] and references therein). So, the expres-

sion R(`, `′) simply denotes the number of agreements of the two label images on the question

whether two given pixels are in the same segment normalized by the number of possible pixel-

pairs. A value of zero indicates maximal dissimilarity and a value of one indicates maximal

similarity of two segmentations. Note that the Rand Index does not require two segmentations

to have the same number of segments. Moreover, it also does not require two segmentations to

agree on a certain label for a segment. That means we can permute all labels of a label image

without a�ecting the value of the Rand Index.

As shown in [Unnikrishnan et al. 2007], the Rand Index can be e�ectively computed with

O(n+L) operations with L being the number of di�erent labels: Equation (4.1) can be rearranged

to the form

R(`, `′) =
(
n

2

)−1[(∑
i<j

c`(i, j) · c`′(i, j)
)

︸ ︷︷ ︸
C1

+
(∑
i<j

(1− c`(i, j))(1− c`′(i, j))
)

︸ ︷︷ ︸
C2

]

Where term C1 denotes the number of pixel pairs which are assigned to the same segment by

both ` and `′ and, similarly, term C2 denotes the number of pixel pairs which are assigned to

di�erent segments by the two label-images.

For the computation of C1, we de�ne the contingency table (of ` and `′)

ct(`1, `2) ,
∣∣{p ∈ w × h | ` [p] = `1 ∧ `′[p] = `2

}∣∣
which denotes the number of pixels pairs which have label `1 in `1 and also label `2 in `2. Hence,

this term equals the number of pixels shared by the associated segments in the two segmentations.

Now we can write

C1 =
∑
`,`′

(
ct(`, `′)

2

)
(4.2)

which means that C1 can be computed using O(n) operations.

As the second term represents the number of pixel pairs with di�erent labels in both segmen-

tations, one can simply compute it by subtracting all pairs of pixels which do not belong to that

category from the total number of possible pixel pairs. There are four categories and one of these

is already represented by equation (4.2). For the two categories left, we further de�ne

ct(`, ·) ,
∑
`′

ct(`, `′) and ct(·, `) ,
∑
`

ct(`, `′)
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which are the numbers of pixels with label ` in ` and the number of pixels with label ` in `′

respectively. Now, the term

C3 ,
∑
`

(
ct(`, ·)

2

)
− C1

denotes the number of pixel pairs which have the same label in ` but di�erent labels in `′.
Likewise, the term

C4 ,
∑
`′

(
ct(·, `)

2

)
− C1

denotes the number of pixel pairs which have di�erent labels in ` but the same label in `′. Putting
all together, we can write the second term in the form

C2 =
(
n

2

)
− C1 − C3 − C4

=
(
n

2

)
+
∑
`,`′

(
ct(`, `′)

2

)
−
∑
`

(
ct(`, ·)

2

)
−
∑
`′

(
ct(·, `)

2

)
(4.3)

So, C2 is computable in O(n + L) steps which is also the overall complexity of for the Rand

Index.

Implementation Notes For the actual computation of R all values of a contingency table ct(`, `′)
are determined and put into an array data structure where the i-th row contains all entries of

ct for label i of label image `. Note that if for two label-images `1 and `2 holds that `1 can be

transformed into `2 by merging two regions with label i and j, the contingency table of `2 and `
′

can be computed by merging the i-th and j-th row in the contingency table of `1 and `′. More

precisely, if ct1 is the contingency table of `1 and `′, and ct2 is the contingency table of `2 and

`′, we have
ct2(k, `) = ct1(i, `) + ct1(j, `) ∀` ∈ L

if L is the set of di�erent labels in `′ and k is the label of the region in `2 which is composed of

the regions with label i and j in `1.

Similarly, we can go in the opposite direction by �splitting� the appropriate row in a contingency

table if one region is split into two parts. Using these simply operations we experienced a serious

performance gain when computing the Rand Index in conjunction with recursive application of

graph cuts (see section 4.3).

Probabilistic Rand Index

Unfortunately, the Rand Index does not ful�ll the requirements given above. Especially, it treats

each disagreement of two segmentations on label assignment with equal importance. Hence,

mutual re�nement is not handled appropriately.

Nevertheless, it is possible to extend the Rand Index such that it ful�lls our needs. The
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Probabilistic Rand Index, �rst proposed by Unnikrishnan [2005], assumes the existence of a

Bernoulli distribution p(i, j) which models the probability that two pixels pi,pj belong to the
same segment. Instead of comparing a certain segmentation to one ground truth segmentation, a

set L of di�erent ground truth segmentations is employed. This way, we can turn to a probabilistic

interpretation in which each agreement on label assignment of two pixels is weighted by the

probability that this is correct. This probability can be estimated on basis of the ground truth

data. Such a generalization called the Probabilistic Rand Index is de�ned as follows:

PR(` | L) ,

(
n

2

)−1∑
i<j

[c`(i, j) · pL(i, j) + (1− c`(i, j))(1− pL(i, j))] (4.4)

where pL(i, j) is the estimated probability that pixel pi and pj have the same label, i.e. belong

to the same segment, based on the set L of ground truth segmentations.

For the concrete de�nition of pL(i, j) Unnikrishnan [2005] proposes to use the sample mean

estimator

pL(i, j) ,
1
|L|
∑
`∈L

c`(i, j) (4.5)

With this de�nition the Probabilistic Rand Index can be reduced to the mean of all Rand

Indexes between the segmentation to be assessed and all elements of the ground truth data:

PR(` | L) ,
1
|L|

∑
`′∈L

R(`, `′)

Normalized Probabilistic Rand Index

In order to be more comparable on di�erent images a baseline correction is performed. So, we

�nally arrive at the Normalized Probabilistic Rand Index if equation (4.4) is normalized by the

expected value of the index in the following way:

NPR(` | L) ,
PR(` | L)− E[PR]
max {PR} − E[PR]

. (4.6)

For the computation of E[PR] we have:

E[PR(`,L)] = E
[(n

2

)−1∑
i<j

[
c`(i, j)pL(i, j) +

(
1− c`(i, j))(1− pL(i, j)

)]]
=
(
n

2

)−1∑
i<j

[
E[c`(i, j)]pL(i, j) + E[(1− c`(i, j))](1− pL(i, j))

]
=
(
n

2

)−1∑
i<j

[
p′ijpL(i, j) + (1− p′ij)(1− pL(i, j))

]
.
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with p′ij = E[c`(i, j)]. The term p′ij is estimated from all ground truth segmentations in the

database:

p′ij ,
1
M

M∑
m=1

1
|Lm|

∑
`∈Lm

c`(i, j) (4.7)

where Lm is the ground truth data of the m-th image in the database. The computation of p′ij
is very expensive for a large dataset. Unnikrishnan et al. [2007] used 50,000 randomly chosen

instances of c`(i, j) instead. They reported negligible change in the results if more samples were

used. The range of the indexes is now not longer constrained to the interval [0, 1] and can also

be negative. For our experiments we encountered values ranging from −1.24 up to 0.98.

Subpixel Boundaries

As the exact watershed transform from section 2.4 produces subpixel accurate segment bound-

aries it is necessary to convert the partition of the image-plane produced by the watersheds into

a label-image. We take a simple solution to this problem: We assign an unique label to each face

in the partition of the plane and construct a label-image ` by assigning to ` [p] the label of the
face that contains the point p.

(a) three boundary segments: two from manual segmentations (ground truth data) from di�erent subjects (blue,
and black) and one from exact watersheds after using a graph cut. As one can see the manual boundaries di�er
in accuracy.

(b) subpixel boundary (red) and same boundary segment with pixel accuracy (yellow) and doubled pixel accuracy
(cyan). The NPR Index is only a�ected slightly to this loss in accuracy.

Figure 4.3: Part of an image from the Berkeley Image Database with subpixel segment boundary and
manual segment boundaries.

Certainly, this method means a loss of boundary accuracy which is actually the strength

of subpixel accurate segmentation methods such as the exact watershed transform. However,

this loss makes no big di�erence to the NPR-value of the resulting label-image: The boundary

accuracy of the ground truth data from the Berkeley Image Database is poor in the sense
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that manual performed segmentation often di�er near segment boundaries, see �gure 4.3a. The

Probabilistic Rand Index is very robust to this phenomenon [Unnikrishnan et al. 2007] such

that discretising subpixel boundaries does not matter as far as the comparison to the ground

truth is concerned.

In order to con�rm this we doubled the accuracy of the conversion step by applying the above

described method not only at pixel positions p but also at subpixel positions p+(±0.5,±0.5)T, see
for example �gure 4.3b. In this way we get doubled sized label images and compare them to the

ground truth data appropriately scaled. The mean absolute di�erence of the NPR-values between

these both methods on the watershed segmentations on the whole database is 8.02 · 10−4 with

variance 1.07 · 10−6. For comparison, the mean absolute di�erence of all pairs of segmentations

from the pixel precise method is 0.17 with variance 2.7 · 10−2.

4.3 Evaluation Framework

In this section the evaluation framework for the various segmentation algorithms is described.

For this we brie�y review the segmentation scheme describe in section 2.3.4: At �rst we perform

an initial segmentation for each image using either the watershed transform (section 2.4) or the

mean shift algorithm (section 2.5). From this segmentation a region adjacency graph is derived

with edge weights being either the average gradient along the segment boundary (averGrad), the

di�erence of the color means (colorMean), or the earth mover distance (EMD), see section 3.3.

These edge weights are non-linearly scaled using an exponential function with a scaling parameter

β. The weighted graph is then recursively split using one of the graph cuts of sections 3.4 to 3.8

until a threshold parameter stop on the cut values is reached. Therefore, we have in summary

2 · 3 · 5 = 30 di�erent segmentation algorithms each adjustable with parameters.

4.3.1 Parameter Selection

Since every segmentation algorithm investigated here depends on several parameters it is neces-

sary to determine the optimal values for them.

In order to make the evaluation manageable we select hand chosen parameters for the initial

segmentation step. For the watershed segmentation we have to determine the scaling parameter

σ for the boundary indicator (see section 2.4). We choose a rather small σ = 2.0 to ensure that

no potential boundaries are missed which results in 3000 segments on average (ranging from

1500 to 6000). For the mean shift we also have to select scaling parameters, one σs for the

spatial part and one σf for the feature part (see section 2.5). Similarly, we choose σs = 10.0 and

σf = 5.0 in order to ensure that the resulting segmentations miss as few as possible potential

boundaries. For the mean shift the number of segments among di�erent images is much more

scattered ranging from 30 to 3000 segments.

Given an initial segmentation, a graph cut, and an edge weight function the �nal result only

depends on the scaling parameter β for the edge weights and the threshold parameter stop for
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stopping the recursion. For the parameter β we chose 30 uniformly distributed values in the range

[5, 300] as we experienced values not being in this range to produce degenerate segmentations.

For each of these scaling parameters the optimal stop parameter is computed using the method

described below. Then we have 30 pairs of parameters for each image from which the pair with

the best NPR-value is chosen yielding 100 parameters for the complete image set. For each of

these pairs we do a leave-one-out cross-validation, that means each optimal parameter pair for

a certain image is used to perform the segmentation on the other images. Finally we select the

parameter pair which performs best on average.

Parameter Search for Graph Cuts

For the step of �nding an optimal stop parameter on the recursive segmentation scheme we use

the same method for each cut except for the minimum cut which is described in the next section.

For a chosen scaling parameter the corresponding optimal stop parameter can be easily deter-

mined. To simplify the ongoing discussion a little bit we de�ne the cut value of a subgraph as

the cut value of an optimal normalized cut in this subgraph. The basic idea now is: Since the

parameter stop is compared to the cut values of each sub graph created in course of the recursion

and there can only be a �nite number of recursion steps, the optimal parameter must be among

the cut values produced during the recursion. We perform therefore a complete recursion for

a region adjacency graph, i.e. until the subgraphs only contain one vertex and thus cannot be

further split. In order determine which cut value corresponds to the best segmentation we have

to determine the NPR indexes for each cut value. For this we can compute the NPR index

each time a cut is applied, i.e. the current segmentation is further re�ned, and associate the cut

value of this cut with the NPR index. In this way we get a series ((λ1, s1), . . . , (λn, sn)) of cut
value/NPR-index pairs from which one can select the pair with maximal NPR-index.

The only di�culty with this approach is that we have to execute the recursion such that each

time a NPR-index si is computed the corresponding cut value λi is valid in the sense that if we

set stop = λi we get the same segmentation for which si has been computed and this is only the

case if λj ≤ λi for j < i and λj > λi for j > i holds.

In order to achieve this we actually perform the recursion in an ordered way. More precisely,

starting with the region adjacency graph from an initial segmentation, every computed subgraph

is put into a priority queue according to its cut value, i.e., the next item in the queue is always

the subgraph with the smallest cut value. The subgraphs in the queue are successively drawn

and their connected components, after removing all edges in the optimal cuts for the graphs, are

pushed as new items into the queue. The cut value λi of each drawn subgraph is compared to

a variable λmax which holds the maximum cut value of all drawn subgraphs. If λi > λmax we

output λmax as a valid cut value, set λmax = λi and continue in this manner until all remaining

subgraphs cannot be further split. As each draw from the priority queue corresponds to a split of

the associated subgraph, the change in the current segmentation can be concerned by updating

the current NPR according to a split operation of the contingency table (see implementation
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notes in section 4.2). The last NPR index before the valid cut value λij+1 is then the correct

NPR index of λij .

Parameter Search for Minimum Cut

As we are not using the recursive segmentation scheme for the minimum cut but instead employ

a Gomory-Hu tree instead for forming the �nal segmentation we also use a di�erent parameter

search for determining the optimal stop parameter. More precisely, after building the Gomory-

Hu tree for a certain graph at hand the edges of the tree are sorted with decreasing edge weights.

We �rst remove all edges from the Gomory-Hu tree and then successively add edges in order of

decreasing weights. Reinserting an edge into the tree then corresponds to a merge of two regions

in the initial segmentation. This way one gets a series of coarser becoming segmentations starting

with the initial segmentation and ending in the segmentation with one big region (e.g. the whole

image). Note that this exactly corresponds to the reversed clustering scheme as described in

section 3.4.

The corresponding NPR-values can be computed using the merge operation on the contingency

table (see above). The cut value with maximum NPR-value is then the optimal parameter for

that image with respect to the scaling parameter of the edge weights used. The cross validation

is then performed in the same manner as described above.
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4.4 Evaluation Results

We now turn to a detailed discussion of the evaluation results for the various instances of the

segmentation scheme. We have two NPR indexes for each image and each instance of the segmen-

tation scheme; one index gained from the optimal parameter-search as described in section 4.3 and

one index from the parameters performing best on all images on average after cross-validation.

A listing of these parameters from cross-validation can be seen in table A.1. As we have chosen

a subset of 100 images from the Berkeley Image Database, this makes 2 · 100 NPR indexes for

each instance of the segmentation scheme. For the rest of this section we concentrate on the 100
indexes found by cross-validation. A NPR index is in the following also called (NPR) score.

We present statistics of the scores and examples of the corresponding segmentation results.

Whenever we compare two di�erent instances of the segmentation scheme, we not only compare

their mean NPR scores but also apply two well-known statistical tests on the both distributions to

see if the di�erence are actually signi�cant: The paired t-test and its nonparametric counterpart,

the Wilcoxon signed rank tests (see for example [Meintrup and Schäffle 2005]). For the

signi�cant level we use the standard value α = 0.05.
In order to make the following discussion more observable we put most of the statistics and

segmentation results in the appendix of this thesis. These are:

Figure A.1 and Figure A.2 contain several plots. Each plot shows the mapping of a certain

value for the scaling parameter β for the edge weights to the mean NPR index found by

parameter search over all images for that β.

We give several histograms in Figure A.4 (page 106) and �gure A.5 (page 107) in order to give

an overview on how the NPR indexes are distributed for each instance of the segmentation

scheme. The green histograms in the �rst rows present the best NPR score on each image

found by parameter search. Red histograms present the NPR scores for the parameter which

has been found during cross-validation. From this, one can also see how the selection of one

parameter for all images impacts on the NPR scores. In �gure A.3 the two histograms of the

NPR indexes for the initial segmentation steps are given.

Table A.2 gives a more compact overview through several simple statistics of the NPR scores,

i.e. the mean, minimal, and maximal NPR-score for the various segmentation algorithms. The

last column in each table gives the fraction of segments of the inital segmentation which are

also in the �nal segmentation; from this one can get an idea on how strong a certain algorithm

is biased to over- or under-segmentation.

Table A.4 gives a ranking of the cuts for each combination of initial segmentation step and

edge weight function. The entry in the �rst row is always the cut which performs best on

average. The results of some statistical tests are contained in the remaining columns in order

to verify that the ranking is also signi�cant. Especially, the scores of each particular row are

compared to the �rst and the preceeding row. The last two columns compare the NPR scores
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with the scores of the initial segmentation step in order to see if the improvement of the initial

segmentation by using a cut is signi�cant.

For comparison on how changing from mean shift to watersheds as initial segmentation step

in�uences the NPR scores see table A.3 on page 109. As before, we also inserted the results

from the statistical tests.

A similar comparison is given for the edge weights in table A.5.

Finally, in section A.3 (page 113-130) one can see several segmentation results on hand selected

images from which we think that they are a representative subset of all segmentation results.

We also included the results for one of these images in �gure 4.4 for a �rst glimpse.

Whenever these content is needed for the ongoing discussion we insert the appropriate reference

to it. From these statistics, comparisons, and segmentation examples we draw the following

conclusions:

1 The usage of graph cuts always improves the quality of the initial segmentation on average.

However, the improvement does not seem to be always signi�cant.

2 It is not possible to clearly identify an instance of the segmentation scheme which is superior

to all other ones.

3 The minimum cut is inferior if compared to the other cuts.

4 The cuts being normalized by the weighted degree � the foreground, the isoperimetric, and

the normalized cut � produce comparable results with respect to the NPR scores and the

number of segments in the �nal result.

5 For the di�erent selections on the edge weights we found that the average gradient magnitude

(averGrad) performs signi�cantly worse if watersheds are used for the initial segmentation

step.

6 The usage of the earth mover distance for the edge weights (EMD) does not lead to signi�cantly

better results and is comparable to the color mean (colorMean).

7 The selection of the mean shift as initial segmentation can be problematic for the cuts being

normalized by the weighted degree. Except for the minimum cut using watersheds leads to

better results if the averGrad is not used for the edge weights.

Statement 1 to 3 are the most important ones as they address the main question we formulated

at the beginning of this work. While it is not possible to identify a certain instance being superior

we can be more speci�c on the inherent characteristics of the di�erent cuts. So, we give a �nal

discussion on each cut and some remarks on the edge weights below.
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(a) original image (b) ground truth

0.4

(c) watershed segmentation

0.45

(d) minimum cut

0.49

(e) mean cut

0.5

(f) foreground cut

0.5

(g) isoperimetric cut

0.48

(h) normalized cut

Figure 4.4: segmentation results of all cuts on one image for watersheds as initial segmentation and
colorMean for the edge weights
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Minimum Cut and Mean Cut

The minimum cut (as described in section 3.4) is the simplest graph cut investigated here. It can

be seen as the cut with the worst overall performance. Its NPR scores are often signi�cant smaller

than the scores of the other cuts. We already discussed the bias of the minimum cut to produce

strong over-segmentation in section 3.2.1.1 as the costs of a cut grow both with increasing edge

weights and number of edges in the cut. Nevertheless, it can be still used to remove much of

the over-segmentation of the watershed transform in regions being quite homogeneously colored.

For example for the image on page 116 the minimum cut produces a very high score. The high

ranking of the minimum cut together with mean shift in table A.4 can be explained by the facts

that the mean shift already produces good initial segmentations and that the weighted degree

normalized cuts perform systematically worse due to the �single vertex� problem (see below). In

fact, for the image on page 122 on can see an example where the minimum cut removes almost

no edges at all and the NPR score is mainly due to the mean shift.

The mean cut successfully attacks the drawbacks of the minimum cut by normalizing the costs

of the cut by the total length of the produced boundary. It is therefore less biased to over-

segmentation and can also create segments with long boundaries. Especially, segments having

a large perimeter and a small area, which are problematic for all other cuts, can be produced

with the mean cut. However, the mean cut also often produces very small isolated segments as

it can be seen from the example segmentations. An example on how the mean cut successfully

overcomes the problems of the minimum cut can be seen in �gure 4.5: The rectangle in �gure 4.5a

enclosed a region where the minimum cut possess over-segmentation; the arrow in �gure 4.5b

marks a very long boundary which is not problematic for the mean cut but for the minimum

cut. However, �gure 4.5 is also an example where the minimum cut has a higher NPR score as

the mean cut since the marked segment is not in the ground truth data.

(a) mean shift with minimum cut and colorMean (b) mean shift with mean cut and colorMean

Figure 4.5: Final segmentation result from one image for the minimum cut and the mean cut.
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Foreground, Isoperimetric, and Normalized Cut

We now turn to a more detailed discussion of the foreground, isoperimetric, and normalized

cut. We already noted that the performance of these cuts is very comparable. Especially,

the foreground cut is not inferior if compared to the other two balanced cuts. Recall, that the

foreground cut is only normalized by the total vertex weight of one component in the cut whereas

the isoperimetric and the normalized cut take both components into account. The number of

segments in the �nal segmentations are also very similar especially for the watershed transform

as initial segmentation step. We would like to �nish our discussion with two aspects which

especially attracted our attention: The �single vertex problem� and �shortcuts�.

As all of these three cuts use the weighted degree for the vertex weight function all of them share

the same problem which especially becomes evident with the mean shift as initial segmentation

step: If we look at the de�nitions of the three cuts with the weighted degree inserted for the

vertex weight function, i.e.

fcut(A,Ac) =
ω(A,Ac)
ω(A,V (G))

icut(A,Ac) =
ω(A,Ac)

min {ω(A,V (G)),ω(Ac,V (G))}
ncut(A,Ac) =

ω(A,Ac)
ω(A,V (G))

+
ω(A,Ac)

ω(Ac,V (G))
,

we can see that cuts having only one vertex in one of their components can be problematic.

More precisely, if for the foreground cut the component A only contains one vertex the cut value

evaluates to fcut(A,Ac) = 1. Similarly, for the isoperimetric cut the cut value also evaluates to

icut(A,Ac) = 1 if the weighted degree for this vertex is smaller than the total weighted degree

of the other vertices. For the normalized cut we have ncut(A,Ac) > 1 if A or Ac has only one

vertex. For comparison, the stop parameter found by parameter search is much smaller than 1
for all cuts (cf. table A.1). Figure 4.6 shows an example where this can be problematic: The

mean shift method has been used for the initial segmentation and successfully identi�ed large

homogeneous regions. For example, a cut which has only the region hatched in �gure 4.6a in

one component is very costly for the isoperimetric cut such that the �nal segmentation result

(�gure 4.6b) is worse than the result for the minimum cut (�gure 4.6a).

Another characteristic of these three cuts is the tendency of producing what we call shortcuts.

The meaning of this can be seen in �gure 4.7. The segment boundary marked runs through

a region in the image where almost no �real� boundary information is present. The reason

for this is that during the recursive scheme subgraphs can occur where the normalizing factor

dominates: For example, in �gure 4.7a the subgraph corresponding to the sky is created after

several applications of the isoperimetric cut; it is then split into the two components indicated

with the hatched patterns. This is only possible as the total length of the edges in the cut

(marked with an arrow) is very short and the smaller one of the two components has still a high
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(a) minimum cut (b) isoperimetric cut

Figure 4.6: Example for isolated vertex problem. Both segmentations have been generated with mean
shift as initial segmentation step. The minimum cut successfully segments the big segment (hatched on
the left image).

total vertex weight. If the church spire were closer to the left image border, the cut would have

a higher cut value. While for example the normalized cut does not show this behavior for this

image (�gure 4.7b) similar examples can be found for both the normalized and the foreground

cut.

Also note that the segmentations shown in �gure 4.7b match completely except for the dis-

cussed cut. However, the NPR score for the isoperimetric cut is much smaller than for the

normalized cut.

(a) isoperimetric cut, NPR = 0.55 (b) normalized cut, NPR = 0.74

Figure 4.7: Example for �shortcut� of isoperimetric cut

Edge Weights

For the selection of the edge weights the most interesting aspect is whether the usage of sophis-

ticated weights improves the overall performance. In order to investigate this we decided to use
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the earth mover distance. We already noted above (statement 6 ) that we have not experienced

a signi�cant improved if compared to the rather simple edge weights. Especially, the results are

often similar to the results for colorMean. This can also be seen from the various segmentation

examples we included in section A.3.

We also already noted that the selection of averGrad can be problematic for the watersheds.

This becomes especially apparent if one looks at the segmentation results of the mean cut,

see �gure 4.8 for an example. As one can see, there are many small satellite segments near

high contrast segment boundaries. A possible explanation for this is that the �owlines running

orthogonally to such a high contrast boundary still have a certain part on this boundary such

that the average gradient magnitude for them becomes high enough.

Figure 4.8: Segmentation result for the mean cut with edge weights from averGrad.
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5 Summary and Future Work

In this chapter we give a summary of our work and present some possible extension for future

work.

5.1 Summary

In this thesis we described the image segmentation problem and an energy function based ap-

proach to it. Using energy function for segmentation has been proposed in the literature many

times. Especially, the graph cuts methods are very popular as they can be used for e�ectively

solving binary optimization problems which can then be extended with a recursive scheme in

order to form a segmentation consisting out of more than two segments.

We gave an overview on graph cuts related work in computer vision and identi�ed a certain

class of graph cuts which can be seen as normalized versions of the minimum cut. We presented

and implemented algorithms for �ve di�erent normalized cuts. Except for the foreground cut,

we did this on the basis of the relevant publications. For the foreground cut we worked out the

details of an algorithm due to Sadish Rao which has not been published so far.

In contrast to the classical application of cuts employing a graph structure which is directly

derived from the pixels of an image we use an initial segmentation step from which the graph is

build. This way the encountered graphs are much smaller and can have more sophisticated edge

weights. We used the exact watershed transform of Meine and Köthe [2006] and the mean

shift method of Comaniciu and Meer [2002] for the initial segmentation step.

For the edge weights, we used the average gradient magnitude along the common boundary of

two neighboring segments of the initial segmentation, the di�erence of the mean color of those

segments, and the earth mover distance. The later can be seen as a rather complex similarity

measure if compared to the �rst two.

The main intention of this thesis was to investigate how the di�erent selections of the initial

segmentation step, edge weights, and graph cuts impacts on the segmentation quality. For

assessing the segmentation quality we used the Berkeley Image Database in connection with

the Normalized Probabilistic Rand Index of Unnikrishnan et al. [2007]. We performed an

exhaustive search for the optimal parameter, i.e. the scaling parameter for the edge weights and

the stop parameter for the recursive scheme, by means of a leave-one-out cross-validation.

For the evaluation results we presented and discussed several statistics of NPR scores along

with several segmentation examples. From this we found that all cuts are capable of signi�cantly
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improving the initial segmentation. This means that our basic segmentation scheme indeed is

useful for attacking the segmentation problem. We also found that the di�erent cuts produce

comparable segmentation results with respect to the NPR scores except for the minimum cut

which is inferior as expected. This also means that the foreground cut is not inferior if compared

to the isoperimetric and the normalized cut where the later two correspond to NP-hard optimiza-

tion problems. We further found that the common usage of the weighted degree for the vertex

weight function can be problematic especially for initial segmentations being less over-segmented.

For the edge weights we found that the selection has no big in�uence on the segmentation

quality except for average gradient magnitude in connection with the exact watershed transform.

Especially, the earth mover distance, being quite expensive with respect to the computation time

needed, does not lead to better segmentations within our setting.

5.2 Future Work

Primarily, possible extension and modi�cations for future work can be done for all aspects of the

basic segmentation scheme, i.e.

1 for the initial segmentation step,

2 for the edge and vertex weights,

3 for the graph cut used, and

4 for the stopping criterion.

For the rest of this work we would like to be more speci�c on these aspects.

1 Initial Segmentations As the segmentation scheme does not depend on a speci�c selection

for the initial segmentation step all kinds of methods available can be used for it. It is even

possible to add a further processing step to the segmentation scheme, e.g. reuse its outcome as

the initial segmentation for further improving the segmentation. For example for the watershed

segmentation one could try to �rst remove a certain amount of the over-segmentation in order

to get more expressive edge weights from the coarser segmentation.

2 Edge and Vertex Weights Unfortunately, we were not able to investigate two kinds of edge

weights from which we think that they could improve the quality of the �nal segmentations:

Texture and geometry related edge weights.

The earth mover distance, which we used as the most complex similarity measure, only analyzes

the distribution of the colors contained in a region of the initial segmentation. Texture based

measures can be used to also incorporate the spatial distribution of the pixel elements.

Geometry based similarity measures are especially interesting in connection with the exact

watershed transform. Observing the image in �gure 5.1 it is easy for a human observer to

identify prominent object boundaries although there is no color information available but only
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the exact watersheds. Measures rating the geometrical saliency of polygonal arcs have already

been discussed in the literature many times; an overview being also in the context of exact

watersheds can be found in [Meine 2008, Chapter 5, p. 129 et seqq]. To be usable for the graph

cuts discussed here the saliency of each edge of a partition of the plane must be computed

in advance and therefore cannot be a complex function of all edges being contained in a cut.

However, this would be desirable for geometrical measures, e.g. the curvature of the common

boundary. If it is nevertheless possible to de�ne appropriate saliency measures usable for graph

cuts would be an interesting object for future work. We also discuss in brevity an extension of

a graph cut method below which allows to overcome this limitation.

Figure 5.1: Example for geometrical saliency of watershed boundaries; prominent boundaries immedi-
ately �pop-out� to a human observer (example is based on [Meine 2008, Chapter 5, p. 129 et seqq])

As a further extension, one can also combine all kinds of di�erent edges weights into a single

edge weight function. Especially, one can combine feature and geometry based weights in order

to improve their discrepancy power. The importance of each di�erent edge weight could than be

adjusted with appropriate selected scaling factors.

For the graph cuts using a vertex weight function, i.e. the foreground, the isoperimetric, and

the normalized cut, we found that using the weighted degree for this can be problematic. In

order to overcome this problem further work on choosing other vertex weight functions is needed.

3 Graph Cuts Although, an extensive search in the present literature has been our intention

there are certainly other publications on normalized graph cuts related clustering methods which

we have not found but could also be used in our segmentation scheme. Moreover, we have found

two other cuts from which we think that they are worth to be investigated but we were not able

to include due to time constraints: The work of Keuchel [2004]; Keuchel et al. [2003], and

an extension of the mean cut presented in [Wang et al. 2005].
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Keuchel et al. used techniques from semi de�nite programming to solve the minimum cut

problem with additional balancing constraints. The usefulness of this approach has been demon-

strated among others within the tasks of binary image restoration, line grouping, and image

segmentation. Using balancing constraints on the resulting components, e.g. constraints on the

size or total vertex weight, of a bi-partition is an alternative way to overcome the bias of the

minimum cut to small regions. If it is possible to increase the quality of our segmentations this

way would be an interesting question to be investigated.

Wang et al. [2005] show how the minimum mean cut algorithm (as presented in section 3.5)

can be used to connect line segments produced by an edge detector into globally optimal contours.

The corresponding energy function has a similar form as with the minimum mean cut:

ω(C) =
∑

e∈C ω1(e) + ωC(e)∑
e∈C ω2(e)

(5.1)

where C is a set of edges forming a cycle. The edge weight functions ω1 and ω2 can only be

simple functions mapping each edge to a beforehand selected weight as it is the case with all edge

weight functions used in this work. However, ωC can be a more complex edge weight function

whose function value for an edge e also depends on the two edges preceding and succeeding e in

the cycle C. More precisely, for C = (e1, . . . , en) it can have the form

ωC(ei) = f(ei−1modn, ei) + f(ei, ei+1modn) (5.2)

with f being an arbitrary function de�ned on pairs of edges. Instead of deriving a region

adjacency graph from a partition of the plane P one can construct a boundary graph encoding

the topology of the vertices and edges in P (that is, P is an embedding of the boundary graph,

see de�nition 21). The idea is that a cycle optimizing equation (5.2) then forms a perceptually

appealing bi-partition as with the graph cuts if the edge weights are de�ned appropriately. The

usefulness of this becomes clear if one likes to incorporate geometric saliency into the energy

function: The edge weight functions ω1 and ω2 can be de�ned analogously as with the minimum

mean cut, i.e. ω1 can be a function of the pairwise similarity of faces sharing an edge in P and

ω2 can be function of the length of this common edge. For ωC , f can be a function mapping

pairs of edges to a high value if they are good continuation from each other in a geometric sense.

Additionally, we have already mentioned some other possible aspects for further work before:

In section 3.6 we used a simple heuristic for the seed selection for the foreground cut problem.

The impact on the optimality can be investigated by trying each vertex of the region adjacency

graph in turn and by comparing the best bi-partition with the one gained from the heuristic.

In section 3.6 we mentioned the optimal algorithm for the isoperimetric cut problem of Park

and Phillips [1993] for planar graphs. The algorithm is not used here as we think that it is

too laborious to implement and too expensive for the graph sizes encounter here. At least a

comparative study on how close the approximation scheme of Grady and Schwartz [2006a] is
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to the optimal solution would be possible with this algorithm nevertheless.

4 Stopping criteria Finally we would like to mention possible modi�cation on the stopping

criterion for the recursive application of the graph cuts. The quality of the �nal segmentations

also depends on the selection of the stop parameter which is used as an upper bound for the

cut values and therefore stops the recursion. Alternatively, one could use the stop parameter

on di�erent similarity measures de�ned on the components of a cut. For this one could use all

kinds of measures ranging from measures incorporating all pixels in the both components over

measures using histograms or signatures derived from the pixels to statistical tests which are

only de�ned on the mean and variance of the color values. As a possible advantage, one could

try to overcome the problem of some cuts to produce shortcuts in this way (cf. section 4.4).
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A Evaluation Results

β stop

cut mean shift averGrad 105 4.37 · 10−2

colorMean 155 1.98 · 10−2

EMD 105 0.11
watersheds averGrad 145 2.47 · 10−2

colorMean 135 2.59 · 10−2

EMD 105 7.84 · 10−2

mcut mean shift averGrad 31 0.23
colorMean 31 0.37
EMD 31 0.47

watersheds averGrad 16 0.36
colorMean 36 0.17
EMD 36 0.14

fcut mean shift averGrad 65 9.99 · 10−2

colorMean 65 5.36 · 10−2

EMD 55 2.96 · 10−2

watersheds averGrad 45 2.59 · 10−3

colorMean 95 4.81 · 10−4

EMD 85 6.55 · 10−4

icut mean shift averGrad 35 0.3
colorMean 45 4.99 · 10−2

EMD 75 4.57 · 10−2

watersheds averGrad 65 6.02 · 10−3

colorMean 95 7.86 · 10−4

EMD 75 2.17 · 10−3

ncut mean shift averGrad 55 0.35
colorMean 65 0.14
EMD 65 7.26 · 10−2

watersheds averGrad 25 1.34 · 10−2

colorMean 135 5.95 · 10−4

EMD 115 6.26 · 10−4

Table A.1: Parameters found by cross validation for each instance if the basic segmentation scheme.
The parameter β is the scaling factor for the edge weights and stop is stop parameter for the recursion.

A.1 Statistics

103



A.1. STATISTICS APPENDIX A. EVALUATION RESULTS

0 100 200 300
0.3

0.4

0.5

0.6

0.7

max=0.57

averGrad

cu
t

w
at
er
sh
ed
s

0 100 200 300
max=0.61

colorMean

0 100 200 300
max=0.6

EMD

0 100 200 300
0.3

0.4

0.5

0.6

0.7

max=0.62

cu
t

m
ea
n
sh
if
t

0 100 200 300
max=0.62

0 100 200 300
max=0.61

0 50 100
0.3

0.4

0.5

0.6

0.7

max=0.62

m
u
t

w
at
er
sh
ed
s

0 50 100
max=0.65

0 50 100
max=0.64

0 50 100
0.3

0.4

0.5

0.6

0.7

max=0.65

m
u
t

m
ea
n
sh
if
t

0 50 100
0.63

0 50 100
max=0.63

Figure A.1: Each plot shows for a certain instance of the segmentation scheme the mapping of a scaling
parameter β for the edge weights (x axis) to the mean of the NPR-indexes over all images (y axis) found
by optimal parameter search for β; here for the minimum cut and mean cut.
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Figure A.2: Each plot shows for a certain instance of the segmentation scheme the mapping of a scaling
parameter β for the edge weights (x axis) to the mean of the NPR-indexes over all images (y axis) found
by optimal parameter search for β; here for the foreground, isoperimetric, and normalized cut.
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(b) 0.48 8.12 · 10−2 0.98 −0.43

Figure A.3: Histograms and simple statistics of the NPR indexes for the watershed transform and the
mean shift method.
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Figure A.4: Histograms for the NPR scores for the minimum cut and the mean cut. The �rst two rows
are the histograms of the best NPR score for each image: minimum cut (�rst row) and mean cut (second
row). The remaining rows are the histograms for the best parameter from cross-validation: minimum cut
(third row) and mean cut (fourth row).
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Figure A.5: Histograms for the NPR scores for the foreground cut (�rst row), the isoperimetric cut
(second row), and the normalized cut (third row). The �rst three rows are the histograms of the best
NPR score for each image; the remaining rows are the histograms for the best parameter from cross-
validation.
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mean variance maximum minimum segs
(watersheds) best cross best cross best cross best cross %

averGrad 0.58 0.44 3.89e−2 8.34e−2 0.96 0.95 0.11 −0.43 55.99
colorMean 0.63 0.49 3.60e−2 8.53e−2 0.97 0.97 0.12 −0.42 25.59

EMD 0.61 0.50 3.80e−2 7.04e−2 0.97 0.97 0.12 −0.32 30.43
(mean shift)

averGrad 0.63 0.50 3.67e−2 7.74e−2 0.98 0.94 0.12 −0.32 85.41
colorMean 0.63 0.52 3.42e−2 7.34e−2 0.98 0.98 0.18 −0.32 76.59

EMD 0.62 0.52 3.50e−2 7.16e−2 0.98 0.98 0.22 −0.31 81.86

mean variance maximum minimum segs
(watersheds) best cross best cross best cross best cross %

averGrad 0.65 0.47 3.00e−2 0.12 0.98 0.97 0.26 −1.24 10.16
colorMean 0.67 0.53 3.10e−2 7.29e−2 0.98 0.98 0.25 −0.31 13.67

EMD 0.66 0.55 3.29e−2 6.73e−2 0.98 0.98 0.12 −0.30 11.67
(mean shift)

averGrad 0.66 0.53 2.99e−2 8.42e−2 0.98 0.98 0.21 −0.63 37.22
colorMean 0.66 0.53 3.08e−2 7.03e−2 0.98 0.98 0.26 −0.30 43.17

EMD 0.65 0.52 3.00e−2 6.78e−2 0.98 0.98 0.22 −0.30 46.47

mean variance maximum minimum segs
(watersheds) best cross best cross best cross best cross %

averGrad 0.63 0.47 2.81e−2 8.37e−2 0.98 0.97 0.12 −0.80 0.70
colorMean 0.68 0.52 2.62e−2 7.02e−2 0.98 0.98 0.20 −0.58 1.70

EMD 0.66 0.52 2.98e−2 7.37e−2 0.98 0.98 0.20 −0.58 1.32
(mean shift)

averGrad 0.67 0.50 2.55e−2 7.48e−2 0.98 0.98 0.29 −0.35 5.91
colorMean 0.66 0.52 3.06e−2 7.02e−2 0.98 0.98 0.21 −0.28 13.42

EMD 0.65 0.51 2.99e−2 7.27e−2 0.98 0.96 0.20 −0.26 10.20

mean variance maximum minimum segs
(watersheds) best cross best cross best cross best cross %

averGrad 0.62 0.46 3.22e−2 6.37e−2 0.98 0.96 0.01 −0.32 1.09
colorMean 0.68 0.54 2.79e−2 7.80e−2 0.98 0.97 0.15 −0.43 1.63

EMD 0.66 0.52 3.24e−2 7.97e−2 0.98 0.97 0.19 −0.58 1.39
(mean shift)

averGrad 0.66 0.50 2.87e−2 7.40e−2 0.98 0.98 0.25 −0.39 16.43
colorMean 0.66 0.51 3.03e−2 7.27e−2 0.98 0.98 0.20 −0.38 8.59

EMD 0.65 0.51 3.35e−2 6.58e−2 0.98 0.98 0.16 −0.27 10.93

mean variance maximum minimum segs
(watersheds) best cross best cross best cross best cross %

averGrad 0.62 0.48 3.61e−2 5.13e−2 0.98 0.98 0.01 −0.21 0.79
colorMean 0.67 0.54 3.31e−2 6.87e−2 0.98 0.97 0.13 −0.33 1.96

EMD 0.67 0.54 3.11e−2 7.07e−2 0.98 0.96 0.19 −0.58 1.04
(mean shift)

averGrad 0.66 0.51 2.81e−2 7.39e−2 0.98 0.96 0.24 −0.38 4.03
colorMean 0.67 0.51 3.04e−2 6.71e−2 0.98 0.94 0.20 −0.30 9.27

EMD 0.66 0.51 3.10e−2 6.50e−2 0.98 0.98 0.22 −0.27 5.89

Table A.2: Various basic statistics of the evaluation results for the the foreground cut, the isoperimetric
cut, and the normalized cut.
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A.2 Comparisons

p-value ≤ 0.05
p-value > 0.05

The following tables compare the mean NPR-indexes of instances of

the basic segmentation scheme. Additionally, for each comparison of

two instances we also use two statistical tests on the NPR indexes in

order to see if the di�erence are actually signi�cant. For this we use the paired t-test and its

nonparametric counterpart, the Wilcoxon signed rank tests (see for example [Meintrup and

Schäffle 2005]). For the signi�cant level we use the standard value α = 0.05.

mean mean p.ttest wilcoxon
cut 0.504 > 0.444 0.001 0.000
mcut 0.529 > 0.469 0.031 0.018
fcut 0.520 > 0.463 0.011 0.044
icut 0.502 > 0.462 0.007 0.045
ncut 0.510 > 0.482 0.129 0.460

(a) averGrad

mean mean p.ttest wilcoxon
cut 0.518 > 0.493 0.094 0.143
mcut 0.526 < 0.528 0.881 0.635
fcut 0.514 < 0.541 0.080 0.047
icut 0.509 < 0.536 0.214 0.582
ncut 0.508 < 0.537 0.078 0.003

(b) colorMean

mean mean p.ttest wilcoxon
cut 0.518 > 0.504 0.368 0.006
mcut 0.524 < 0.546 0.094 0.005
fcut 0.513 < 0.540 0.104 0.481
icut 0.510 < 0.517 0.782 0.018
ncut 0.515 < 0.541 0.252 0.004

(c) EMD

Table A.3: Comparison of mean NPR scores for two di�erent initial segmentations steps for all cuts
with results from the paired t-test and theWilcoxon signed rank test if the di�erences in the distributions
is signi�cant.
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mean p.ttest wilcoxon p.ttest wilcoxon p.ttest wilcoxon
mcut 0.529 0.035 0.000
fcut 0.520 0.681 0.036 0.681 0.036 0.000 0.000
ncut 0.510 0.371 0.021 0.012 0.000 0.000 0.000
cut 0.504 0.126 0.002 0.672 0.134 0.097 0.000
icut 0.502 0.214 0.004 0.845 1.000 0.001 0.000

(a) mean shift + averGrad

mean p.ttest wilcoxon p.ttest wilcoxon p.ttest wilcoxon
mcut 0.526 0.000 0.000
cut 0.518 0.130 0.000 0.130 0.000 0.001 0.000
fcut 0.514 0.289 0.764 0.773 0.036 0.008 0.000
icut 0.509 0.360 0.000 0.732 0.000 0.158 0.000
ncut 0.508 0.072 0.021 0.931 0.000 0.007 0.000

(b) mean shift + colorMean

mean p.ttest wilcoxon p.ttest wilcoxon p.ttest wilcoxon
mcut 0.524 0.000 0.000
cut 0.518 0.608 0.920 0.608 0.920 0.012 0.000

ncut 0.515 0.478 0.002 0.841 0.012 0.038 0.000
fcut 0.513 0.427 0.007 0.878 0.007 0.068 0.000
icut 0.510 0.327 0.036 0.882 0.057 0.069 0.000

(c) mean shift + EMD

mean p.ttest wilcoxon p.ttest wilcoxon p.ttest wilcoxon
ncut 0.482 0.000 0.000
mcut 0.469 0.695 1.000 0.695 1.000 0.000 0.000
fcut 0.463 0.250 0.920 0.837 0.764 0.000 0.000
icut 0.462 0.117 0.002 0.951 0.036 0.000 0.000
cut 0.444 0.084 0.001 0.283 0.000 0.000 0.000

(d) watersheds + averGrad

mean p.ttest wilcoxon p.ttest wilcoxon p.ttest wilcoxon
fcut 0.541 0.000 0.000
ncut 0.537 0.693 0.089 0.693 0.089 0.000 0.000
icut 0.536 0.522 0.920 0.956 0.036 0.000 0.000

mcut 0.528 0.241 0.004 0.506 0.007 0.000 0.000
cut 0.493 0.001 0.000 0.007 0.000 0.000 0.000

(e) watersheds + colorMean

mean p.ttest wilcoxon p.ttest wilcoxon p.ttest wilcoxon
mcut 0.546 0.000 0.000
ncut 0.541 0.764 0.134 0.764 0.134 0.000 0.000
fcut 0.540 0.555 1.000 0.938 0.036 0.000 0.000
icut 0.517 0.145 0.484 0.225 0.764 0.000 0.000
cut 0.504 0.000 0.000 0.527 0.000 0.000 0.000

(f) watersheds + EMD

Table A.4: Ranking of the di�erent cut types for possible combinations of initial segmentation step and
edge weight function.
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mean shift watersheds
mean mean p.ttest wilcoxon mean mean p.ttest wilcoxon

averGrad/colorMean 0.504 < 0.518 0.220 0.057 0.444 < 0.493 0.020 0.000
averGrad/EMD 0.504 < 0.518 0.373 0.089 0.444 < 0.504 0.001 0.000
colorMean/EMD 0.518 < 0.518 0.969 0.134 0.493 < 0.504 0.265 0.484

(a) foreground cut ( fut)

mean shift watersheds
mean mean p.ttest wilcoxon mean mean p.ttest wilcoxon

averGrad/colorMean 0.529 > 0.526 0.902 0.036 0.469 < 0.528 0.034 0.764
averGrad/EMD 0.529 > 0.524 0.833 0.089 0.469 < 0.546 0.007 0.134
colorMean/EMD 0.526 > 0.524 0.738 0.000 0.528 < 0.546 0.014 0.000

(b) foreground cut ( fut)

mean shift watersheds
mean mean p.ttest wilcoxon mean mean p.ttest wilcoxon

averGrad/colorMean 0.520 > 0.514 0.524 0.000 0.463 < 0.541 0.000 0.000
averGrad/EMD 0.520 > 0.513 0.610 0.021 0.463 < 0.540 0.000 0.000
colorMean/EMD 0.514 > 0.513 0.891 0.194 0.541 > 0.540 0.835 0.617

(c) foreground cut ( fut)

mean shift watersheds
mean mean p.ttest wilcoxon mean mean p.ttest wilcoxon

averGrad/colorMean 0.502 < 0.509 0.660 0.000 0.462 < 0.536 0.000 0.000
averGrad/EMD 0.502 < 0.510 0.530 0.000 0.462 < 0.517 0.001 0.000
colorMean/EMD 0.509 < 0.510 0.952 0.000 0.536 > 0.517 0.337 0.617

(d) isoperimetric cut ( icut)

mean shift watersheds
mean mean p.ttest wilcoxon mean mean p.ttest wilcoxon

averGrad/colorMean 0.510 > 0.508 0.834 0.000 0.482 < 0.537 0.003 0.057
averGrad/EMD 0.510 < 0.515 0.736 0.000 0.482 < 0.541 0.000 0.000
colorMean/EMD 0.508 < 0.515 0.549 0.000 0.537 < 0.541 0.834 0.036

(e) normalized cut ( ncut)

Table A.5: Comparison of mean NPR scores for di�erent edge weight types for the foreground, the
isoperimetric and the normalized cut with results from the paired t-test and the Wilcoxon signed rank
test if the di�erences in the distributions is signi�cant.
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A.3 Segmentations

We give on the following pages segmentation results for the instances of the basic segmentation

scheme for a hand chosen set of images. We give �rst three images with the watershed transform

as initial segmentation step and then three images with the mean shift method. We also present

the ground truth data from the Berkeley Image Database. For this we superimpose the ground

truth data from all subjects for one image. The corresponding NPR-indexes are presented as

well.
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