
MASS CUSTOMIZATION FOR EVOLVING PRODUCT FAMILIES

Thorsten Krebs, Katharina Wolter

Laboratory for Artificial Intelligence
University of Hamburg

Vogt-Köln-Str. 30
Germany, Hamburg, 22527

Thorsten Krebs, krebs@informatik.uni-hamburg.de
Katharina Wolter, kwolter@informatik.uni-hamburg.de

Lothar Hotz

HITeC c/o

University of Hamburg
Vogt-Köln-Str. 30

Germany, Hamburg, 22527
Lothar Hotz, hotz@informatik.uni-hamburg.de

Abstract: Evolution of products is inevitable throughout their life cycle – driven by advancing technology, increasing

customer requirements or bug fixes. Therefore, the set of components as well as the dependencies between
those components are getting more complex and only few experts are able to configure products. But in mass
customization scenarios it is desired to generate products specific to customer requirements. One promising
approach to this is abstracting from the available components and their interdependencies by focusing on
features. In an extended configuration process, the customer can select a set of features for the desired product
and based on pre-defined mappings the system architecture is selected and the corresponding product
components are inferred. This approach hides modifications to product components by showing the same or
only slightly changed features to the customer.

Significance: The work presented in this paper shows a basic method that can be adopted for tool support concerning

evolution of configuration models. Further research in this area and automated support for evolution of
configuration models is expected.

Keywords: Mass Customization, Product Families, Features, Configuration Models, Evolution

(Received ; Accepted)

1. INTRODUCTION

Product configurators are widely used to generate customer-specific products out of a vast amount of potential variants.
This combines the two essentials of mass customization: adapting the derivation process by producing standardized assets
and assembling these assets to make the unique product for the customer.

Evolution of products and product components is inevitable throughout their life cycle – driven by advancing
technology, increasing customer requirements or bug fixes. Therefore, the set of components as well as the dependencies
between those components are getting more complex and only few experts are able to configure products based on such
complex configuration models. But in mass customization scenarios it is desired to generate products specific to customer
requirements. Thus, the configuration process would largely benefit when everybody is able to configure products – e.g. in
internet configuration scenarios (compare [Ardissono et al. 2002]).

One promising approach to this is abstracting from technical details of the available components and their
interdependencies by focusing on functionality. Functionality of products and product components can be represented with
features (see also [Kang et al. 1990]). In general, the expected improvements of using a feature-based approach for software
development are better control over variability, extended reuse of requirements, improved configuration support and sales
support as well as improvements on new development [Hein et al. 2000].

The structure-based configuration method [Günter 1995] can be used to support the feature-based approach. In such a
feature-based configuration process the customer can select a set of features for the desired product and based on pre-
defined mappings between features and the product line artifacts a (potentially automated) process constructs the system

mailto:krebs@informatik.uni-hamburg.de
mailto:kwolter@informatik.uni-hamburg.de
mailto:hotz@informatik.uni-hamburg.de

architecture by selecting the corresponding product components (hidden for the user). This approach gives the possibility of
hiding modifications to product components by showing the same or only slightly changed features to the customer.

The remainder of this paper is structured as follows: in Sections 2 we show how features and their interrelations can be
described in detail. Next, we explain how features, software artifacts, hardware artifacts and the mapping between them can
be defined in the configuration model (Section 3). How this configuration model is used to derive complex products is
explained in Section 4. Finally, the aspect of evolving product components is introduced and change operations used to
capture the modification of configuration models are described (Section 5). A short outlook concludes the paper.

2. FEATURES

We follow the definition in [Kang et al. 1990] where a feature is defined as "a prominent or distinctive user-visible aspect,
quality or characteristic of a software system or systems". Further, "a feature model is a specific domain model covering the
features and their relationships within a domain" [Ferber et al. 2002]. Features are modeled hierarchically in an ontology
that can consist of taxonomy and partonomy. Taxonomic relations (i.e. specializations) allow defining more specific system
properties and therefore a distinction between different types of features. Compositional relations provide the means for
grouping related features by placing them next to each other (subfeature relation). Feature hierarchies typically contain
facilities to express diverse types of variability:

• Mandatory features are present in all products that belong to the product family in the modeled domain.
• Optional features may or may not be included in a product. If an optional feature is not part of the product, all

subfeatures of that feature are also excluded.
• Alternative features represent a choice between a set of features from which exactly one has to be chosen.
• Multiple features capture the possibility to choose multiple features from a set of features, but at least one has to be

chosen.
Properties of product lines are common to all product line members – i.e. they are mandatory features. Mandatory

features represent basic functionality of all products in the given domain. Optional features are not included in all but only
in some selected products and represent the admissible differences between product line members.

Because features can be interconnected not only by hierarchical relations (i.e. taxonomies and partonomies) but also by
dependencies concerning arbitrary features, more sophisticated variability mechanisms are needed. The following is a list of
further needed dependencies (compare [Brüne et al. 2003], [Krebs and Hotz 2003]):

• Requires: Features can be required by other features - i.e. the existence of the required feature is needed for the
former one.

• Excludes: Features may exclude each other. This happens when two features can not be selected together, e.g.
when the system components that realize these features are incompatible. This is a mutual exclusion.

• Recommends: A weak form of the requires relation is a recommendation. The existence of features can be
recommended for other features. This can also be seen as the semantics of a default value.

• Discourages: Contrary to the latter, features may be discouraged for other features in the system. This is a weak
form of the mutual exclusion. Hence, it describes that a feature is not chosen per default.

Due to views of various granularities, features are utilized to model different levels of abstraction. [Kang et al. 2002]
e.g. distinguish between product capabilities, the operating environment, domain technologies and implementation
techniques. While product capabilities are general terms that also customers can understand and select the desired
functionality from, implementation techniques are usually hidden from customers and used by application engineers that
implement products or product artifacts. Therefore, mappings between features on the diverse levels can be modeled
through taxonomic and compositional relations and dependencies.

3. MODELING WITH STRUCTURE-BASED CONFIGURATION

In product families besides features also artifacts (i.e. software modules and hardware components) are considered. In our
approach features, artifacts and the mapping between these are formalized in a configuration model based on mechanisms
from structure-based configuration. This model is further used for automatic product configuration. Features, software
modules and hardware components can be represented with concepts provided by the modeling facilities of structure-based
configuration. A definition is given in the following:

• Each concept has a name which represents a uniquely identifiable character string.
• Concepts are related to exactly one other concept in the taxonomic relation. Thus, the latter concept is the

superconcept of the former one.
• Attributes of concepts can be represented through parameters. A parameter is a tuple consisting of a name and a

value descriptor. Diverse types of domains are predefined for value descriptors – e.g. integers, floats, sets and
ranges.

• Partonomies are generated by modeling compositional (has-parts) relations. Such a relation definition contains a
list of parts (i.e. other concept definitions) that are identified by their names. Each of these parts is assigned with a
minimum and a maximum cardinality that together specify how many instances of these concepts can be
instantiated as parts of the aggregate.
Has-parts relations are a class of compositional relations. Thus, the knowledge engineer is free to define his own
relations and give his own names – e.g. a concept can contain a has-features definition next to a has-parts
definition to emphasize on the difference between artifacts and features.

Concept
 name: Software Module
 superconcept: Software Artifact
 parameters:
 Size [1 1024]
 relations:
 part-of
 System

Figure 1. Concept Definition

Concepts can be utilized to model all kinds of entities of the product family like software and hardware artifacts or

features. Through the taxonomic relation these entities are grouped next to each other in one configuration model – each
having their own branch in the hierarchy. Therefore, we have defined a common applicable model (CAM) which contains
predefined concepts with properties common to all these entities. An earlier version – called upper model – was already
introduced in [Hotz and Krebs 2003]. In Figure 1 the definition of the concept software module is depicted. The entry
superconcept: software artifact indicates that the software module is taxonomically placed under the concept software
artifact which is predefined in the common applicable model. One parameter is defined: the size of the software that can
range between one kilobyte and one megabyte. Further an inverse definition of the compositional relation (i.e. part-of) is
given to express that this software module belongs to a system.

Figure 2 shows the CAM that contains definitions for the basic entities feature, hardware artifact, software artifact and
the system that represents configurable product family members and contains the configurable artifacts through
compositional relations. Application-specific concepts are introduced into the configuration model by simply placing them
under the given entities – e.g. a software module is introduced by taxonomically relating it to the concept definition of the
software artifact (software artifact is superconcept of the new software module).

Figure 2. Common Applicable Model (CAM)

has-subfeatures

System

has-features has-parts

Asset

has-parts

requires requires

realized-by Feature Artifact

Legend: Hardware
Artifact

Software
Artifact

Specialization

Compositional Relation

Requires Relation

 Concept Definition

Further relations between assets that do not describe a hierarchical structure like taxonomic and compositional relations
do are called dependency relation. A uni- or bidirectional dependency can be defined between concepts in arbitrary places
of the ontology. Examples for this relation type are the requires relation for unidirectional und the excludes relation for
bidirectional dependencies. For bidirectional relations this means that during the configuration process this relation is
processed in both ways, no matter which concept participating in the relation is instantiated first. Unidirectional relations
are different; they are only processed in one direction. E.g. when a software module requires the existence of a specific
driver the existence or absence of this driver has no impact on that software module.

The realizes relation is a further bidirectional dependency that expresses that features are realized by artifacts in an n-to-
m mapping: one feature can be realized by one or more artifacts and the other way round one or more features can be
realized by one artifact. Several situations during product derivation can occur when handling n-to-m mappings. The easiest
possibility is when a feature is given and the needed artifacts descriptions are generated. A more complex situation is given
when an artifact is given (e.g. computed by a feature) that realizes a further feature. This feature has to be generated and the
artifact has to be integrated. A even more complex situation is given, when a feature is realized by several artifacts like in
the first situation, but one or more of these artifacts are already related to the feature, others are already generated but not
yet integrated (because they are used by other features) and further artifacts are not yet generated. For those tasks a clear
separation of possible features and artifacts on the one side and features and artifacts that are used for a specific product
derivation on the other side is needed. In the structure-based configuration tools like KONWERK [Günter and Hotz 1999]
this is realized by distinguishing between concepts for describing features and artifacts in general and concept instances for
describing features and artifacts of a specific product derivation. In situations as they are described above for some features
concept instances and several artifacts are already generated and for not yet generated artifacts still concept description are
present.

4. PROCESS

The configuration process in structure-based configuration is an incremental process – in each step one configuration
decision is made and its effects on the partial solution configured so far are computed. Thus, in an interactive configuration
process some decisions are made by the user and some are inferred by the configuration system. One aim of our approach is
that most of the decisions on a lower level of abstraction (e.g. decisions about components or their parameters) are inferred
by the configuration system. This is possible because of the mapping between features and artifacts defined in the
configuration model (see Figure 2).

The first step in the configuration process is the selection of the product one wants to configure. Next, its features are
selected. For each feature the user selects the configuration system infers the hardware and software artifacts necessary to
realize the feature based on the realized-by relation in the configuration model. Thus, the product configuration is more
efficient because the user only has to make those decisions that cannot be inferred based on other decisions already made.
Furthermore, feedback concerning the effects of decisions can be given after each decision made by the user. For example,
the user can realize that a specific feature cannot be selected anymore because of earlier decisions. This is especially
important for non-expert users who are not familiar with the dependencies between decisions in the configuration process.
However, even for experts this is a useful support, since they cannot overlook dependencies by mistake during the
configuration process.

Based on the configuration model it is possible to compute all necessary decisions needed to configure a specific
product. These decisions are collected in an agenda and can be displayed to the user. Additionally, these decisions can be
grouped in several subtasks to structure the process. One group e.g., can encompass all decisions concerning features and
further groups consist of decisions about hardware artifacts and software artifacts. This structuring of the configuration
process is also defined in the configuration model, in a specific part called procedural knowledge. Since a configuration
process can consist of a large number of decisions it is important to guide the user during configuration. Displaying these
subtasks (in a specific order) to the user is one possibility to provide guidance.

5. EVOLUTION OF THE MODEL

Products and / or product components evolve over time. New version and variants are built, and as a fact of synchronization
between the configuration model and the existing artifacts, also modeled for automated product derivation. This can have
an effect on the relations between the artifacts that are combined for generating specific products as well as the relations
between features and artifacts. A constantly growing artifact repository increases cognitive complexity and makes it more
difficult to configure products specific for a given task description.

For most customers, however, it is not of interest which versions of software modules are used in the product. The
functionality plays the key role in selecting the product that best suits the customer’s requirements. Therefore, it is natural
that evolution of artifacts (shown in terms of version numbers etc.) should be hidden from the customer. In most scenarios,
especially in embedded systems like car electronics or mobile phones, the product that satisfies a required functionality is
sufficient and the version numbers of software modules are not relevant. Such a behavior can be achieved by maintaining

the mapping between features and artifacts that realize those features during evolution of the model. When for example a
new version of a software artifact is generated, the mapping(s) between this artifact and the feature(s) that this module
realizes are simply modified such that they now are linked with the new version. After this, during an automated
configuration process the new version will be selected. This evolution of the mapping between features and artifacts is
depicted in Figure 3.

System System

has-features has-features

Feature Featurehas-parts has-parts

Evolution
Software
Module Software

Module realized-by
realized-by

Module v1.0 Module v1.1 Module v1.0

Figure 3. Synchronized Evolution of Artifacts and Mappings

Modifications to the configuration model are captured through change operations. Basic operations are those that cannot

be further partitioned – i.e. simple modifications like adding a parameter value or deleting a concept definition. Complex
change operations are composed of multiple basic operations or include some additional knowledge about the modification.
They provide a mechanism for grouping basic operations into a logical unity (compare [Klein and Noy 2003]). Moving a
group of concept definitions to a different superconcept for example can be split into moving each of those concepts
separately. Hierarchies of change operations can be formulated to exploit the inheritance mechanism for specifying
common properties.

Based on the assets and the relations that are specified in the CAM the complex change operations can be composed to
force a combined modification of dependent modifications. Adding features or adding artifacts e.g. have direct impacts on
the consistency of the mappings as further elaborated in the following.

• Add feature:

Features describe the functionality of the product or of product components. Therefore, a feature that is not realized
by some component is useless for product derivation1. Instead, adding a feature to the configuration model should
directly entail the addition of the mapping between this feature and the artifact(s) that realize(s) it. The complex
change operation can e.g. look like this:

add feature -> (introduce feature, add mapping(s) to artifact(s))

• Add artifact:

When new artifacts (in form of a concept definition) are introduced into the configuration model, they inherit the
relations from their superconcept definitions. For dependencies (e.g. excludes or realizes), however, this is not
always applicable. A new version of a software module may contain a bug fix and therefore no longer stay in
conflict to other artifacts like the previous version did – modeled through an excludes dependency. The new version
of that module usually realizes the same feature(s) the old version did, but it may also realize additional ones or be
seen as a replacement for future products. For new versions (assuming that the newest version should be used)
usually the mapping should be moved while for new variants (that are intended to coexist) a copy of the mapping
has to be introduced. This results in the following complex change operations:

add new artifact -> (introduce artifact, add mapping(s) to feature(s))

add version -> (introduce artifact, move mapping(s) to feature(s))
add variant -> (introduce artifact, copy mapping(s) to feature(s))

1 We do not consider planed features in this paper.

The relations for the basic entities feature and artifact are predefined in the CAM and therefore can be automatically
processed. Furthermore, some kind of dependency analysis is used to inspect other relations and restrictions that have been
added to more specific concept definitions for building the complex change operation.

6. CONCLUSION & OUTLOOK

Using feature models has been widely implemented to improve product modeling for cognitive reasons [Felix et al. 2001]
(documentation and customer-sales scenarios), product derivation [Hein et al. 2001; Kang et al. 2002] (supporting
developers and enhancing reuse strategies) and configuring products in a more customer-oriented way [Ardissono et al.
2002; Felfernig et al. 2002] (e.g. in internet scenarios).

For feature-based configuration models, complex change operations can give the needed means for achieving that
modifications to features and / or artifacts and mappings between features and artifacts are always processed together.
Therefore, in a tool that supports evolution of configuration models, the modification of a feature or artifacts cannot be
done independently of inspecting the relations this artifact participates in. Instead, complex change operations are
composed that always have to be processed as one operation. Thus, the user can be forced to also modify the corresponding
mappings or in a more sophisticated reasoning engine this might be (at least partially) automated.

The underlying dependency analysis is expected to be also usable for similar tasks like innovative configuration. This
method can be used in conflict situations – i.e. in situations where the configuration solution generated so far, the
configuration model and the task specification are not consistent. Innovative configuration is the task of extending the
configuration model dynamically in the configuration process such that newly introduced concepts or concept properties
enable additional solutions to the given task [Hotz and Vietze 1995]. A danger here is that dependencies to other concept
definitions and configuration decisions can be violated.

7. ACKNOWLEDGMENTS

This research has been supported by the European Union under the grant IST-2001-34438, ConIPF - Configuration in
Industrial Product Families.

8. REFERENCES

1. Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Meyer, M., Schäfer, R., Schütz, W. and Zanker, M.

(2002). Customizing the Interaction with the User in Online Configuration Systems. Proceedings of the Configuration
Workshop on 15th European Conference on Artificial Intelligence (ECAI 2002), Lyon, France, pp. 119-124.

2. Brüne, S., Halmans, G. and Puhl, K. (2003). Modelling Dependencies between Variation Points in Use Case Diagrams.

Proceedings of the 9th International Workshop on Requirements Engineering Foundation for Software Quality
(REFSQ), Klagenfurt, Austria.

3. Felfernig, A., Friedrich, G., Jannach, D. and Zanker, M. (2002). Semantic Configuration Web Services in the

CAWICOMS Project. Proceedings of the Configuration Workshop (ECAI 2002 Workshop), pp. 82-88, Lyon, France.

4. Felix, D., C. Niederberger, P. Steiger, and M. Stolze (2001). Feature-oriented vs. Needs-oriented Product Access for

Non-Expert Online Shoppers. Proceedings of the 1st IFIP Conference on e-commerce, e-business, and e-government
(I3E), pp 399-406.

5. Ferber, A., Haag, J. and Savolainen, J. (2002). Feature Interaction and Dependencies: Modeling Features for Re-

engineering a Legacy Product Line. Proceedings of 2nd Software Product Line Conference (SPLC-2), San Diego, CA,
USA, pp. 235-256.

6. Günter, A. (1995). Wissensbasiertes Konfigurieren. Infix, St. Augustin.

7. Günter, A. and Hotz, L. (1999). KONWERK – A Domain Independent Configuration Tool. Proceedings of

Configuration (AAAI 1999 Workshop), Orlando, Florida, USA, pp. 10-19.

8. Hein, A., Schlick, M. and Vinga-Martins, R. (2000). Applying Feature Models in Industrial Settings. In Software
product lines - Experience and research directions (Ed Donohoe P.). Kluwer Academic Publishers, pp. 47-70.

9. Hein, A., MacGregor, J. and Thiel S. (2001). Configuring Product Line Features. Proceedings of Feature Interaction in

Composed Systems (ECOOP 2001 Workshop), Budapest, Hungary.

10. Hotz, L. and Vietze, T. (1995). Innovatives Konfigurieren in technischen Domänen. Proceedings of 9. Workshop

Planen und Konfigurieren (PuK 1995). DFKI Saarbrücken, Kaiserslautern, Germany.

11. Hotz, L. and Krebs, T. (2003). Supporting the Product Derivation Process with a Knowledge-based Approach.

Proceedings of Software Variability Management (ICSE 2003 Workshop), Portland, Oregon, USA.

12. Kang, K., Cohen, S., Hess, J., Novak, W. and Peterson, S. (1990). Feature-oriented Domain Analysis (FODA) – A

Feasibility Study. Technical Report CMU/SEI-90-TR-021, Carnegie Mellon University, Pittsburgh, PA, USA.

13. Kang, K. and Lee, J. and Donhoe, P. (2002). Feature-oriented Product Line Engineering. IEEE Software, Vol. 7 (8),

pp. 58-65.

14. Klein, M. and Noy, N. (2003). A Component-based Framework for Ontology Evolution. Technical Report IR-504,

Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands.

15. Krebs, T. and Hotz, L. (2003). Needed Expressiveness for Representing Features and Customer Requirements.

Proceedings of Modeling Variability for Object-Oriented Product Lines (ECOOP 2003 Workshop), Darmstadt,
Germany.

16. Robak, S. and Franczyk, B. (2001). Feature Interaction and Composition Problems in Software Product Lines.

Proceedings of Feature Interaction in Composed Systems (ECOOP 2001 Workshop), Budapest, Hungary.

	MASS CUSTOMIZATION FOR EVOLVING PRODUCT FAMILIES
	(Received ; Accepted)
	1. INTRODUCTION
	2. FEATURES
	3. MODELING WITH STRUCTURE-BASED CONFIGURATION
	4. PROCESS
	5. EVOLUTION OF THE MODEL
	6. CONCLUSION & OUTLOOK
	7. ACKNOWLEDGMENTS
	8. REFERENCES

